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In the process of recording a digital image, super-resolution (SR) is a feasible soft method for solving 
the limitation of device and effect of environment. During the last two decades, many researchers 
proposed various SR algorithms for image reconstruction. Among these algorithms, kernel regression 
is a helpful tool which considers not only spatial distance between center pixel and neighbor pixel but 
also structural information. However, the problem of removing noise and outlier in kernel regression 
can be further studied and solved. In this paper, we proposed a new idea of so called trilateral kernel 
regression. Besides the above factors considered, the new kernel regression with trilateral idea 
considers additional factor: Confident correlation of pixels, so it can obtain more accurate result. 
Experiments are carried out to demonstrate the effectiveness of our method. The index of RMSE can be 
reduced by 2 or even 4 in some severe case. 
 
Key words: Super-resolution, kernel regression, trilateral kernel, outliers reduction, confident index. 

 
 
INTRODUCTION 
 
In many digital imaging applications areas, such as 
remote sensing, surveillance, medical, and video 
entertainment, the high-resolution (HR) images that give 
not only enough pixels density but also abundant details 
are desired to be convenient for post processing. If 
wanting to reach the above goal through modifying 
hardware, one must increase the number of sensor pixels 
in imaging device. But this technology has reach its limit 
beyond which will possibly cause many disgusting shot 
noises and increase the cost. In order to overcome these 
drawbacks, an alternatively economical and effective 
approach called super-resolution (SR) is widely 
researched and used. SR is technique that constructs HR  
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Abbreviations: SR, Super-resolution; HR, high-resolution; LR, 
low-resolution; NC, normalized convolution; RMSE, root of 
mean squared error. 

images from several observed low-resolution (LR) 
images, thereby increasing the high-frequency 
components and removing the degradations caused by 
the imaging process of the low-resolution camera 
(Milanfar, 2010). In fact, the process of SR can be viewed 
as a reverse flow for LR images generative model which 
is demonstrated in Figure 1. 

The concept SR was first mentioned by Tsai and 
Huang (1984), and then many researchers followed this 
trace to extend the method (Bose et al., 1993; Su and 
Kim, 1994; Tom et al., 1994). However they solved the 
resolution problem in frequency domain that cannot 
tackle complicated imaging model. For more flexibility in 
overcoming the difficulty in frequency domain, SR in 
spatial domain was proposed, adopted and researched 
by more and more researchers (Elad et al., 2004). There 
are many algorithms in spatial domain such as non 
uniform interpolation approach (Takeda et al., 2007), 
statistical approach (Pickup et al., 2009), set theoretic 
approach (Patti and Altunbasak, 2001), example-based 
approach (Elad and Datsenko, 2007) and others (Tian, 
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Figure 1. The generative model of a real imaging system relating a high resolution image to the low-resolution 
observation frames with motion between the scene and the camera. 

 
 
 

 
 
Figure 2. The SR reconstruction flow with three-step method from a set of noised and blurred LR 

images with motion to state-of-the-art image. 

 
 
 
2010). Generally, all approaches may be divided into two 
categories according to processing flow: one is three-step 
method registration-fusion-deconvolution and the other is 
two-step method registration-restoration.  

In this paper we focus on the three-step method for SR. 
Each step of this method can be described as follows. 
Firstly, the subpixel motion parameters of LR images are 
estimated, and then used to pursue registration that puts 
each LR image onto a HR (or subpixel spaced) grid. In 
most cases, the LR image positions on non-integral 
points, so there is a non uniform pixel distributed HR 
image on the HR grid. In order to form a uniform HR 
image, a kind of interpolation algorithm is employed to 
get intensities of all integral points. Above procedure, that 
is fusion, is the second step. Thirdly, for the noise and 

blurring in fused image are not removed in previous 
steps, deconvolution is a necessary process that can use 
one of the existing or novelly proposed restoration 
algorithm. Figure 2 illustrates the schematic 
representation of three-step method for SR. 

An efficient wavelet-based interpolation using the 
interlacing sampling structure in LR images was 
proposed by Nguyen and Milanfar (2010) to reconstruct 
SR image from non uniform sampled data, but it only 
aimed at speeding up the computation. Alam et al. (2000) 
proposed a weighted nearest neighbors method to 
interpolate non uniform sampled images, and then use 
Wiener filtering to deconvolute. In order to remove 
degradation during generation of images, Elad and Hel-
Or   (2001)   presented   a  very  computationally  efficient  
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algorithm, while they just consider special case of pure 
translation, space invariant blur, and additive Gaussian 
noise. Lertrattanapanich and Bose (2002) organized the 
irregularly sampled data as Delaunay triangles, and then 
interpolated the uniform data within each triangle. 
However this interpolation is very sensitive to noise. In 
fact, under the outlier circumstance, the surface fit 
interpolation is superior for fusion than conventional 
interpolation. Farneback (2002) proposed and extended 
the facet model for surface fit. But they all consider only 
uniform data and cannot adapt the method to structure of 
image. Pham et al. (2006) noticed the drawback of the 
above fusion method. Based on normalized convolution 
(NC), they introduced a Gaussian certainty and a 
structure adaptive applicability function to the polynomial 
facet model and applied it to fusion of irregularly sampled 
data. Recently, Takeda et al. (2010) proposed an 
adaptive steering kernel regression for interpolation on 
the HR image grid where the LR images are registered 
and mapped on. The adaptive steering kernel regression 
is valid when the noises follow a kind of distribution 
model. However, disgusting outliers usually appear on 
the image; thus influence the results severely. 
Unfortunately, Takeda’s kernel regression cannot 
perfectly resolve this problem. 

The aim of this paper is to improve the performance of 
kernel regression and enable it to remove outlier 
(perhaps it is salt and pepper noise or occasional mis-
registration) more effective, we set up outlier detection 
and removing rule to propose a novel scheme of kernel 
regression. The new scheme considers not only local 
structure of image to be adapted but also the outlier 
removal making the real and valuable pixels to attend the 
kernel regression. 
 
 
Kernel regression based super-resolution 
 
In this section, we will review ideas of classic kernel 
regression and its extended adapted kernel regression. 
After that, we describe the procedure for application of 
kernel regression to super-resolution, as well as the 
weakness of this scheme, and motivate the improvement 
of conventional method. 
 
 

Classic kernel regression 
 
Kernel regression method, in fact, is a non-parametric 
interpolation or fitting computing which has been widely 
used in many science and engineering areas such as 
pattern discrimination and intelligent computing. 
Compared to the parametric interpolation which depends 
on the specific interested signal model with parameter, 
the kernel regression only depends on local data to 
determine the model structure without any parameter. 
Once the model is decided through explicit parametric 
method    or    implicit     non-parametric     method,     the  

 
 
 
 
interpolation can be implemented. Apparently, the image 
is a kind of signal with two dimensions, so we formulate 
the kernel regression with image scenario as follows: 
Assuming the real image function is ( )z x , we can 

represent noisy version of ( )z x as: 

 

( ) ( )y z= +x x εεεε ,         1 2,[ ]Tx x=x ,                    (1) 

 
Where, ( )y x

 
is observed image function stained by 

noise, x   is coordinates of pixels in two dimension image 
grid, and εεεε is independent identically distributed 

stochastic noise with zero mean distribution. The task of 
kernel regression is to make use of local (neighbor) 

observed pixels of ( )y x   to estimate point-wise pixels 

of ( )z x  . 

For a specific pixel ( )iz x  sampled at position ix , we 

can expand it in a neighborhood centered at x  using the 
Nth order Taylor series 
 
 { } ( ) ( )( ) { }( )1 2( ) ( ) ( ) ( )

T T

i i i iz z z z− + − − += +x x x x x x x x x x L∇∇∇∇ ΗΗΗΗ    (2) 
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Where, ∇∇∇∇  and ΗΗΗΗ are the gradient (2 × 1) and Hessian 

(2 × 2) operators, respectively, and vech(•) is the half-
vectorization operator which lexicographically orders the 
lower triangular portion of a symmetric matrix into a 
column-stacked vector, Equation 3 represents two 
examples for intuition. 
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Comparison of Equations 2 and 3 make it clear that 
0

β  is 

the pixel value of interest, and the vectors 1ββββ   and 2ββββ   

are the first and second derivatives, respectively. that is, 
 

 0 ( )zβ = x
                                                             (5) 
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The nββββ
 
is computed from the following optimization 

problem: 
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Where, K is the 2-D realization of the kernel function 
which assigns different weight for each residual error, 
and H is the 2 × 2 smoothing matrix which controls the 
scope of neighborhood. For classic kernel regression, 

hH = I , where h is scalar, I is an identity matrix. In 

general, K is chosen as type of Gaussian function which 
assigns weight according to distance between interested 
pixel and measured pixel. So the kernel function is 
formulated as: 
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                                                                                 (9) 
 
If ignoring the regression order (N) and the dimensionality 
of ( )z x , we can see that the optimization problem (8) 

actually is a weighted least squares optimization problem. 
It can also be expressed as, 
 

( ) ( )ˆ arg min
T 

 b
y - Xb K y - Xbb =                     (10) 

 
Where, 
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By setting zero to derivative of cost function, Equation 10 
can be further solved and gives an explicit solution; 
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To sum up so far, from the final result, (Equation 15) we 
can say that the classic kernel regression is actually the 
application of a linear weighted average of local data 
toestimate point-wise desired regression model. 
Obviously, the weights play a key role during estimating. 
The classic kernel regression assigns weight just 
according to spatial distance or correlation (that is, the 
farther the distance, the lower correlation thus lower 
weight and vice versa). However, in image the correlation 
of pixels involve not only spatial distance but also diverse 
relation such as photometric, radiometric, structure and 
so on. Consequently, in next subsection, we will 
formulate the adaptive kernel regression and briefly 
analyze its merit and drawback. 
 
 
Structure-adapting kernel regression 
 
In contrast with classic kernel regression, the most 
important difference of adaptive kernel regression is the 

kernel function K
H is not a radio symmetric (or Centro 

symmetric) recessionary mask that is relevant to local 
sample values. Therefore, from (Equation 15) we can 
derivate a non-linear combination of local data not as 
simple as previous but finer and more vivid.  

Detailed size and shape of kernel function is decided 
based on the local data structure information which is the 
result of analyzing the radiometric (pixel value) 
differences locally.  

Similar to previous derivation, adaptive kernel 
regression has the same form of optimization problem 
(Equation 8). But being different from classic kernel 
regression, the matrix H is not a scalar multiple of the 
identity with the global parameter h, thus has equal effect 
along the x1- and x2-directions. We define the matrix H 
as follow; 
 

 
1

2h
−

i iH = C                             (16) 

 
Which is called the steering matrix by Takeda et al. 
(2007) and where, for each given sample yi, the matrix Ci 
is estimated as the local covariance matrix of the 
neighborhood spatial gradient vectors. A naive estimate 
of this covariance matrix may be obtained as; 
 

 ˆ T
i i iJC = J  

                                                     (17) 

 
with; 
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Where, 
1

z (•) and 
2

z (•) are the first derivatives along x1- 

and x2-axes, the number of rows in this matrix equates to  
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the number of samples in the local analyzed 

neighborhood centered at interested point
i

x . 

Undoubtedly, the method in (Equation 17) is simple but 
often unstable or rank deficient. Consequently, 
sometimes an effective alternative is to use singular 

value decomposition (SVD) of iJ  to construct covariance 

matrix 
i

C . 

Based on the estimated
i

H , (Equation 9) and (Equation 

16), the adaptive kernel function (steering kernel) can be 
formulated as: 
    

( )
( ) ( )2 2

det 1
( ) exp

2 2

T

i i iK
h hπ

 
− = − − − 
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x x x x x x

i

i

H i

C
C   (19) 

 
Thus, according to Equations 10 to 15, we can obtain the 
more accurate result. 
 
 
Super-resolution using kernel regression 
 
Because adaptive kernel regression is superior in 
interpolation than classic kernel regression for 
considering image structure apart from distance 
correlation, it can perform well in super-resolution.  
In other word, either classic kernel regression or adaptive 
only aims at fusion task in super-resolution, and cannot 
implement the entire super-resolution process. The rest 
task must be added in the completed flow including 
registration and disconvolution. We represent a detailed 
flow of super-resolution using kernel regression as follow: 
Step 1: Read the entire noisy and blurred LR image with 
stochastic motion. 
Step 2: Estimate the motion parameters in sub pixel 
accurate precision for each LR image according to a 
reference (in general the 1st) LR image. 
Step 3: Put every LR image onto a standard HR grid 
according to their motion parameter, that is, registration. 
Step 4: Interpolate previous irregular HR grid image onto 
integer point using classic kernel regression. 

Step 5: Compute the covariance matrix 
i

C  for each point 

using the derivatives obtained in the step 4 
Step 6: According to Equation 19 compute the adaptive 
kernel function  
Step 7: Implement the adaptive kernel regression 
interpolation 
Step 8: Deblur, that is, deconvolute the up scaled image 
thus get the HR image approach ideal image as better as 
possible. 

 
 
NEW FRAMEWORK FOR SUPER-RESOLUTION 
 
In traditional adaptive kernel regression, the rule for 
determining valid weight corresponding to pixels is based 
on two  factors.  One  factor  is  spatial  correlation  which 

 
 
 
 
assigns high weights to pixels with short distance 
between interested pixel and measured irregular 
positioned sample and assigns low weights to pixels with 
long distance. The other factor is photometric or 
structural correlation which assigns high weights to pixels 
with low residual error between interested measurement 
and neighbor measurement in one local analyzed window 
and assigns low weights to pixels with high residual error. 
We notice that this scheme is similar to the spatial 
difference weights of bilateral filter, in ideally assumed 
case such as Gaussian or Laplacian noise, this scheme 
performed well. While in most case, the observed LR 
images contain some outliers due to the poignant 
electromagnetic disturb, the error caused by registration 
or blur kernel, occlusion and so on, there is no 
corresponding effective mechanism to remove these 
outliers in the kernel regression. Kernel regression does 
not consider the pesky bad pixels detection and reduction 
even removal, so there is a little bit pity in the frame of 
kernel regression. 

As that discussed above, in order to process them 
properly we consider existing of outliers in observed 
images and proposed an outlier-reduction scheme 
incorporating kernel regression for SR with robustness. 
According to the similar derivation from Equations 8 to 
15, we present a little bit different formulation. The 
primary modifying lies in Equations 8 and 13. We give a 
new version of optimal problem (Equation 8) as follow: 
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And change Equation 13 into the follow: 
  

1 1 2 2( )    ( )       ( )diag P PK K K − − − K = x x x x x x� � L �H H HS S S                                                                                  

                                                                                (21) 
 

The difference consisted in Equations 8 and 13 is the 
symbol iS  which is a tool to detect and remove outlier. In 

fact, iS  still is a weight assigned to correspond pixel 

residual error according to the pixel reliability. When the 
value of iy  is in low confidence, iS  will be low; the other 

way round, when the value of iy  is in high confidence, 

iS   will be high. A typical definition of iS  is formulated as 

follow: 
 

 ( )
2

2
exp

ˆ
i

i iy y

σ

 −
 = −
  
 

S                                  (22) 

 

Where, the ˆiy
 
is the estimated initialization which can be 

obtained with any interpolation including nearest, bilinear, 
even the kernel regression discussed in  this  paper.  The 



 
 
 
 
σ defines a tolerant degree of ( )ˆi iy y−   which is set 

artificially by experience. Samples with residual error less 
than σ get weight close to one, whereas those with larger 

residual error get extremely low confidence. 
It can be found that the scheme we proposed is similar 

to the idea of bilateral filter, but it considers three factors: 
the first is spatial correlation; the second is photometric or 
structural correlation; besides above two factors included 
in idea of bilateral filter, the third is the confidence 
correlation between real and estimated value. Thus due 
to the three factors and enlightened by the name bilateral 
filter, we called this optimization scheme as trilateral 
scheme. 
Now we rewrite the flow of super-resolution using 
trilateral kernel regression as follow: 
Step 1: Read the entire noisy and blurred LR image with 
stochastic motion 
Step 2: Estimate the motion parameters in sub pixel 
accurate precision for each LR image according to a 
reference (in general the 1st) LR image  
Step 3: Put every LR image onto a standard HR grid 
according to their motion parameter, that is, registration 
Step 4: Interpolate previous irregular HR grid image onto 
integer point using classic kernel regression 

Step 5: Compute the covariance matrix 
i

C for each point 

using the derivatives obtained in the step 4 

Step 6: Compute the confidence iS  for each point using 

the derivatives obtained in the step 4 
Step 7: According to Equation 19, compute the adaptive 
kernel function  
Step 8: Implement the adaptive kernel regression 
interpolation 
Step 9: Deblur, that is, deconvolute the up scaled image; 
thus get the HR image approach ideal image as better as 
possible  

 
 
EXPERIMENTS 
 
In order to demonstrate the validity of proposed methods, 
we carry out four groups of experiments. The former two 
is SR reconstruction using several related methods for 
blurred LR ‘Lena’ test images contaminated with different 
level Gaussian noise. In order to prove the robustness of 
proposed scheme, the last two is SR reconstruction using 
several related methods for another blurred LR test 
images contaminated with different level outliers (in this 
paper we choose salt and pepper noise). 

The first experiment is carried out to demonstrate the 
effectiveness of the trilateral kernel regression for high 
noisy images. First, ten images are made by randomly 
shifting an original image. Then these translated images 
are blurred by Gaussian blur mask sized 10 with sigma 1, 
down sampled by 3 for each dimension, corrupted by 
Gaussian  noise  with  STD = 10  and  1%  of  salt  and 
pepper noise as outlier. The  original  image  is  shown  in 
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Figure 3 (a) and one of ten corrupted LR shifting images 
is shown in Figure 3 (b) which has been zoomed in as 
same size as original image for observation. We apply 
proposed method to the generated sequence comparing 
with three related SR methods: classic kernel regression 
based SR, adaptive kernel regression based SR, classic 
kernel regression based SR with confidence weight, and 
trilateral kernel regression based SR we proposed. 
The evaluation of these results is performed by the index 
of root of mean squared error (RMSE) which isdefined 
as: 
       

( )
21ˆ ˆRMSE( , )f f f f

N
= −∑                      (23) 

 

Where, N is the number of samples. Observing from 
results shown in Figure 3, we can say (e) and (f) are 
clearer than (c) and (d). Specially, on the edge of hat (e) 
and (f) are preserved better, whereas the (c) and (d) are 
a bit like curtained images. In addition, on outlier 
processing, (f) is better than (e). The few black and white 
spots in (e) and (f) can approve this judgment clearly. At 
the same time, the RMSE also confirms effectiveness of 
proposed scheme. 

Using the same method as described in first 
experiment, we generated another simulated sequence 
with different Gaussian noise with STD = 5. This 
sequence will be used for another experiment to prove 
trilateral kernel regression performed more excellent for 
low level Gaussian noise. The original image is shown in 
Figure 4(a) and one of ten simulated images is shown in 
Figure 4(b).  

In Figure 4, we find that (e) and (f) contain fewer 
curtains than (c) and (d), because the confident weight 
can detect and restrain more outliers. Specially, (f) is 
closer to origin than (e) as the (f) used trilateral kernel 
regression described previously. 

In order to show the robustness of trilateral kernel 
regression, we choose another test image to carry out 
last two experiments. Other SR methods for comparison 
are as same as the former two experiments.  

The third experiment is carried out to demonstrate the 
effectiveness of the trilateral kernel regression for low 
lever outlier contaminated images. The method of 
generating LR is as same as the second experiment. In 
Figure 5, we can find the trilateral kernel regression still 
performs best comparing other SR method. The RMSE 
also prove this result. 

Last experiment, we modified the third experiment by 
contaminating with higher lever outlier (that is, 3% salt 
and pepper noise) to illustrate the effect of proposed 
trilateral kernel regression SR. As expected, Figure 6 (f) 
gives a best result from view of either visual or index. 
 
 

CONCLUSION 
 

This paper analyzed the drawback of the classic kernel 
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  (a)                                                 (b) 

 

  (c)                                                 (d) 

 

 
              (e)                                                 (f) 

 

 

 
Figure 3. SR reconstruction of 10 corrupted LR images with STD = 10 Gaussian noise. (a) Original image; 

(b) 1 of 10 inputs (zooming in for observation); (c) classic kernel regression based SR [RMSE = 14.8652]; 
(d) adaptive kernel regression based SR [RMSE = 13. 9266]; (e) classic kernel regression based SR with 
confidence weight [RMSE = 13.4770]; (f) kernel regression based SR we proposed [RMSE = 13.3652]. 



Xu et al.         3841 
 
 
 

                               (a)                                                 (b) 

(c)                                                 (d) 

(e)                                                 (f) 
 

 
Figure 4. SR reconstruction of 10 corrupted LR images with STD = 5 Gaussian noise. (a) Original image; 

(b) 1 of 10 inputs (zooming in for observation); (c) classic kernel regression based SR [RMSE = 10.9703]; 
(d) adaptive kernel regression based SR [RMSE = 10.3455]; (e) classic kernel regression based SR with 
confidence weight [RMSE = 9.5000]; (f) kernel regression based SR we proposed [RMSE = 9.3993]. 
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          (a)                                                     (b) 
 
 
 
 
 
 
 
 
 
 
 
 

(c)                                                     (d) 
 
 
 
 
 
 
 
 
 
 
 
 

(e)                                                     (f)  

 
Figure 5. SR reconstruction of 10 corrupted LR images with 1% salt and pepper noise. (a) Original image; 
(b) 1 of 10 inputs (zooming in for observation); (c) classic kernel regression based SR [RMSE = 15.8266]; 
(d) adaptive kernel regression based SR [RMSE = 15.5067]; (e) classic kernel regression based SR with 
confidence weight [RMSE = 14.6025]; (f) kernel regression based SR we proposed [RMSE = 14.5031]. 
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(a)                                                     (b) 

(c)                                                     (d) 

(e)                                                     (f) 
 

 
Figure 6. SR reconstruction of 10 corrupted LR images with 3% salt and pepper noise. (a) Original image; (b) 1 

of 10 inputs (zooming in for observation); (c) classic kernel regression based SR [RMSE = 20.4670]; (d) 
adaptive kernel regression based SR [RMSE = 19.7877]; (e) classic kernel regression based SR with 
confidence weight [RMSE = 15.1208]; (f) kernel regression based SR we proposed [RMSE = 14.8410]. 
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regression and adaptive kernel regression. Motivated by 
the need of removing more outliers and SR reconstruc-
ting more general LR sequence, we modified the kernel 
regression and suggested a new trilateral kernel 
regression. The proposed trilateral kernel regression 
considers not only spatial distance and photometric 
difference but also confidence of pixels, so it can obtain 
more accurate result. On the other hand, this paper also 
applies idea of trilateral kernel regression to SR, and 
gives an algorithm flow. Analysis and experiment indica-
ted that the proposed method is effective to remove more 
noise and outliers than other method in SR. 
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