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In this paper, an operational matrix of integration based on Haar wavelets (HW) is introduced, and a 
procedure for applying the matrix to solve space and time fractional telegraph equations is formulated. 
The space and time fractional derivatives are considered in the Caputo sense. The accuracy and 
effectiveness of the proposed method is demonstrated by the five test problems. Approximate 
solutions of the space and time fractional telegraph equations are compared with the other numerical 
solutions and the exact solutions. The proposed scheme can be used in a wide class of linear and 
nonlinear reaction-diffusion equations. These calculations demonstrate that the accuracy of the Haar 
wavelet is quite high even in the case of a small number of grid points. The present method is a very 
reliable, simple, small computation costs, flexible and convenient alternative method. The power of the 
manageable method is confirmed. 
 
Key words: Haar wavelet, fractional differential equation, decomposition method, telegraph equation, 
operational matrix of integration. 

 
 
INTRODUCTION 
 
Wavelets have been applied extensively in scientific and 
engineering fields. In this paper, we use Haar wavelets to 
solve the space and time fractional telegraph equations, 
which appeared in many engineering, such as the 
continuous-time random walks, modeling of anomalous 
diffusive and sub-diffusive systems, unification of 
diffusion and wave propagation phenomenon and 
simplification of the results (Agrawal, 2002). The nature 
of the diffusion is characterized by the temporal scaling of 

the mean square displacement  2r t t . For standard 

diffusion, 1  , whereas in anomalous sub-diffusion, 

1   and in anomalous super-diffusion, 1.   Both 

types of anomalous diffusion have been unified in 
continuous time random walks models with spatial and 
temporal memories (Henry and Wearne, 2000). 

Fractional differential equations are generalized from 
classical   integer-order   ones,   which   are  obtained  by 
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replacing integer-order derivatives by fractional ones. 
Their advantages compared with integer-order differential 
equations are the capability of simulating natural physical 
process and dynamic system more accurately. Therefore, 
fractional diffusion equations are largely used in 
describing abnormal slowly-diffusion phenomenon, and 
fractional diffusion equations are always used in 
describing abnormal convection phenomenon of liquid in 
medium. Therefore, space and time fractional telegraph 
equations are increasingly studied, but it is difficult to do 
theoretic analyzing and numerical solving for them.  

Nigmatullin (1986) pointed out that many of the 
universal electromagnetic, acoustic and mechanical 
responses can be modeled accurately using the fractional 
diffusive-wave equations. Anh and Leonenko (2000) 
analyzed fractional diffusion equations with random initial 
conditions. Angulo et al. (2000) established diffusion 
equations with space fractional derivatives. The space 
and time fractional telegraph equations have recently 
been considered by Orsingher and Zhao (2003) and 
Orsingher and Beghlin (2004), respectively.  

Zhuang  and  Liu  (2005)  showed an explicit  difference 
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approximations for space and time fractional telegraph 
diffusion equation. There is a lot of work that discussed 
boundary problems of fractional differential equations. 
Zhou et al. (2009a, b) proved the existence and 
uniqueness of solutions for boundary problems of 
fractional differential equations. The telegraph equation is 
used in signal analysis for transmission and propagation 
of electrical signals and also used modeling reaction 
diffusion. Momani (2005) established Adomian 
decomposition method (ADM) for solving the space and 
time fractional telegraph equations and Yıldırım (2010) 
used the homotopy perturbation method (HPM) for the 
same problem. Ali (2010) established the He’s variational 
iteration method for solving the fractional telegraph 
equations. Odibata and Momani (Odibata and Momani, 
2008; Momani and Odibat, 2007) applied the generalized 
differential transform method for linear partial differential 
equations of fractional order. 

In this paper, making use of good properties of Haar 
wavelet and the operational matrix, we consider the 
following space and time fractional telegraph equations, 
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subject to the initial and boundary conditions, 
 

   

 
 

   

1

2

0, , 0,

0,
, 0,

,0 , 0 1

U t f t t

U t
f t t

x

U x S x x

 


 



  

       (2) 

 
where   is a parameter describing the order of the 

fractional space-derivative and  ,U x t  is assumed to be 

a causal function of space, that is, vanishing for 0.x   

The fractional derivative is considered in the Caputo 
sense. The general response expression contains a 
parameter describing the order of the fractional derivative 
that can be varied to obtain various responses. In the 

case of 1,   the fractional equation reduces to the 

classical telegraph equation. Also, we shall examine the 
time-fractional telegraph equation: 
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where   and v  are arbitrary constants and  ,U x t  is 

assumed to be a causal function of time, that is, 

vanishing for 0.t   In the case of 1,   the time-

fractional equation reduces to the classical telegraph 
equation. We establish a clear procedure for solving the 
fractional telegraph equations via Haar wavelet. In 
solving ordinary differential equations (ODEs), Chen  and 

 
 
 
 
Hsiao (1997) derived an operational matrix of integration 
based on the Haar wavelet method. Lepik (2007a, b, 
2005, 2010) solved higher order as well as nonlinear 
ODEs and some nonlinear evolution equations using 
Haar wavelet method. Hariharan and Kannan (2009, 
2010a, b, c) introduced the Haar wavelet method for 
solving some nonlinear ODEs and reaction-diffusion 
problems. Chen et al. (2010) showed the Haar wavelet 
method for solving some fractional convection-diffusion 
equations. In the present paper, a new direct 
computational method for solving space and time 
fractional telegraph equations is introduced. This method 
consists of reducing the problem to a set of algebraic 
equations by first expanding the term, which has 
maximum derivative, given in the equation as Haar 
functions with unknown coefficients. The operational 
matrix of integration and product operational matrix are 
utilized to evaluate the coefficients of the Haar functions. 

Identification and optimization procedures of the 
solutions are greatly reduced or simplified. Since the 
integration of the Haar functions vector is a continuous 
function, the solutions obtained are continuous function. 
This method gives us the implicit form of the approximate 
solutions of the problems. In this method, a few sparse 
matrices can be obtained, and there are no complex 
integrals or methodology. Therefore, the present method 
is useful for obtaining the implicit form of the 
approximations of linear or nonlinear differential 
equations, and round off errors and necessity of large 
computer memory are significantly minimized. Therefore, 
this paper suggests the use of this technique for solving 
the space and time fractional telegraph equation 
problems. Illustrative examples are given to demonstrate 
the application of the proposed method. 
 
 
DEFINITIONS OF FRACTIONAL DERIVATIVES AND 
INTEGRALS 
 
Here, we present some notations, definitions and 
preliminary facts that will be used further in this work. 
Fractional calculus is 300 years old topic. The first 
serious attempt to give logical definition is due to 
Liouville. Since then, several definitions of fractional 
integrals and derivatives have been proposed. These 
definitions include the Riemann-Liouville, Caputo, Weyl, 
Hadamard, Marchaud, Riesz, Grunwald-Letnikov and 
Erdelyi-Kober. The Caputo fractional derivative allows the 
utilization of initial and boundary conditions involving 
integer order derivatives, which have clear physically 
interpretations. Therefore, in this paper we shall use the 

Caputo derivative D
 proposed by Caputo in his work on 

the theory of viscoelasticity. 
In the development of theories of fractional derivatives 

and integrals, it appears that many definitions, such as 
Riemann-Liouvlle and Caputo fractional differential- 
integral definition as follows. 



 
 
 
 
1. Riemann-Liouville definition: 
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Fractional integral of order   is as follows: 
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2. Caputo definition: 
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BASIC TOOLS 

 
Proposed method 

 
Haar wavelet was a system of square wave; the first 

curve was marked up as  0h t , the second curve 

marked up as  1h t  that is: 

 

 0

1, 0 1

0,

x
h t

otherwise

 
 


 

 

  1

1, 0 1/ 2,

1, 1/ 2 1,

0, ,

x

h t x

otherwise

 


   



 

 

where  0h t  is scaling function,   1h t  is mother 

wavelet. In order to perform wavelet transform, Haar 
wavelet uses dilations and translations of function, that is, 
the transform make the following function. 
 

   1 2 , 2 , 0, 0 2 .j j j

nh t h t k n k j k        

 
Chen and Hsiao (1997) raised the ideology of operational 
matrix in 1975, and Kilicman and Al Zhour (2007) 
investigated the generalized  integral  operational  matrix, 
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that is, the integral of matrix  t  can be approximated 

as follows: 
 

   
0

t

t dt Q t                                           (7) 

 

where Q  is an operational matrix of one-time integral 

matrix  t , similarly, we can get operational matrix 
nQ  

of n-time integral of  t . Wu and Hsiao (1997) proposed 

a uniform method to obtain the corresponding integral 
operational matrix of different basis. For example, the 

operational matrix of  t  can be expressed by 

following: 
 

1

BQ Q 

                                                       (8) 

 

Here BQ  is the operational matrix of the block pulse 

function. 
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where m  is the dimension of matrix  t , and usually 

2 ,m     is positive integer. 

If  t  is a unitary matrix, then ,T

BQ Q Q    is 

a matrix with characteristic of briefness and profound 

utility. For   0,1 ,t  Haar wavelet function is defined as 

follows: 
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Integer 2 ( 0,1,2... )jm j J   indicates the level of the 

wavelet; 0,1,2,..... 1k m  is the translation parameter. 

Maximal level of resolution is J. The index i  is calculated 

according to the formula 1i m k   ; in the case of 

minimal values 1, 0m k   we have 2i  , the maximal 

value of i  is 
12 2Ji M   . It is assumed that the value 

1i   corresponds to the scaling function for which 

 1 1 0,1h in . Let us define the collocation points 

( 0.5) / 2 , ( 1,2....2 )lt l M l M    and discretise the 

Haar function ( );ih x  in this way we get the coefficient 

matrix ( , ) ( ( ))i lH i l h x , which has the 

dimension 2 2M M . 

 
 
Function approximation 
 

Any square integrable function  2( ) 0,1y x L  can be 

expanded by a Haar series of infinite terms: 
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where the Haar coefficients  ijc  are determined as, 
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coefficients, discrete   ,y x t  by choosing the same step 

of x  and t , we obtain: 
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where  ,Y x t  is the discrete form of  , ,y x t  and 
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C is the coefficient matrix  of Y , and it can be obtained 

by formula: 
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H  is an orthogonal matrix, then, 
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Solving space-fractional telegraph equations by the 
Haar wavelet method  
 
Consider the space-fractional telegraph equation, 
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subject to the initial and boundary conditions: 
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Since    2, ,u x t L R  we suppose: 
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Then, we can obtain the discrete form of Equation 16 by 

taking step 
1

m
   of  ,x t , there is 
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Then, combining Equation 16 with Equation 8, we get: 
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Table 1. The absolute error for different values of (x, t). 
 

 x 
t=0.1  t=0.3  t=0.5 

ADM method Haar method  ADM method Haar method  ADM method Haar method 

1.0 5.201×10
-11

 3.
 
201×10

-10
  4.427×10

-8
 3.1

 
21×10

-7
  2.325×10

-5
 1.907×10

-3
 

2.0 3.362×10
-11

 4.809×10
-10

  6.142×10
-9

 4.209×10
-7

  7.570×10
-6

 9.218×10
-5

 

3.0 2.379×10
-11

 4.982×10
-10

  3.528×10
-10

 8.382×10
-9

  4.958×10
-7

 3.214×10
-6

 

4.0 1.509 ×10
-11
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-10

  1.545 ×10
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 1.263×10
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Substituting Equation 18 into 14, there is, 
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Then, we have: 
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From Equation 20, the wavelet coefficients C  can be 

calculated successively. 

 
 
NUMERICAL EXAMPLES 

 
Example 1 

 
Consider the following space-fractional telegraph 
equation, 
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subject to the initial and boundary conditions: 
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where 0 2.   For special case when 2  , this 

system represents a homogeneous telegraph and was 
solved in the work of Kaya (2000). 

Using ADM, the solution in series form is given by: 
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Setting 2   in Equation 23, we produce the solution as 

follows: 
 

 
2 3

, 1 ...
2! 3!

t x x
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The solution is equivalent to the exact solution in a closed 
form: 

 

 , .x tu x t e                                         (25) 

 

Taking 16m   and making use of MATLAB (Table 1), 

we obtain the results of computations of  ,u x t  for 

0.5   (Figure 1). 

From Figure 1, we can see that with m  increasing, the 

numerical solution is closer to the exact solution. From 
Table 2, we can find the numerical solutions which is 
good with exact solution that it is not only effective to get 
numerical solutions with good agreement, and by Table 1
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Figure 1. Comparison between exact and Haar solution of Example 1 for j=4. 

 
 
 

Table 2. Comparison of the exact solution and the Haar wavelet (numerical) solution for example 5.3. 
 

x Wavelet solution (j=4) Exact solution 

0.015 2.133e-005 2.453e-005 

0.046 9.385e-005 9.772e-005 

0.078 2.549e-004 2.525e-004 

0.109 1.118e-004 1.171e-004 

0.453 4.556e-004 4.541e-004 

0.484 2.153e-004 2.112e-004 

0.515 3.342e-005 3.322e-005 

 
 
 
we can see that with m  increasing, the absolute error 

became more and smaller.  The calculating results show 
that combining with wavelet matrix, the method in this 
paper can be effectively used in numerical calculus for 
constant coefficient fractional differential equations, and 
that the method is feasible. The power of the manageable 
method is confirmed. 

 
 
Example 2   

 
Consider the following non-homogeneous space 
fractional telegraph equation, 

 
2

2

2
1, 0, 0 2.

u u u
x t t

x t t






  
       

  
     (26) 

 
subject to the initial and boundary conditions: 

  

 

 

  2

0, , 0

0,
0, 0

,0 , 0 1.

u t t t

u t
t

x

u x x x

 


 



  

      (27) 

 
The solution in series form is given by 
 

 
 

 
 

 
   

2 22
, 1 1 ...

3 1 1 2 1

x x x x
u x t t t t t

   

   



       
       

    (28) 

 
Figure 2 shows the exact solution of Equation 24 and 
Equation 25 using ADM. It is obvious that the self-
cancelling “noise” terms appear between various 

components. Setting 2   and canceling the “noise” 

terms yield the exact solution for this special case, given 
by: 
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Figure 2. Exact solution of example 2. 

 
 
 

  2,u x t x t                                              (29) 

 
 
Example 3   
 
Consider the time-fractional telegraph equation, 
 

2 2

2 2
, 0, 0 1.

u u u
v t

t t x

 

 
 

  
    

  
     (30) 

 
subject to the initial and boundary conditions: 
 

   

 
 

   

2

1

0, , 0

,0
, 0

,0 .

u t s t t

u x
h x t

t

u x h x

 


 





 

 
Using ADM, the solution in series form is given by: 
 

 
 

   

   
 

 
 

 

   

2 2 1

1 2 1 2

1 4 4 1
4 42

1 2 1 2

3 3 1

1 2

,
2 1 2 2

1 2 4 1 4 2

2 ... (29)
3 1 3 2

t t
u x t h th v h h

t t t t
h h v h h

t t
v h h

 

   

 

 


   


 



 



 
          

   
                   

 
               (31) 

Setting 1   in Equation 31, we obtain the solution of 

classical telegraph equation given by: 
 

 
 

   

2 3

1 2 1 2

2 4 5
4 42

1 2 1 2

,
2! 3!

...
3! 4! 5!

t t
u x t h th v h h

t t t
h t h v h h

 
     

 

   
       

   
 

 
 
Conclusion 
 
In this study, solving space and time fractional telegraph 
equations using Haar wavelet method was discussed. 
The space and time fractional are considered in the 
Caputo sense. It has also been shown that the key idea 
is to perform the partial differential equation into a group 
of algebraic equations. The main advantage of this 
method is its simplicity and small computation costs, 
which is due to the sparcity of the transform matrices and 
to the small number of significant wavelet coefficients. In 
comparison with existing numerical schemes used to 
solve the space and time fractional telegraph equations, 
the scheme in this paper is an improvement over other 
methods in terms of accuracy. It is concluded that this 
technique is very powerful and efficient in finding the 
analytical solutions for a large class of linear partial 
differential equations of fractional order. This technique 
provides more realistic series solutions when compared 
with  the  Adomian  decomposition  technique.   It is worth 
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mentioning that Haar solution provides excellent results 

even for small values of m  16m  . For larger values of 

m , that is, (  ., 32, 64, 128, 256ie m m m m    , we 

can obtain the results closer to the real values. The 
method with far less degrees of freedom and with smaller 
CPU time provides better solutions than classical ones. 
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