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Abstract

The vibrational dynamics of Mg70Zn30 metallic glass has been studied at room temperature in terms

of phonon eigen-frequencies of longitudinal and transverse modes employing three different approaches

proposed by Hubbard-Beeby (HB), Takeno-Goda (TG) and Bhatia-Singh (BS). The well-recognized

model potential is employed successfully to explain electron-ion interaction in the metallic glass; instead

of using experimental values of the pair correlation function g(r), which is generated from the computed

pair potential. The present findings of phonon dispersion curve are found in fair agreement with avail-

able theoretical as well as experimental data. The thermodynamic properties obtained by HB and TG

approaches are found much lower than those obtained by BS approach. The pseudo-alloy-atom (PAA)

model is applied for the first time instead of Vegard’s Law.

Key Words: Pair potential, Metallic Glasses, Phonon dispersion curves, Thermal properties, Elastic

properties
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1. Introduction

The homovalent Mg0.70Zn0.30 glass is one of the most important candidates of simple metallic glasses.
The dynamical properties of Mg0.70Zn0.30 glass have been studied theoretically by von Heimendl [1], using
the equation of motion method; by Tomenek [2], using a model calculation; by Saxena et al. [3], using
effective pair potential and Takeno-Goda (TG) approach [4, 5]; by Agarwal et al.[6, 7], using Bhatia-Singh
(BS) approach [8]; and Agarwal-Kachhava [9, 10], using TG as well as BS approaches. Experimentally, the
phonon dispersion curves (PDC) for Mg0.70Zn0.30 glass was determined by Suck et al. [11] for a few wave
vector transfers near qP = 2.61 Å−1, at which the first peak is found in static structure factor calculation.
The atomic and electronic structure has been studied by Hafner-Jaswal [12] and Hafner et al.[13] using ab
initio pseudopotential technique. Benmore et al.[14, 15] have calculated longitudinal excitations within the
first pseudo-Brillouin zone using the neutron Brillouin technique at room temperature. The temperature
dependence of the dispersion and damping coefficients of transverse excitations was studied by Bryk and
Mryglod [16], using the method of generalized collective modes. Thakore et al. [17] and Vora et al.[18, 19]
have also studied the PDC of Mg0.70Zn0.30 glass.
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In most of the above studies, the pseudopotential parameter is evaluated such that it generates a pair
correlation function, which is in good agreement with experimental data available in the literature. In most
of these studies, the Vegard’s law was used to explain electron-ion interaction for binaries. But it is well
known that PAA is a more meaningful approach to explain such kind of interactions in binary alloys and
metallic glasses [17–22]. Hence, in the present article the PAA model is used to investigate the phonon
dynamics of A1−xBx binary glassy system.

The three theoretical approaches proposed by Hubbard-Beeby (HB) [23], Takeno-Goda (TG) [4, 5] and
Bhatia-Singh (BS) [8, 24] are used to generate the phonon dispersion curve (PDC). The local field correction
function due to Sarkar et al [25] is employed for the first time to include the exchange and correlation effects
in such study. Long wave-length limits of the phonon modes are then used to investigate the thermodynamic
and elastic properties viz. isothermal bulk modulus (BT ), modulus of rigidity (G), Young’s modulus (Y),
longitudinal sound velocity (υL), transverse sound velocity (υT ) and Debye temperature (θD).

2. Theoretical Methodology

The pair potential V (r) is calculated from the relation given by Vora et al. [18, 19],

V (r) =
(

Z2 e2

r

)
+

ΩO

π2

∫
F (q)

[
Sin (qr)

qr

]
q2 dq. (1)

Here, Z and ΩO are the valence and atomic volume of the glassy alloys, respectively.
The energy wave number characteristics appearing in the Equation (1) is written as [18, 19]

F (q) =
−ΩO q2

16 π
|WB (q) |2 [εH (q) − 1]

{1 + [εH (q) − 1] [1 − f (q)]} . (2)

Here, WB (q),εH (q), f (q) are the bare ion potential, the Hartree dielectric response function and the local
field correction function to introduce the exchange and correlation effect, respectively.

The well recognized model potential WB (q) used in the present computation of phonon dynamics of
binary metallic glasses is of the form [18–22]

WB (q) =
−4 πe2 Z

ΩO q2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

{
−1 + 12

U2 + U2

1+U2 + 6U2

(1+U2)2
+ 18U2

(1+U2)3
− 6U4

(1+U2)3

+ 24U2

(1+U2)4
− 24U4

(1+U2)4

}
cos (U)

+{
6
U − 12

U3 + U
1+U2 + 3U

(1+U2)2
− 3U3

(1+U2)2
+ 6U

(1+U2)3

− 18U3

(1+U2)3
+ 6U

(1+U2)4
− 36U3

(1+U2)4
+ 6U5

(1+U2)4

}
sin (U)

+

24 U2 exp (1)
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⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (3)

Here, U = qr c. This form has the feature of a Coulomb term outside the core and varying cancellation due to
repulsive and attractive contributions to the potential within the core in real space [18–22]. The parameter
rc is adjusted such that the calculated values of g(r) agree with the experimental value of g(r) as close as
possible.

A quantity which is equally important as the pair potential while studying a disorder system is the pair
correlation function g (r). In the present study the pair correlation function g(r) can be computed from the
relation [18, 19],

g (r) = exp
[(

−V (r)
kBT

)
− 1
]

. (4)

Here, kB is the Boltzmann’s constant and T is the room temperature of the amorphous system.
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The three approaches for studying of phonons in amorphous alloys proposed by Hubbard -Beeby (HB)
[20], Takeno-Goda (TG) [4] and Bhatia-Singh (BS) [6, 21] have been employed for studying the longitudinal
and transverse phonon frequencies in the Mg-based glass.

According to the Hubbard-Beeby (HB) [23], the expressions for longitudinal and transverse phonon
frequencies are

ω2
L (q) = ω2

E

[
1 − sin (qσ)

qσ
− 6 cos (qσ)

(qσ)2
+

6 sin (qσ)
(qσ)3

]
(5)

ω2
T (q) = ω2

E

[
1 − 3 cos (qσ)

(qσ)2
+

3 sin (qσ)
(qσ)3

]
, (6)

where ω2
E =

(
4πρ
3M

) ∞∫
0

g (r)V ′′ (r) r2dr is the maximum frequency.

Following Takeno-Goda (TG) [4, 5], the wave vector q-dependent longitudinal and transverse phonon
frequencies are written

ω2
L (q) =

(
4πρ
M

) ∞∫
0

dr g (r)
[{

r V ′ (r)
(
1 − sin(qr)
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)}
+
{
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1
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, (7)

ω2
T (q) =

(
4πρ
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0
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1
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. (8)

According to modified BS approach [8], the phonon frequencies of longitudinal and transverse branches are
given by Shukla and Campanha [24]:

ω2
L (q) =

2 NC

ρ q2
(β I0 + δ I2) +

ke k2
TF q2 |G (qrS)|2

q2 + k2
TF ε (q)

(9)

ω2
T (q) =

2 NC

ρ q2

(
β I0 +

1
2
δ (I0 − I2)

)
. (10)

Other details of the constants used in this approach have been narrated in literature [8, 24]. Here, M , ρ are
the atomic mass and the number density of the glassy component, while V ′ (r) and V ′′ (r) be the first and
second derivative of the effective pair potential, respectively.

In the long-wavelength limit of the frequency spectrum the both frequencies, i.e. transverse and longitu-
dinal, are proportional to the wave vectors and obey the relationships

ωL ∝ q and ωT ∝ q,

ωL = υL q and ωT = υT q, (11)

where υL and υT are the longitudinal and transverse sound velocities of the glassy alloys, respectively. For
the three approaches, HB, TG and BS, υL and υT are expressed as follows:

HB approach [23]:

⎧⎪⎨
⎪⎩

υL (HB) = ωE

√
3σ2

10
(12)

υT (HB) = ωE

√
σ2

10 (13)
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TG approach [4, 5] :

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

υL (TG) =
[(

4πρ
30M

) ∞∫
0

dr g (r) r3 {rV ′′ (r) − 4V ′ (r)}
]1/2

(14)

υT (TG) =
[(

4πρ
30M
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0

dr g (r) r3 {3rV ′′ (r) − 4V ′ (r)}
]1/2

(15)

BS approach [8, 24] :

⎧⎪⎪⎨
⎪⎪⎩

υL (BS) =
[
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ρ

(
1
3β + 1

5δ
)

+ ke

3

]1/2

(16)

υT (BS) =
[

NC

ρ

(
1
3β + 1

15δ
)]1/2

(17)

In the long-wavelength limit of the frequency spectrum, transverse and longitudinal sound velocities υL

and υT are computed. The isothermal bulk modulus BT , modulus of rigidity G, Poisson’s ratio σ, Young’s
modulus Y and the Debye temperature θD are found using the expressions [18, 19],

BT = ρ

(
υ2

L − 4
3
υ2

T

)
, (18)

G = ρυ2
T , (19)

where ρ is the isotropic number density of the solid. We now have
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1 − 2

(
υ2

T

υ2
L

)
2 − 2

(
υ2

T

υ2
L

) , (20)

Y = 2G (σ + 1) , (21)
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�
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2π

[
9ρ

4π

]1/3 [ 1
υ3

L

+
2

υ3
T

]�−1/3
�

, (22)

where ωD is the Debye frequency.

3. Results and Discussion

The input parameters and other related constants used in the present computations are: Z = 2.00, ΩO

= 2.0472×10−23 cm3, rC = 4.8665×10−9 cm, NC = 12.00, M = 5.871×10−23 gm and ρ = 2.9699 gm/cm3.
The comparison of presently computed pair potential of Mg0.70Zn0.30 metallic glass and other such

theoretical results [3, 6, 7] are displayed in Figure 1. From Figure 1 it is seen that the first zero for
V (r = r0) due to Sarkar et al.’s S local field correction function [25] occurs at r0 = 5.8 au. The well width
and the Vmin (r) position of the pair potential are also affected by the behavior of the screening. It is also
noticed that the well depth of presently computed pair potential is moved towards lower r-values and also
shows lower as depth compared to the other theoretical results [3, 6, 7]. The presently computed results of
the pair potential are found in qualitatively good agreement with the theoretical reported data [3, 6, 7]. The
pair potential V (r) of Saxena et al. [3] and Agarwal et al. [6, 7] are highly oscillatory. Such oscillation for
large r-region is not present in the computation and V (r) converges very rapidly to zero for higher r-values.
The result of Saxena et al. [3] and Agarwal et al. [6] shows significant oscillations and potential energy
remains positive in the large r region. Thus, the Coulomb repulsive potential part dominates the oscillations
due to ion-electron-ion interactions in their studies.

The presently computed g(r) of Mg0.70Zn0.30 metallic glass is displayed in Figure 2 along with experi-
mental [14] and theoretical data [9]. An excellent agreement of presently computed g(r) with experimental
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data [11] is seen around the first peak. The structural information obtained from the g(r) of Mg0.70Zn0.30

metallic glass is listed in Table 1. The ratio r2/r1 of the position of the second peak (r2) to that of the first
peak (r1) is close to the c/a ratio in close-packed hexagonal structure, i.e. c/a = 1.59. This means that the
short range order of near neighbor in the amorphous state is affected more or less by the atomic arrangement
of crystalline state. The ratio r3/r1 of the position of the third peak (r3) to that of the first peak (r1), i.e.
the ratio of the third atomic shell radius to the nearest-neighbor distance, is also calculated and found 2.14.
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Figure 1. Pair Potential of Mg0.70Zn0.30 metallic glass. Figure 2. Pair Correlation Function (g(r)) of

Mg0.70Zn0.30 metallic glass.

Table 1. Peak poisons and peak ratios in the pair correlation functions of Mg0.70Zn0.30 metallic glass.

Structural data Present Results
First peak position r1 (a.u.) 5.8

Second peak position r2 (a.u.) 9.2
Third peak position r3 (a.u.) 12.4

Ratio r2/r1 1.59
Ratio r3/r1 2.14

The presently calculated PDC due to the three discussed approaches are shown in Figure 3 along with
available theoretical [1, 3, 9] and experimental data [11]. The longitudinal branch of PDC calculated via the
BS approach is higher than those obtained by the other two theoretical approaches. The presently computed
values of the PDC form HB and TG approaches show lower results in comparison with other reported vales.
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First minima in the longitudinal branch lie near to the value of qP at which the structure factor S (q) shows
its first peak [14]. It is noticed from Figure 3 that the first minimum in the longitudinal branch is seen
around at q ≈1.8 Å−1 for BS, q ≈2.5 Å−1 for TG and HB approaches, respectively. The first crossing
position of ωL and ωT branches is observed at 2.0 Å−1 in HB, 1.9 Å−1 in TG and 1.6 Å−1 in BS approach.
In comparison to the other reported data [1, 3, 9, 11], the present results are suppressed values.
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Figure 3. Phonon Dispersion Curves of Mg0.70Zn0.30 metallic glass.

The computed thermodynamics properties are listed in Table 2. The results due to HB and TG ap-
proaches are lower than these due to BS approach. As experimental data for these properties are not
available in the literature, it is very difficult to make further comments. Here, longitudinal and transverse
sound velocities due to BS approach show good agreement with other such theoretical outcome [3]. The
comparison with other such results [3] favors the present calculation and suggests that proper choice of di-
electric screening is important part in explaining the thermodynamic and elastic properties of Mg0.70Zn0.30

glass.

Table 2. Thermodynamic and Elastic Properties of Mg0.70Zn0.30 metallic glass.

Prop. HB TG BS Others [3]
υL×105, cm/sec 1.5590 1.4140 6.0506 4.7, 5.1
υT×05, cm/sec 1.0829 1.0513 1.9760 2.5, 2.6

BT×1011, dyne/cm2 0.2671 0.1619 9.6723 –
G ×1011, dyne/cm2 0.3612 0.3404 1.2026 –
Y ×1011, dyne/cm2 0.7468 0.6005 3.8464 –

θD, K 129.74 124.62 247.86 305.21
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4. Conclusions

Finally, it is concluded that the PDC generated form three the approaches reproduce all the broad
characteristics of dispersion curves. The well recognized model potential with more advanced S-local field
correction function generates consistent results. Hence, the model potential is suitable for studying the
vibrational dynamics of Mg0.70Zn0.30metallic glass, which confirms not only the applicability of the model
potential in the aforesaid properties but also supports the present approach of PAA. Such study on phonon
dynamics of other binary liquid alloys and metallic glasses is in progress.
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