Electronic Transactions on Numerical Analysis. ETNA

Volume 33, pp. 151-162, 2009. Kent State University
Copyright 0 2009, Kent State University. http://etna.math.kent.edu
ISSN 1068-9613.

ON THE COMPUTATION OF THE NULL SPACE OF TOEPLITZ-LIKE
MATRICES *
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Abstract. For many applications arising in system theory, it is imantto know the structure and the dimension
of the null spaces of certain structured matrices, such agéland Toeplitz matrices. In this paper, we describe an
algorithm based on the generalized Schur algorithm thapetes the kernel of Toeplitz and Hankel matrices.
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1. Introduction. For many applications arising in system theory, it is impotto know
the structure and the dimension of the null spaces of cestairctured matrices, such as
Hankel and Toeplitz matrice4[6, 8]. The properties of the kernels of Hankel matrices were
analyzed in p]. The generalized Schur algorithm (GSA) fallows one to compute many
classical factorizations of a matrix, such as )& factorization, theL D L™ factorization of
a symmetric matrix, or the Cholesky factorization of a syrtrmingositive definite matrix.
For matrices with Toeplitz-like structure, the computatad such factorizations can be done
in a fast way via the GSA. In this paper, we describe an algarito compute the kernel of
Toeplitz and Hankel matrices based on the GSA.

The paper is organized as follows. In Sectidnthe properties of the null space of
Hankel matrices are briefly recalled. The generalized Salgarithm and the extension used
to compute the null space of Hankel and Toeplitz matriceescdbed in SectioB. Some
numerical examples are reported in Sectipfollowed by the conclusions in Sectién

2. The kernel of Toeplitz—like matrices. The properties of the kernel of Hankel ma-
trices have been analyzed if][ In what follows, we briefly recall some properties of the
null spaces of Hankel matrices describedSh [These properties will be useful in designing
an algorithm to compute such null spaces. The propertidseokérnel of Toeplitz matrices
can be easily derived from those of Hankel matrices, sinepliiz matrices can be obtained
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from Hankel matrices by exchanging the order of either tHernas or the rows.
DEFINITION 2.1. Letb = [b1 by ... bp_1 bn]T € R"™. The Hankel matrices
HUM(D),i=1,...,n, are generated by:

by b1 bo by ba b3
b2 by by b3 ’
H7(b) Dol ERIG) = | | HBE) = | by b |
bnfl bnfl bn72 bnfl
bn bnfl bn bn72 bnfl bn
ne1ln by b2 -7 7 bpoa n.n
) = |3 2y h, | HO = [ ]
DEFINITION 2.2. Lets < n. Giventhe vectop = [p1 p2 -+ ps|],pi € R,
1=1,2,...,s, the columns of the band Toeplitz matrix
P1 0 0
P2 p1
p2 -0
Ds P
0 Ps . D2
L O 0 ps

- nxXr

form aU—chain of length-. The vectop is said to be a generating vector of the-chain.
The generating vector is essentially unique; i.e., is uaigp to multiplication by a constant
different from zero.

COROLLARY 2.3.

rank(H* ™ (b)) = min{k,n — k + 1,rank(H"™ (b))}, k=1,...,n,
with

I = n/2 if [ is even
| (n+1)/2 iflisodd

The behavior of the rank of the Hankel matricB$"™(®) k = 1,... n, is depicted in
Figure2.1
The following result characterizes the kerneld" (b), k = 1, ..., n.
THEOREM2.4.LetH = H*"(b), k € {1,2,...,n}, be a Hankel matrix with nontriv-
ial kernel. Then the following assertions hold:

1. If H%7] does not have maximal rank, then the kerngiicind its transposéf[*-71"
is the linear hull of ond/—chain generated by the same vector.

2. In general, the kernel off[**! can be represented as the linear hull of one or two
U—chains.
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FIGURE 2.1. Example of the behavior of the rank of the Hankel matrigg ! b), k = 1,...,n, with
n = 30. The number of columns of the matricBd¥:"] (b) is reported on thec—axis. The rank of the matrices
H'k:n](b) is reported on theg—axis.

3. Generalized Schur Algorithm. The generalized Schur algorithm allows us to com-
pute many classical factorizations of a matrix, such us@ifefactorization, thel, D L' fac-
torization of a symmetric matrix, the Cholesky factoripatof a symmetric positive definite
matrix, and the inverse of the Cholesky factor. For matnigitls Toeplitz-like structure, such
factorizations can be done quickly via the GSA. A comprelvertseatment of the topic can
be found in [7].

The proposed algorithm for computing the left null space ofarix with Toeplitz-like
structure is based on the GSA for computing the Choleskyfaatd its inverse. For the sake
of simplicity, in this section we will consider a simple Tdigp matrix instead of a general
Toeplitz—like matrix. We first describe how the GSA can cotepthe R factor of theQ R
factorization of a full rank Toeplitz matriX, i.e., the Cholesky factor &f”'T", and the inverse
of the R factor.

Let
tn tnfl tl
tn+1 tn
T=1 (3.1)
tmfl
_thrnfl . thrl tm _

with m > n. Let us first consider the casenk(7T") = p = n. Define

710, (3.2)

T
M— [ T\ I, } ’
with 7,, and0,, the identity matrix and the null matrix of ordey respectively. Thek factor of
the Q R factorization off” and its inverseR—! can be retrieved from theD L™ factorization

of M, whereL andD are lower triangular and diagonal matrices, respectivalfact, it can
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be easily shown that

T -T
M:LDLT:[}fliR1““’”|_IHHR|§T]. (3.3)

Therefore, to comput& and R, it is sufficient to compute the first columns ofL. This
can be accomplished with(n?) floating point operations by means of the GSA.
Let Z € R™*™ be the shift matrix

0 0 -+ --- 0
1 . . o0
Z=\g . .. e (3.4)
1 .
o - o 1 of
and
b=ZZ (3.5)

It turns out that
M —dMe" = GDGT,

with D = diag(1,1,—1,—1) andG € R?"*4, whereG is called agenerator matrix. Hence
thedisplacement rankf A/ with respect tab, defined as the rank dff — ® A/ 7, is4. The
matrix ® is calleddisplacementnatrix.

Letv = TT(T(:,1)). The columns of¥ can be chosen as

T
G(:,1) = 3(1) {UT ‘ e§">T} 7

G(:a 2) = [0 ln—1 lp—2 - 31 Jﬂo T O}T ) (36)
G3)=[0 GT@:m—1,1) 0",

G(:,4) =1[0 tmyn-1 - tmgz tmpr [0 - O]T-

Since the number of columns of the generator matfis 4 < n, the GSA for computing?
andR~! hasO(n?) computational complexity. It relies only on the knowleddére matrix
G and not on the knowledge of the matfikitself. Each iteration of the GSA involves the
following steps:
e Reduction of the generator matrixpooper form That is, at theth iteration, all but
one of the entries of thah row of the generator matrix are annihilated by means of
a sequence of Givens and hyperbolic rotations. The coluntimeofenerator matrix
corresponding to the remaining nonzero entry is callegthetcolumn.
e Multiplication of the pivot column by the displacement niatrin this way, all the
entries of theth row of the generator matrix are now zero.
The GSA for computing the Cholesky factBrand its inverse can be summarized in the
following algorithm, written in a M\TLAB —like style.
ALGORITHM 3.1 (Generalized Schur algorithm).
% INPUT: G, the generator matrix of the Toeplitz matfix
% OUTPUT. RandR~!, whereR is theR factor of aQ R factorization of T,
function [R,R™!] =schur (G);

IMATLAB is a registered trademark of The MathWorks, Inc.
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1) for k=1:n,
2) [CGa SG] = gl V(G(ka 1)7G(k72));

T
3) G(k;n+k,1:2)=G(k;n+k,1:2){_zz ig] :
4) [ca, sa] = gi V(G(k,3),G(k,4)); ]
5) G(k:n+k—1,3:4):G(k:n+k—1,3:4)[_zg ‘Zg} :
6) lcr, sa) = hyp(G(k, 1), G(k, 3));
7) G(k:n—l—k,[l,B])—G(k:n+k,[1,3]){ CH _SH};

—SH CH

8)  R(k,k:n)=G(k:n1)T;
9) R_l(lik,k):G(n+1;n+k’1);

10) G(;,1) = G(:, 1);
11)end

We have denoted bygi v the function that computes the parametgts, si] of the
Givens rotatiorG:

2 2
[ca,sc] = gi V(wi,ws) such that [ €G sG ] [ w1 } — [ VWi + wh }’

—sa  cq Wa 0

with w € R2. Moreover, suppose; > ws. We have denoted blgyp the function that
computes the parametdrs;, sz| of the hyperbolic rotatiohH :

o CH —Sg w1 - w% —w%
[cH,su] = hyp(wy,ws) such that [ sy cn } [ ws ] = [ 0 } .

The functionfunction[G] = gener(T') computes the generator mattikcorresponding to
the Toeplitz matrix'.

Each iteration of the GSA (Algorithr8.1) involves two products of Givens rotations
by ann x 2 matrix, each of which can be accomplished wéth floating point operations,
followed by the product of a hyperbolic rotation by anx 2 matrix, also accomplished with
6n floating point operations. Therefore, the computationahglexity of the GSA is18n?
floating point operations. We remark that the GSA exhibitstaf parallelism which can be
exploited to reduce the computational complexity. Forénse, the products involving the
Givens rotations and the hyperbolic rotations can be dopaiiallel.

If only the R factor is needed, the computation can be done via the GSAdw=riTgy only
the firstn rows and columns o/, i.e., 77T. Therefore, a generator matrix for 7' with
respect to the displacement mat#xin (3.4) can be obtained from the generator matrix for
M by considering only the first rows of G in (3.6). In fact, the following gives a generator
matrix of 77T with respect taZ:

1

(:’ 1) = mva
(:;(:’2) = [O th—1 tp—2 -+ tlle, (3.7)
G:,3)=[0 G'2:n-1,1) 0],
G(2,4) = [O tm+n71 tm+2 thrl}T .

2Hyperbolic rotations can be computed in different ways. ‘Btable” implementations, seé,[3].
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The algorithm for computing th& factor differs from Algorithm3.1only in the length
of the matrices involved. In fact, the sizes of the genenatatrix, and therefore of the matrix
R, aren x 4 andn x n, respectively.

ALGORITHM 3.2 (Generalized Schur algorithm).

% INPUT. G, the generator matrix of the Toeplitz matik
% OUTPUT: R, the R factor of aQ) R factorization of T'.

function [R] =schur (G);

1) for k=1:n,
2) [CGaSG] = gl V(é(ka 1)7é(k72) ;

. R —SGg  Ca
4) [ca, sa] = i V(G(k,3),G(k,4));
5) Gk :n,3:4)=G(k:n,3:4)
6) [CH7 SH] = hyp(é(kv 1)7 é(kv 3))a
7)) G(k:n,[1,3]) =Gk :n,[1,3]) [ oH msn } ;

8) R(k,k :n) =
9) G(:,1) = ZG(:,1);
10)end

)

3) G(k:n,1:2):é(k;n,1:2)[ G SGr;
)
|

FIGURE 3.1. Example of the rank profile of thié factor of theQ R factorization of a singular Toeplitz matrices
(trapezoidal case).

FIGURE 3.2. Example of the rank profile of thié factor of theQ R factorization of a singular Toeplitz matrices
(double trapezoidal case).

The structure and the computation of tRdactor of a singular Toeplitz matriX of rank
p < n < m was considered ird]. Let RI R, be the Cholesky decomposition of the positive
semidefinite matrix’”'T'. Then, therank profileof R, can be either ofrapezoidaltype (see
Figure3.1), or of double trapezoidatype (see Figur8.2).

The trapezoidal case occurs when the indices ofptlieearly independent columns of
T are{1,2,---,p— 1, p}. In this case, the null space of the Toeplitz matrix is geteeray
oneU—chain sequence. The double trapezoidal case occurs wheetlof indices of the
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linearly independent columns @fis {1,2, -+ , k1 — 1, k1, k2, k2 + 1, -+ , k3 — 1, K3}, with

1 < k1 < ky < k3 <m,andp = k1 + k3 — k2 + 1. In this case, the null space of the
Toeplitz matrix is generated by twid—chain sequenceS]| Moreover, Figure3.2is obtained
by considering only the rows with indices correspondinduse of the linearly independent
columns ofT".

We will now show how the null space of singular Toeplitz megs can be computed by
a modification of the GSA.

We briefy describe how the GSA is modified ] fo computeR,. Since we are inter-
ested in computind?,,, the GSA is again applied not to the extended matfixbut directly
to the matrixZ77 T with respect to the displacement matgixin (3.4). Again, a generator
matrix G is given by 8.7).

If rank(T) = p < n, then at thekth iteration,k < p, the hyperbolic rotation at step
6 of Algorithm 3.1 cannot be applied becaué&k, 1) = G(k, 3) for somek € {1,...,n}.
Moreover, it turns out that the vectafq % : n, 1) andG(k : n, 3) are equal. Hence, the first
upper trapezoidal part of the matrk, is already computed.

The computation continues after dropping the first and tird tolumns ofG. Since
only two columns ofZ are now involved in the computation, the second and thelipateps
2 through 5 in AlgorithnB.1are skipped. The computation continues u@iil, 2) = G(j,4)
forsomej € {k+1,...,n}. Atthat stage, the second trapezoidal pa®gis also computed.
The gap between the two trapezoidal forms can be bigger thanhis happens when the
entriesk + 1,k + 2,...,k +1 < n, of G(:,2) andG(:,4) are zero at the end of theh
iteration. In this case, we have a gap of lenggth1.

In order to show how to compute the null space of a Toeplitzimdet us consider the
modified augmented matrix

TTT + &L, | I, | o[ 1] 0,
M, = [ I | 0, =M+e¢ 0, 10, |’ (3.8)

with € > 0. The displacement rank @f/. with respect tob is still 4, and a generator matrix
G. of M. with respect tod can be constructed as follows. Let= (T7T + £21,,)e;. The
columns ofG. are

T
Ge(:1) = A= [UT‘ o ] :
Ce(2)= [0 tuy tuo - )0 - 0], (3.9)
G.(,3)=[0 GT2:2n-1,1) 0],
G5(2,4):[0 tm+n71 tm+2 tm+1|0 O]T

We examine the behavior of the GSA applied to the modified lprokase — 0*. For
simplicity, we assume that the firstcolumns of 7" are linearly independent. At iteration
(p+ 1) of the GSA, after steps 2 through 5 of Algoritt8rd, it turns out §] that

Ge(p;1) = G(p,3) = 6c
and
|G6(j71)_G6(j73)|:Cj,6S’Y€7 ]:p+lap+277na

with 6. € R*. depending om and such thai.,y. — 0" ase — 0.

We now state a convergence theorem.

THEOREM 3.3. LetT € R™*"™, m > n,rank(T) = p < n. LetJ; = {1,2,--- ,n —
1,n}. LetJy = {1,2,-- ,k1 — 1, K1, ka2, k2 + 1, -+ , k3 — 1, K3} be the set of the linearly
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independent columns @f, with1 < k1 < ko < k3 < mandp = k1 + k3 — k2 + 1. Let
Js = Jp \ J2. Let R be theR factor of the@ R factorization of 7', with R € R**™ in double
trapezoidal form. Le$S; be the subspace & generated by the columns & and letS,
be its orthogonal complement. L&f = 77T and M, = T7T + £%I,,, withe € R?.. Let
R. be the Cholesky factor dff. andS; = range(R_*(:, p + 1 : n)). Then the subspacsy
approachess, ase — 07. We denote it by

S3— Sy, ase — 0. (310)

Proof. LetM = UAUT be the spectral decompositionif, with U € R™** orthogonall
andA = diag(Ar, -+, Ap), With Ay > Ao > --- > X\, > 0. Of courserange(U) = Si. Let

M, =UAUT

be the spectral decomposition df., with U, = [u§E> ,uﬁf)] € R™*™ orthogonal and

3

A, = diag(\1+e2,--- N, +e2,e%, -+, e?). Letey, | € J3 be thelth vector of the canonical
basis ofR™. Then

Ml =UA'UL e
a u E)Tel (e) - u( )Tel (e)
1=1 1=p+1
Hence, multiplying both sides by
2 1 2 - U('E)Tel (e) ()T (e)
e“M ep=¢ Z/\i—f—g?l +_Z (uZ €l>u 5
1=1 1=p+1
Therefore, ag — 07,
20 e i T ()
el — u, e u (3.12)
1=p+1

that is,M_'e, approaches a vector belongingde. On the other hand,

M7 'e; = (RTR.) e
=R'R-Te. (3.12)

Hence, 8.10 follows from (3.11) and ¢.12. 0
At step 6 of iteration(p + 1) of Algorithm 3.1, the hyperbolic rotation to apply to
G:(p+1:2n,1)andG.(p+1:2n,3)is

55
Ge(p,3) L+ G-(p+1,3) -1

65
V02 +2G.(n,3)0. -1 1+ G- (p+1,3)

Ase — 0T, 6. approaches, so that columrip + 1) of B!, i.e., the vector made up by the
entries ofG.(:, 1) from n + 1 up to2n after the multiplication byH of the matrix having
Ge(n+1:2n,1)andG(n + 1 : 2n,3) as columns, approaches a vector belonging to the
subspace generated by
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Since a vector of the null space @fis defined up to multiplication by a constant, we
replace the hyperbolic matri¥d of the step + 1 by the matrix

65
7 R B
-1 1+ R
and eventually, foe — 07, by
~ 1 -1
e[ 1], @13

i.e., a very simple singular matrix. Thus, a multiple of ateedelonging to the null space of
T and generating &—chain is retrieved by replacing the elements of the hyderbatation
in step 6 of Algorithn3.1(GSA) by the elements of the matrix i.(L3.

Let ¢ be the generating vector of tié—chain. If the columng + 1,p + 2,p + 7,
p+j <n,of T are also linearly dependent, it turns out that the entriek@Eecond and the
fourth columns of the generator matrix after the iterajiaare zero 4. Hence the size of the
U—chain isj + 1, and it can be computed in this way:

U(,i)=2"% i=1,...,5+1.

We now describe the corresponding modified GSA.
ALGORITHM 3.4 (Modified Generalized Schur algorithm).
% INPUT: @, the generator matrix of the Toeplitz matfik

% toly, a fixed tolerance to check the singularity

% tols, a fixed tolerance to check the length of tiiechain
% OUTPUT: t1, the generating vector of the first possilble-chain

% dim K1, length of the firsU—chain

% t2, the generating vector of the second possibtehain
% dimK s, length of the second—chain

function [R,t1,ts,dimK;,dimKs] =schur (G, tol;);

sing = 0; k=1; ip(1) = 1; ip(2) = 3;dimK; = 0; dimKs = 0;
1) while k& < n & sing < 2,

2) i f sing==0,

3) [ca, sq) = gi V(G(k, 1), G(k,2)); )

4) G(k:n—i—k,l:2):G(k:n+k,1:2)[_zg ig} ;

5) [CGaSG] = gl V(G(ka3)7G(k74))a -

6) G(k:n+k—1,3:4):G(k:n+k—1,3:4)[_zg ig} :

7 end %if

8)  if [(G(k,ip(1))* = G(k,ip(2))*)| < toli,

9) [cHaSH] = hyp(G(k,Zp(l)),G(k,lp(?)))),

10) G(k = n+k, [ip(1),ip(2)]) = G(k : n + k, [ip(1), ip(2))) { I } ;

11) el seif sing==0,
12) t1=Gn+1:n+kind(l)) —Gn+1:n+k,ind(1));
13) sing = sing + 1;
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14) ip(1) = ip(1) + 1; ip(2) = ip(2) + 1;

15) whi | e |[(G(k,ip(1))? — G(k,ip(2))?)| < tols, & k < n,
16) dimK, = dimK, + 1;

17) k=k+1;

18) end % whi | e

19) else

20) to=Gn+1:n+kind(l)) —Gn+1:n+k,ind(1));
21) dimKs =n — k;

22) end%if
23) G(:,1) = ¢G(:, 1);
24)  k=k+1,;
25)end %whil e
From a theoretical point of view

(G(k,ip(1))* = G(k,ip(2))*) > 0, (3.14)

foranyk € {1,...,n} because of the positive semidefiniteness of the matfif’. How-
ever, from a computational point of view3.(4) could assume negative values because of
the roundoff errors in floating—point arithmetic. Therefpwe consider the absolute value of
(3.19 in steps 5 and 8 of the algorithm.
The constantsol; andtols are chosen equal tg'ne, wheree is the machine precision.
The stability properties of the GSA have been studie®,id(]. The proposed algorithm
inherits the stability properties of the GSA, turning oub®mweakly stable.

4. Numerical Examples. In this section, we apply the algorithm developed in the pre-
vious section to some examples.

ExaMPLE 4.1. In this example, the entries of the vechaare the elements of tHa-
bonacci sequence

by =1,
by = 2.
bi=b;_1+b;_o, i=3,4,....

The corresponding Toeplitz matrix ® = toeplitz(b(n : —1: 1),b(n : n+m — 1)).
Only the first two columns of” are linearly independent. The generating vepterR? (see
Section?) is

p=[1 -1, 1]",
which is the vector coefficients of the polynomial
plr) =2 -z —1
whose roots are
1+v5 1-+5
2 7 2

Let us considem = 12,n = 9. Let us denote by the computed generating vector. Then

max [p; — ps| = 2.104698637594993 x 10~ 1°.

Moreover, let us denote by the computed null space @fgenerated by. Then

|TZ||s = 8.039173492294422 x 10~ L.
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ExXAMPLE 4.2. This example can be found ][ The Toeplitz matrixl" is

5 4 3 2 1 2 2 3

6 5 4 3 2 1 2 2

7T 6 5 4 3 21 2

§ 7 6 5 4 3 21

9 8 7 6 5 4 3 2
T'=|10 9 8 7 6 5 4 3
1 10 9 8 7 6 5 4
12 11 10 9 8 7 6 5
13 12 11 10 9 8 7 6
14 13 12 11 10 9 8 7

| 15 14 13 12 11 10 9 8 |

Columns 3, 4, and 5 are linearly dependent on the first twonany while columns 6, 7, and
8 are again linearly independent. The generator vectdrthe U—chain of the null space of
Tis

p=[1 -2 1]".
Then

max p; — P;| = 8.304468224196171 x 10~

and

ITZ||2 = 8.336584777351642 x 10~ 4.

5. Conclusions and future work. A modification of the generalized Schur algorithm
is considered to compute the structured null space of HaarkeToeplitz matrices in a fast
way. The algorithm is weakly stable, inheriting the staypifiroperties of the generalized
Schur algorithm.

The idea exploited in this paper will be extended to devel&gstalgorithm to compute
the null space of more complicate structured matrices, sischlock—Hankel and block—
Toeplitz matrices.
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