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In this work, first, we construct Frenet-Serret frame of a curve in the Galilean 4-space. As a result of
this, we obtain the mentioned curve’s Frenet-Serret equations. Then, we prove that tangent vector of a
curve in Galilean 4-space satisfies a vector differential equation of fourth order. Additionally, some
characterizations of Galilean spherical curves and an example of the main results are presented.
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INTRODUCTION

The discovery of the moving Frenet-Serret frame for
regular curves opened a door to classical differential
geometry. With the aid of the ordinary differential
equations, researchers studied some aspects of the
theory of the curves, spherical images, involutes-
evolutes, sphere-cal curves and Bertrand curves, e.g. At
the beginning of the twentieth century, Einstein’s theory
constructed a bridge between mathematical physics and
modern differential geometry. It has been observed that
Lorentz-Minkowski geometry plays an important role in
the explanation of the relativistic motion of the charged
particles in an electromagnetic field. For instance, a
particle in special relativity means a curve with a time-like
unitary tangent vector, Caltenco et al. (2002). Making use
of the Frenet-Serret equations established in this new
area, researchers extend some of classical differential
geometry topics to Lorentz-Minkowski spaces. There
exists an extensive literature on the subject (Ali and
Turgut, 2010; Barros et al., 2001; Ilarslan and
Boyacioglu, 2008; Lépez, 2003, 2008, 2001.

In recent years, researchers have begun to investigate
curves and surfaces in the Galilean space and thereafter
pseudo-Galilean space. The theory of the curves in
Galilean space is extensively studied in Rdschel (1986).
In this space we refer; about spherical curves in Gg, Ergit
and Ogrenmis (2009), Ogrenmis et al. (2007); on
Bertrand curves Ogrenmis et al. (2009). It is safe to
report that a good amount of researches have also been
done in pseudo-Galilean space by the aid of the
interesting paper by Divjak (1998); and thereafter
classical differential geometry papers Divjak and Milin-

Sipu§ (2003), Divjak and Milin-Sipu$ (2008) and
Ogrenmis and Ergut (2009).

In this work, in the light of the existing literature we
extend aspects of classical differential geometry topics to
the Galilean 4-space. We first construct Frenet-Serret
frame of a curve and in terms of this frame, we obtain
Frenet-Serret equations in the space G,. Besides, we
prove that tangent vector of a curve in G, satisfies a
vector differential equation of fourth order. Moreover, we
express some characterizations of Galilean spherical
curves.

PRELIMINARIES

The study of mechanics of plane-parallel motions
reduces to the study of a geometry of three dimensional

space with coordinates {x,y,t}is given by the motion
formula Yaglom (1979).

x =(cos)x+ (sina)y+ (vcos B)t +a,
y' = —(sin@)x + (cos )y + (vsin B)t + b,
'=t+d.

This geometry can be called three-dimensional Galilean

Geometry. Yaglom (1979) stressed that four-dimensional
Galilean Geometry, which studies all properties invariant



under motions of objects in space, is even more complex.
Yaglom (1979) also stated this geometry can be
described more precisely as the study of those properties
of four-dimensional space with coordinates that are
invariant under the general Galilean transformations.

x"=(cos Bcosa—cosysin Ssin@)x + (sin Scosa —cos ycos Ssin)y
+(sinysina)z+(vcoso, )t +a,

¥’ =—(cos Bsina +cos ysin fcos @) x + (—sin Ssina + cos ycos fcos @)y
+(sinycos@)z+(vcosd, )t +b,

7 =(sinysin f)x—(sinycos B)y + (cosp)z + (vcosd, )t +c,

'=t+d,

with cos® &8, +cos’ 8, +cos’ 8, =1.

In the light of the motion equations above, we observe
that the geometry of four-dimensional Galilean geometry
roughly restricted. In this work, we intend to study theory
of curves in the Galilean 4-space.

The basic elements of the theory of the curves in the
Galilean space are presented in Roschel (1986),
Ogrenmis et al. (2009). First we extended the classical
elements of the theory of the curves expressed in
Roéschel (1986) and Ogrenmis et al. (2009) to the
Galilean 4-space.

Let &: 1 < IR — G, be a curve given by
a(t) = (x(1), (1), z(0), w(1) ),

Where x(t), y(1), z(t), w(t) € C* (the set of three times
continuously differentiable functions) and ¢ run through in
areal interval. Let @ be a curve inG,, parameterized by
arclength ¢ = s, given in coordinate form

a(s) = (s, y(5), 2(s), w(s))

In affine coordinates the Galilean scalar product between
two points

P, = (xmxiz,x,g,xm) , 1 =1,2 is defined by

‘x21_x11’ if  x, #x,,

g(PpPz)={

2 2 2.
\/(xzz_xlz) (g —x3) " +(xp — )7, 0F Xy =0,

We define the Galilean cross product in G, for the
vectors @ = (al,az,a3,a4), b=(b,.b,.b;.b,)

and € = (Claczac3ac4) as follows:
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Where . are the standard basis vectors.

In this paper, we shall denote the inner product of two
vectors ,,in the sense of Galilean by the notation

<ab>,.1he Galilean sphere of the space ¢, is defined by

S3(m,r) ={¢)—me G, < (p—m,(p—m>G=ir2}.

Construction of the Frenet-Serret frame

Let  a(s)=(s,y(s)z(s),w(s)) be a
parameterized by arclength s inG,. Here, we denote

differentiation with respect to s by a dash. The first vector
of the Frenet-Serret frame, namely the tangent vector of
« is defined by

curve

t=a(s)=(1,y'(s), 2°(s), W(s)).
Since t is a unit vector, so we may express
<t,t>;=1 (1)

Differentiating the formula (1) with respect to s, we have
<t’,t >,=0.The vector function " gives us the rotation
measurement of the curve & . The real valued function

K(s) =] =) + ()P + (W)

is called the first curvature of the curve & . In the rest of
the paper, we shall suppose k(s)# 0 at everywhere.

Similar to space G, , we define the principal vector

_1(®
K(s)

n(s)
or another words
n(5) = (0.5(5). (0w (). (2)

By the aid of the differentiation of the principal normal
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vector (2), we define the second curvature function as
(s) = n'(s) .- (3)
This real valued function is called “torsion” of the

curve & . The third vector field, namely binormal vector
field of the curve & is defined by

’ ’ ’

1 1 ” 1, 1 »
PO=26 O’Lc(s)y j ’(m)Z j ’(r«s)W j

(4)

Therefore the vector b(s), is both perpendicular to ¢ and
n. The fourth unit vector is defined by

e=U tAnAD. ®)

Here the coefficient u is taken 1 to make +1the

matrix [t,n,b,e]. We define the third curvature of the
curve & by the inner product

o=<b,e>,. (6)

Here, as well-known, the set {t,n,b,e, K‘,T,G}is called
the Frenet-Serret apparatus of the curve@. And here,
we know that the vectors {t,n,b, e} are mutually
orthogonal vectors satisfying

<tt>;=<nn>;=<b,b>;=<e,e>;=1,

<t,n>,=<t,b>,=<t,e>,=<nb>,=<n,e>,=<b,e >,=0.

The Frenet-Serret equations

Let  a(s)=(s,y(s)z(s),w(s)) be a
parameterized by arclength s inG,.
definitions above, first we know that

curve
Considering the
t" = k(s)n(s). 7)

It is possible to define the vector n” according to frame
{t.n,b,e} by

n’ = 6,()t(s)+ 8, (s)n(s) + 8,(s)b(s) + 5, (s)e(s),

0, € IR, for 1<i<4. Multiplying both sides by the

vectors {t,n,b, e} and considering equation (1), we have,

respectively

0, =<n’,t>,=0,
0, =n,n>;=0,
0, =< n',b>;=17(s).

By the formulas (3) and (4), we easily obtain n
according to standard frame

.o AN AN EARE (8)
" (S)‘[O’[Kmy J ’[m)Z J ’[m)W j J

So (8) and the definition of cross product yields

0, =<n,e>,=0.
Since, we immediately arrive at
n’ =1(s)b(s). (9)

In order to compute the vector functiond”, let us
decompose

b’ = B, ()t(s) + B, (s)n(s) + By ()b(s) + B, (s)e(s),
Where the functions S, € IR for 1<i<4.

Similar ton”, we express

B, =<bt>,=0,
B, =<b',n>,=-1(s),
p,=<b",b>,=0,
L,=<bie>;=0(s).

So, we get

b’ =—1(s)n(s) + o (s)e(s). (10)
In an analogous way, we write

"=, ()t(s) + 7, ($)n(s) + 7, ()b(s) + 7, (s)e(s),

for the real valued functions ¥, € IR for 1<i < 4. Then,
in terms (10), one can obtain

Y, =<e,t>.,=0,
Y, =<e’,n>.=0,
¥, =<é’,b>,=-0(s),

v, =<e’,e>,=0.



By the equation above, we obtain
e =—o(s)b(s).
Since, we write Frenet-Serret equations

t' = k(s)n(s),

n’ =17(s)b(s),

b =—1(s)n(s) + o(s)e(s),
e =—o(s)b(s).

(11)

We may also write the Frenet-Serret equations in matrix
form

t 0 « 0O Ot
n| |00 7 O0fn
| |0 =t 0 ofbf
e 0 0 -0 Ofe

Consequently, we obtained Frenet-Serret equations of
the curve .

Vector differential equation satisfied by the curves of
G

Theorem 1: Let a(s) =(s,y(s),z(s),w(s)) be a curve

parameterized by arclength s inG, with the Frenet-

Serret equations (11). Tangent vector of a curve in Gy
satisfies a vector differential equation of fourth order as
follows:

’
’
’ ’ ’

l l(t_,j +|:it’:l +g(t_,j =0. (12)
O| T\ K KO T\ K

Proof: Let a(s)= (s,y(s),z(s),w(s)) be a curve
parameterized by arclength s in G4 with Frenet-Serret
equations (11). Using (11); in (11), we have

’

(I—’j =7(5)b(s). (13)
K

Substituting (12) to (11)s, we get

’
’

1(”) + 51 = o(s)els).
K

T\ K

—

14)
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Differentiating (14) and considering the formula (11)4, we
have (12) as desired.

Spherical curves in G,

In this section, we give some characterizations for the
Galilean spherical curves by the classical differential
geometry methods. Recall that, in the Euclidean space,

for an arbitrary curve @ = a(s) lies on a sphere with

center ¢, then (Ot—c)2 is constant (hence all of its

derivatives with respect to s are zero) and so we are led
to the following definition of contact; Millman and Parker
(1977):

Definition 1: Let ¢ and > 0 given and f(s) = (& — c)z.
We say that a has jthorder spherical contact with

sphere of radius r and center c at s = s, if

) =1 f(s9)=f"(59) = .= £V (5,) =0.

Theorem 2: Let a(s) = (s,y(s),z(s),w(s)) be a curve
parameterized by arclength s inG, with Frenet-Serret

equations (11). If @ lies on the Galilean sphere Sé
center ¢ and radius r, then the center is

c=als)+ p(s)n(s)+'0,b(s)+l{f+{p’} }e(s)’ (15)
T O | K T
1
where p=—.
K

Proof: Let a'(s)z(s,y(s),z(s),w(s)) be a curve
parameterized by arclength s inG, with Frenet-Serret

equations (11). In the light of the definiton 2 and
definition of Galilean sphere, we may write
f(s)=<c(s)—a(s),c(s)—a(s) >G=ir2. (16)
By definition of contact, the formula (16) has to satisfy
f&)=f"(s)=f"(s)=f""(s)=0.

Since, we differentiate

<—t(s),c(s)—a(s) >;=0. (17)
One more differentiating of (17) gives us

-k <n(s),c(s)—a(s)>; +1=0. (18)
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We may compose the vector
A8)—08) =¢, (M) +C, () +¢;(INs) +¢, (S)eds) (19)

By (17), we easily have ¢, =0. Using (18) in (19), we
also have

-k, +1=0. (20)
So,
6=t @)

K

Differentiating (18), we also express
— K <n(s),c(s)—as) >, —k<n(s),«(s)—As)>,=0.  (22)

Substituting n” = 7(s)b(s) to (22) and dividing both sides
by K, we have

In terms of (22), it can written as

’

<b(s),c(s)—a(s) >,= %(lj : (24)

K

Differentiating (24), we may write

’
’

1)z |1(1
c,=——+|—| — . (25)
O | K T\ K

Considering the obtained components (21), (23) and (25)

1
and denoting p = —, we have (15).
K

Theorem 3: Let a(s) = (s,y(s),z(s),w(s)) be a curve
parameterized by arclength s inG, with Frenet-Serret

equations (11). If & lies on the Galilean sphere Sé, then

the radius of the sphere satisfies
,772

N\ 2 4
2 :pz+(gj i L pﬂ(ﬂJ , (26)
t) o r

where 1.

K
Proof: The proof can be obtained by the taking norm of
both sides of (15).

Theorem 4: Let a(s) = (s,y(s),z(s),w(s)) be a curve
parameterized by arclength s inG, with Frenet-Serret

equations (11). If & lies on the Galilean sphere Sé, then

the curvature functions of « satisfy the differential
equation

’
’

g,o’+ 1 pr+[£j =0.
T o T

Proof: The proof can be obtained by the differentiation of
the formula (26).

Example

Let us consider the following curve

IcIR—G,
a=a(s):[s,\/2§s, arctans—%, —ln\/1+s2J- (27)

Differentiating (27), we have

/ 3 1 1
a(s):(l’ £7 s = > j (28)

27 145 27 1+s°

Galilean inner product follows that < a’,&’>,=1. So

the curve is parameterized by arclength and the tangent
vector is (28). In order to calculate the first curvature let
us express

, 2 s?—1
t=|0,0 — = = | (29)
(1 + 57 ) (1 + 52 )
Taking the norm of both sides, we have x(s)=1.
Thereafter, we arrive at

B 2 s?—1
<1+52)2 ’ (1+s2)2

n=\0,0, (30)

One more differentiating of (30), we have



st —1 2s
(1+s2)2 ’ (1+s2)2

n =10, 0, (31)

By the aid of the formula (31), we have the torsion
function

7(s) =
(5) 1+s?

and binormal vector

2s>-1)  4s

b=|0,0, )
(1+sz)3 (1+sz)3

The cross product of (28), (30) and (32) is formed by

0 e e, e,
NI s
1 X2 = _
2 1+4s* 2 1+s?
2
tARAD= 0 0o - 2 st -1
(1+s2) (1+s2)
2
0 o 2(s13 4
1+s° (1+s2)
Since, we have
st =657 +1
e=u0 -2—, 0, O] 33
yo Ats2) (33)

In order to determine the third curvature of the curve,
differentiating (33) and considering (32), we have o = 0.
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