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In this work, first, we construct Frenet-Serret frame of a curve in the Galilean 4-space. As a result of 
this, we obtain the mentioned curve’s Frenet-Serret equations. Then, we prove that tangent vector of a 
curve in Galilean 4-space satisfies a vector differential equation of fourth order. Additionally, some 
characterizations of Galilean spherical curves and an example of the main results are presented. 
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INTRODUCTION 
 
The discovery of the moving Frenet-Serret frame for 
regular curves opened a door to classical differential 
geometry. With the aid of the ordinary differential 
equations, researchers studied some aspects of the 
theory of the curves, spherical images, involutes-
evolutes, sphere-cal curves and Bertrand curves, e.g. At 
the beginning of the twentieth century, Einstein’s theory 
constructed a bridge between mathematical physics and 
modern differential geometry. It has been observed that 
Lorentz-Minkowski geometry plays an important role in 
the explanation of the relativistic motion of the charged 
particles in an electromagnetic field. For instance, a 
particle in special relativity means a curve with a time-like 
unitary tangent vector, Caltenco et al. (2002). Making use 
of the Frenet-Serret equations established in this new 
area, researchers extend some of classical differential 
geometry topics to Lorentz-Minkowski spaces. There 
exists an extensive literature on the subject (Ali and 
Turgut, 2010; Barros et al., 2001; �larslan and 
Boyacıo�lu, 2008; López, 2003, 2008, 2001. 

In recent years, researchers have begun to investigate 
curves and surfaces in the Galilean space and thereafter 
pseudo-Galilean space. The theory of the curves in 
Galilean space is extensively studied in Röschel (1986). 
In this space we refer; about spherical curves in G3, Ergüt 
and Ö�renmi� (2009), Ogrenmis et al. (2007); on 
Bertrand curves Ö�renmi� et al. (2009). It is safe to 
report that a good amount of researches have also been 
done in pseudo-Galilean space by the aid of the 
interesting paper by Divjak (1998); and thereafter 
classical differential geometry papers Divjak and Milin-

Šipuš (2003), Divjak and Milin-Šipuš (2008) and 
Ö�renmi� and Ergüt (2009).  

In this work, in the light of the existing literature we 
extend aspects of classical differential geometry topics to 
the Galilean 4-space. We first construct Frenet-Serret 
frame of a curve and in terms of this frame, we obtain 
Frenet-Serret equations in the space G4. Besides, we 
prove that tangent vector of a curve in G4 satisfies a 
vector differential equation of fourth order. Moreover, we 
express some characterizations of Galilean spherical 
curves. 
 
 
PRELIMINARIES 
 
The study of mechanics of plane-parallel motions 
reduces to the study of a geometry of three dimensional 
space with coordinates { }tyx ,, is given by the motion 
formula Yaglom (1979). 
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This geometry can be called three-dimensional Galilean 
Geometry. Yaglom (1979) stressed that four-dimensional 
Galilean Geometry, which studies all  properties  invariant  



 

 
 
 
 
under motions of objects in space, is even more complex. 
Yaglom (1979) also stated this geometry can be 
described more precisely as the study of those properties 
of four-dimensional space with coordinates that are 
invariant under the general Galilean transformations. 
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In the light of the motion equations above, we observe 
that the geometry of four-dimensional Galilean geometry 
roughly restricted. In this work, we intend to study theory 
of curves in the Galilean 4-space. 

The basic elements of the theory of the curves in the 
Galilean space are presented in Röschel (1986), 
Ö�renmi� et al. (2009). First we extended the classical 
elements of the theory of the curves expressed in 
Röschel (1986) and Ö�renmi� et al. (2009) to the 
Galilean 4-space. 
 
Let 4: GIRI →⊂α  be a curve given by 
 

( ),)(),(),(),()( twtztytxt =α  
 
Where 4)(),(),(),( Ctwtztytx ∈ (the set of three times 
continuously differentiable functions) and t  run through in 
a real interval. Let α  be a curve in 4G , parameterized by 
arclength ,st =  given in coordinate form 
 

( ))(),(),(,)( swszsyss =α  
 
In affine coordinates the Galilean scalar product between 
two points  
 

( )4321 ,,, iiiii xxxxP =  , 2,1=i  is defined by 
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We define the Galilean cross product in 4G  for the 

vectors ( )4321 ,,, aaaaa = , ( )4321 ,,, bbbbb =  

and ( )4321 ,,, ccccc =  as follows: 
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Where 

ie  are the standard basis vectors. 
 
In this paper, we shall denote the inner product of two 
vectors ba, in the sense of Galilean by the notation 

., Gba >< The Galilean sphere of the space 
4G is defined by 

 
{ }.,:),( 2

4
3 rmmGmrmS GG ±=>−−<∈−= ϕϕϕ  

 
 
Construction of the Frenet-Serret frame 
 
Let ( ))(),(),(,)( swszsyss =α  be a curve 

parameterized by arclength s  in 4G . Here, we denote 
differentiation with respect to s by a dash. The first vector 
of the Frenet-Serret frame, namely the tangent vector of 
α  is defined by 
 

( ))(),(),(,1)( swszsyst ′′′=′= α . 
 
Since t  is a unit vector, so we may express 
 

.1, =>< Gtt                                                               (1) 
 
Differentiating the formula (1) with respect to s , we have 

.0, =>′< Gtt The vector function t ′  gives us the rotation 
measurement of the curveα . The real valued function 
 

222 )()()()( wzyts ′′+′′+′′=′=κ  

 
is called the first curvature of the curveα . In the rest of 
the paper, we shall suppose 0)( ≠sκ  at everywhere. 

Similar to space 3G , we define the principal vector 
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or another words 
 

( ).)(),(),(,0
1

)( swszsysn ′′′′′′=
κ

                                      (2) 

 
By the aid  of  the  differentiation  of  the principal  normal 
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vector (2), we define the second curvature function as 
 

.)()(
G

sns ′=τ                                                     (3) 

 
This real valued function is called “torsion” of the 
curveα . The third vector field, namely binormal vector 
field of the curve α  is defined by 
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(4) 
 
Therefore the vector )(sb , is both perpendicular to t  and 

.n  The fourth unit vector is defined by 
 

.   bnte ∧∧= µ                                                       (5) 
 
Here the coefficient µ  is taken 1±  to make 1+ the 

matrix [ ]ebnt ,,, . We define the third curvature of the 
curve α  by the inner product  
 

., Geb >′=<σ                                                           (6) 
 
Here, as well-known, the set { }στκ ,,,,,, ebnt is called 
the Frenet-Serret apparatus of the curveα .  And here, 
we know that the vectors { }ebnt ,,,  are mutually 
orthogonal vectors satisfying 
 

,1,,,, =>=<>=<>=<>< GGGG eebbnntt  

.0,,,,,, =>=<>=<>=<>=<>=<>< GGGGGG ebenbnetbtnt  
 
 
The Frenet-Serret equations 
 

Let ( ))(),(),(,)( swszsyss =α  be a curve 

parameterized by arclength s  in 4G .  Considering the 
definitions above, first we know that 
 

).()( snst κ=′                                                                (7) 
 

It is possible to define the vector n′  according to frame 
{ }ebnt ,,,  by 
 

),()()()()()()()( 4321 sessbssnsstsn δδδδ +++=′  
 

IRi ∈δ , for 41 ≤≤ i . Multiplying both sides by the 

vectors{ }ebnt ,,,  and considering equation (1), we have,  
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By the formulas (3) and (4), we easily obtain n′  
according to standard frame 
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So (8) and the definition of cross product yields 
 

.0,4 =>′=< Genδ  
 
Since, we immediately arrive at 
 

).()( sbsn τ=′                                                       (9) 
 
In order to compute the vector function b′ , let us 
decompose 
 

),()()()()()()()( 4321 sessbssnsstsb ββββ +++=′  
 
Where the functions IRi ∈β  for 41 ≤≤ i .  
 
Similar to n′ , we express 
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So, we get 
 

).()()()( sessnsb στ +−=′                                        (10) 
 
In an analogous way, we write 
 

),()()()()()()()( 4321 sessbssnsstse γγγγ +++=′  
 
for the real valued functions IRi ∈γ  for 41 ≤≤ i . Then, 
in terms (10), one can obtain 
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By the equation above, we obtain  
 

).()( sbse σ−=′  
 
Since, we write Frenet-Serret equations 
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We may also write the Frenet-Serret equations in matrix 
form 
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Consequently, we obtained Frenet-Serret equations of 
the curve α . 
 
 
Vector differential equation satisfied by the curves of 
G4 
 
Theorem 1: Let ( ))(),(),(,)( swszsyss =α  be a curve 

parameterized by arclength s  in 4G  with the Frenet-
Serret equations (11). Tangent vector of a curve in G4 
satisfies a vector differential equation of fourth order as 
follows: 
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Proof: Let ( ))(),(),(,)( swszsyss =α  be a curve 
parameterized by arclength s  in G4 with Frenet-Serret 
equations (11). Using (11)1 in (11)2 we have 
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Substituting (12) to (11)3, we get 
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Differentiating (14) and considering the formula (11)4, we 
have (12) as desired. 
 
 
Spherical curves in G4 
 
In this section, we give some characterizations for the 
Galilean spherical curves by the classical differential 
geometry methods. Recall that, in the Euclidean space, 
for an arbitrary curve )(sαα =  lies on a sphere with 

center ,c  then ( )2c−α  is constant (hence all of its 
derivatives with respect to s are zero) and so we are led 
to the following definition of contact; Millman and Parker 
(1977): 
 

Definition 1: Let c and 0>r given and ( )2)( csf −= α . 

We say that α has jth order spherical contact with 

sphere of radius r and center c at 0ss = if 

.0)(...)()(,)( 0
)(

00
2

0 ===′′=′= sfsfsfrsf j  
 
Theorem 2: Let ( ))(),(),(,)( swszsyss =α  be a curve 

parameterized by arclength s  in 4G  with Frenet-Serret 

equations (11). If α  lies on the Galilean sphere 3
GS  

center c and radius ,r  then the center is 
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where .
1
κ

ρ =  

Proof: Let ( ))(),(),(,)( swszsyss =α  be a curve 

parameterized by arclength s  in 4G  with Frenet-Serret 
equations (11). In the light of the definition 2 and 
definition of Galilean sphere, we may write 
 

2)()(),()()( rsscsscsf G ±=>−−=< αα .                  (16) 
 
By definition of contact, the formula (16) has to satisfy 
 

.0)()()()( )( ==′′′=′′=′ sfsfsfsf IV  
 
Since, we differentiate 
 

0)()(),( =>−−< Gsscst α .                                      (17) 
 
One more differentiating of (17) gives us 
 

.01)()(),( =+>−<− Gsscsn ακ                               (18) 
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We may compose the vector  
 

)()()()()()()()()()( 4321 sescsbscsnscstscssc +++=−α .           (19) 
 
By (17), we easily have .01 =c  Using (18) in (19), we 
also have 
 

012 =+− cκ .                                                             (20) 
 
So, 
 

.
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2 κ
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Differentiating (18), we also express 
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Substituting )()( sbsn τ=′ to (22) and dividing both sides 
byκ , we have 
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Differentiating (24), we may write 
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Considering the obtained components (21), (23) and (25) 

and denoting
κ

ρ 1= , we have (15). 

 
Theorem 3: Let ( ))(),(),(,)( swszsyss =α  be a curve 

parameterized by arclength s  in 4G  with Frenet-Serret 

equations (11). If α  lies on the Galilean sphere 3
GS , then 

the radius of the sphere satisfies 
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where 

κ
ρ 1=

. 

Proof: The proof can be obtained by the taking norm of 
both sides of (15). 
 
Theorem 4: Let ( ))(),(),(,)( swszsyss =α  be a curve 

parameterized by arclength s  in 4G  with Frenet-Serret 

equations (11). If α  lies on the Galilean sphere 3
GS , then 

the curvature functions of α satisfy the differential 
equation 
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Proof: The proof can be obtained by the differentiation of 
the formula (26). 
 
Example 
 
Let us consider the following curve 
 
  4GIRI →⊂  
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Differentiating (27), we have 
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Galilean inner product follows that 1, =>′′< Gαα . So 
the curve is parameterized by arclength and the tangent 
vector is (28). In order to calculate the first curvature let 
us express 
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Taking the norm of both sides, we have 1)( =sκ . 
Thereafter, we arrive at 
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One more differentiating of (30), we have 
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By the aid of the formula (31), we have the torsion 
function 
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and binormal vector 
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The cross product of (28), (30) and (32) is formed by 
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Since, we have 
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In order to determine the third curvature of the curve, 
differentiating (33) and considering (32), we have .0=σ  
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