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Abstract

We propose a new extragradient method for solving a multi-valued variational
inequality. It is showed that the method converges globally to a solution of the
multi-valued variational inequality, provided the multi-valued mapping is continuous
with nonempty compact convex values. Preliminary computational experience is also
reported.
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1 Introduction
We consider the following multi-valued variational inequality, denoted by MVI(F, C): to
findx" € C and £ € F(x") such that

(E,y-x)>0, VyeC, 1.1)

where C is a nonempty closed convex set in R”, F is a multi-valued mapping from C into
R” with nonempty values, and (-,-) and || - || denote the inner product and the norm in R”,
respectively.

Extragradient-type algorithms have been extensively studied in the literature; see [1—
3]. Various algorithms for solving the multi-valued variational inequality have been ex-
tensively studied in the literature [4—15]. The well-known proximal point algorithm [12]
requires the multi-valued mapping F to be monotone. [11] proposes a projection algo-
rithm for solving the multi-valued variational inequality with a pseudomonotone map-
ping. In [11], choosing u; € F(x;) needs solving a single-valued variational inequality; see
the expression (2.1) in [11]. [6] presents a double projection algorithm, which is an im-
provement of [11], so that u; € F(x;) can be taken arbitrarily. In [6], however, choosing the
hyperplane needs computing the supremum and hence is computationally expensive. To
overcome this difficulty, [7] introduces an extragradient algorithm for solving the multi-
valued variational inequality in which computing the supremum is avoided. In this paper,
we present a new extragradient method for solving the multi-valued variational inequal-
ity. In our method, u; € F(x;) can be taken arbitrarily. Moreover, the main difference of
our method from those of [6, 7, 11] is the procedure of Armijo-type linesearch. We also
present numerical tests to compare our Algorithm 2.2 with those in [6, 11].
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This paper is organized as follows. In Section 2, we present the algorithm details. We
prove the preliminary results for convergence analysis in Section 3. Numerical results are

reported in the last section.

2 Algorithms

Let us recall the definition of a continuous multi-valued mapping. F is said to be upper
semicontinuous atx € C if for every open set V containing F(x), there is an open set U con-
taining x such that F(y) C V forally € CNU. F is said to be lower semicontinuous at x € C
if given any sequence x; converging to x and any y € F(x), there exists a sequence y; € F(x)
that converges to y. F is said to be continuous at x € C if it is both upper semicontinuous
and lower semicontinuous at x. If F is single-valued, then both upper semicontinuity and
lower semicontinuity reduce to the continuity of F.

F is called pseudomonotone on C in the sense of Karamardian [16] if for any x,y € C,
(v,x—y)>0 forsomeveF(y)= (u,x—y) >0 forall u e F(x). (2.1)
Let S be the solution set of (1.1), that is, those points x™ € C satisfying (1.1). Throughout

this paper, we assume that the solution set S of problem (1.1) is nonempty and F is contin-

uous on C with nonempty compact convex values satisfying the following property:
(¢, y—x)>0, VyeCV¢eF(y),VxeSs. (2.2)

The property (2.2) holds if F is pseudomonotone on C.

Let Pc denote the projector onto C, and let 1 > 0 be a parameter.

Proposition 2.1 x € C and & € F(x) solve problem (1.1) if and only if

ru(x,8) :==x— Pc(x — pn&) = 0.

Algorithm 2.2 Choose x( € C and two parameters y,o € (0,1). Set i = 0.
Step 1. Choose u; € F(x;) and let k; be the smallest nonnegative integer satisfying

v; € F(Pc (xi - ykl'ui)), (2.3)

yki<ui — Vi I"ykl» (xi, Ml)> <o || ryki (xl-, ui) “2 (24)

Set n; = yki. If 1y, (x5, 1;) = 0, stop.
Step 2. Compute x;,1 := Pc(x; — a;d;), where

d; = 1y, (%0 u;) + n:vi, (2.5)
(1 = o) llry, (s 1) 1
o; = ||dl||2 . (26)

Leti:=i+1andgoto Step 1.
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Remark 2.3 Let us compare the above algorithm with those in [6, 7, 11]. First, Aimijo-type
linesearch procedures in the four algorithms are different. [6, 7, 11] use different proce-
dures which replace (2.4) by the following ones:

(vir@ou)) = o || ru@ow) | or (i = viyru (o) < o G )|

’

where j is required to be strictly less than 1 or 1/o, and v; € F(x; -y 7. (%;, 4;)). In our algo-
rithm, ; can change according to the value of 1, in each iteration and v; € F(Pc(x; — yXiu;)).
Secondly, the way to generate the next iterate is different. In [6, 11], the next iterate is a pro-
jection of the current iterate onto the intersection of the feasible set C and a hyperplane,
while in our algorithm as well as in [7] the next iterate is a projection onto the feasible
set C. In addition, the searching directions in [7] and our algorithm are also different.

Lemma 2.4 Let C be a closed convex subset of R". For any x,y € R" and z € C, the following
statements hold.

(i) (x-Pc(x),z—Pclx)) <0.

(i) 1Pc(x) =Pc)I? < llx = ylI* = IPc(x) = x +y ~ Pc(y)I*.

Proof See [17]. (I

The proof of the following lemma is easy and we omit it (see Lemma 3.1 in [18] for
example).

Lemma 2.5 Foranyx € R", & € F(x) and > 0,
min{1, u}||r1(x, )| < |r. (. &)|| < max{1, u}||r(x,€)].
We first show that Algorithm 2.2 is well defined.

Proposition 2.6 If x; is not a solution of problem (1.1), then there exists a nonnegative
integer k; satisfying (2.3) and (2.4).

Proof Suppose that for all k and all v € F(Pc(x; — y¥u;)), we have

2
’

Y i = v, 1 i) > 0 | i iy 1)
and hence,
Y il = vl > o | (i, ).
Therefore,
ey Il > %Hryk(xi, w)|
o . X
= F min{1, y*} || ry;, 7)

: (2.7)

=0 ||V1(xi, u;)
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where the second inequality follows from Lemma 2.5 and the equality follows from y €
(0,1) and k > 0. Since P¢(-) is continuous and x; € C, Pc(x; — y*u;) — x;(k — o0). Since F
is lower semicontinuous, #; € F(x;) and Pc(x; — y*u;) — x;,(k — 00), there is vy € F(Pc(x; —
v*u;)) such that vy — u;(k — 00). Therefore,

Nl = vidll > & |1 (i )|, VK. (2.8)

Let kK — oo in (2.8), we have
0 =llu; — uill = o |ri(xi )| >0
This contradiction completes the proof. O

3 Main results
Now we obtain the following auxiliary result that will be used for proving the convergence
of Algorithm 2.2.

Theorem 3.1 If the assumption (2.2) holds and x; ¢ S, then for any x* € S,

(di,xi - x) >(1-0) ||r,,i(x,-,$,»)||2 > 0. (3.1)
Proof Letx” € S. Since u; € F(x;) and n; > 0, it follows from (2.2) that

(niwi,xi —x’) > 0. (3.2)
Similarly, we have

(nivi, Pc(os; — miui) —x) = 0, (3.3)
because v; € F(Pc(x; — n;u;)). Since x” € C, from Lemma 2.4(i) we have

(oei = miusi = P (i — miws), P (o — miwr) — ') > 0. (3.4)
It follows from (3.2), (3.3) and (3.4) that

(di,xi —-x ) 1o, (i ;) + Vi, % — X )

rﬂt

<
= {1y, (i 13) + mi(Vi = ), 26 = %) + (ki o0 — %)
> (1, Gy ) + (v = 1), % — %)
= (r, i 1) + mi(vi = 1), 7, (i, 7))
+ (i — miw — Pe(x; = miuks), P (i — i) — )
+ (nivi, Pc(x; = i) — %)

> (rg, oo 1) + mivi — ), 7y, (63, 147))- (3.5)
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Therefore,

(diyoci =) = (1, (i wa) + mii = i), 1y, (i, w3))
= ||'”n,v(xt, u;) ||2 - 77i<ui = Vi Ty (%, Mi))
= ”rni(xir ui) ”2 -0 H n; (xh ui) H2

2 (3.6)

= (1-0)|ry, (6 )
where the second inequality follows from (2.4). This completes the proof. O

Theorem 3.2 IfF : C — 2%" is continuous with nonempty compact convex values on C and
the assumption (2.2) holds, then the sequence {x;} generated by Algorithm 2.2 converges to

a solution x of (1.1).

Proof Letx™ € S. It follows from Lemma 2.4(ii), Lemma 2.5, (2.5), (2.6) and (3.6) that

2

*

||xi+1 -xX| = ||xz -x —od; ||2
= sz —x H2 - 205,-(di,x,- - x) +a?(|d:]?
# (12 (1—0')2”7";“(96[, ui)”4
e e PR
- ||x _x* ”2 _ (1 - U)z(min{niil}”rl(xir Ml)”)4
- ;112

2 (1= o)t (s ) I*

7, (eis 83) + mivil|

B
||x,»—x

(3.7)

It follows that the sequence {||x;;; — x ||} is nonincreasing, and hence is a convergent se-
quence. Therefore, {x;} is bounded. Since F is continuous with compact values, Proposi-
tion 3.11in [19] implies that {F(x;) : i € N} is a bounded set, and so are {i;}, {r,, (x;, 4;)} and
{vi}. Thus, {r,, (x;, u;) + n;v;} is bounded. Then there exists a positive number M such that

7 Geis 1) + mavi | < M.

It follows from (3.7) that

i = | < i = &7||° = (1= 0)>M 202y ey )| (3.8)
Therefore,
zlg?o ni||r (i )| = 0. (3.9)

By the boundedness of {x;}, there exists a convergent subsequence {x; } converging to x.
If X is a solution of problem (1.1), we show next that the whole sequence {x;} converges

to X. Replacing x* by & in the preceding argument, we obtain that the sequence {||x; —

x|} is nonincreasing and hence converges. Since X is an accumulation point of {x;}, some
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subsequence of {||x; —X||} converges to zero. This shows that the whole sequence {||x; — x||}
converges to zero, hence lim,_, » x; = x.

Suppose now that x is not a solution of problem (1.1). We show first that k; in Algo-
rithm 2.2 cannot tend to co. Since F is continuous with compact values, Proposition 3.11
in [19] implies that {F(x;) : i € N} is a bounded set, and so the sequence {u;} is bounded.
Therefore, there exists a subsequence {u; } converging to u. Since F is upper semicontin-
uous with compact values, Proposition 3.7 in [19] implies that F is closed, and so u € F(x).
By the definition of k;, we have

Vki_l(ui =V F k-1 (i, Mz)) >0 ”rykrl (i, ;) 2’ Yve F(Pc(xi - yki_lu"))’ (3.10)
and hence
Vi = vl > o | ()|, Vv e F(Pe(x - viu). (3.11)
Therefore,
it = vl > o | e G103
y i
= 2 minf1 ) |
=0 ||r1(xi’ Z/IL') 5 Vv € F(Pc(xl - yki_lui))’vki = 1; (3'12)

where the second inequality follows from Lemma 2.5 and the equality follows from y €
(0,1).
If ki]. — 00, then Pc(xi,- - ykii _1%',-) — x. The lower continuity of F, in turn, implies the

existence of u; €F (Pc(xi, - yki/ _1%',)) such that u;; converges to u. Therefore,

llui; — uill >0 l ri(x, i) I (3.13)
Letting j — oo, we obtain the contradiction

0=o|nEn|*>o0, (3.14)

being (-, -) continuous. Therefore, {k;} is bounded and so is {7;}.

By the boundedness of {1,}, it follows from (3.9) that lim;_, » ||r1(x;, %;)|| = 0. Since ry (-, -)
is continuous and the sequences {x;} and {i;} are bounded, there exists an accumulation
point (x, %) of {(x;,u;)} such that r(x, %) = 0. This implies that x solves the variational in-
equality (1.1). Similar to the preceding proof, we obtain that lim;_, oo x; = X.

Now we provide a result on the convergence rate of the iterative sequence generated
by Algorithm 2.2. To establish this result, we need a certain error bound to hold locally
(see (3.15) below). The research on an error bound is a large topic in mathematical pro-
gramming. One can refer to the survey [20] for the roles played by error bounds in the
convergence analysis of iterative algorithms; more recent developments on this topic are
included in Chapter 6 in [21]. A condition similar to (3.15) has also been used in [22] (see
expression (10) therein) to analyze the convergence rate in a very general framework.
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For any § > 0, define
P(5) := {(x,é) eCxR": & eF(x), Hrl(x,é)” < 8}.

We say that F is Lipschitz continuous on C if there exists a constant L > 0 such that, for
allx,y € C, H(F(x), F(y)) < L||x — y||, where H denotes the Hausdorff metric. a

Theorem 3.3 In addition to the assumptions in Theorem 3.2, if F is Lipschitz continuous
with modulus L > 0 and if there exist positive constants ¢ and § such that

dist(x, S) < c||r1(x,é§) ,  V(x &) e P), (3.15)

then there is a constant o > 0 such that for sufficiently large i,

1

Vi +dist2(x0,8)

Proof Put n := min{1/2,L ™ yo}. We first prove that n; > n for all i. By the construction of

dist(x;, S) <

n;> we have n; € (0,1]. If n; = 1, then clearly n; > % > 1. Now we assume that 7; < 1. Since
n; = y%i, it follows that the nonnegative integer k; > 1. Thus the construction of k; implies
that

Y s = v, 7 (i, ) > 0 | 7 e G 1) 2, e F(Pe(xi—vhw)), (3.16)
and hence, as k; > 1,

llogg = v > # |71 i) |, Vv € F(Pe(xi = v ws)).

Since u; € F(x;) and F is compact-valued, the definition of the Hausdorff metric implies
the existence of v; € F(Pc(x; — % 'u;)) such that

% 17 G100 | < llats = vill < HE(E e, E(Pe (i — v5 1)) < L] 7 (10|

Therefore n; > L'yo > 1.
Letx” € Ps(x;). By (3.8) and (3.15), we obtain that for sufficiently large i,

dis(x;11,5) < [ -« |
< i =" - A= oMt | rie )|
< = |* - A= oM e )|
<dist?(x;,8) — (1 - o)*M 2t dist*(x;, S),

where the second inequality follows from 7; > 1.
Write « for (1 — 0)>?M~2n*c™*. Applying Lemma 6 in Chapter 2 of [23], we have

dist(x;, S) < dist(xo,S)/y/ aidist?(xg, S) + 1 = 1/y/ i + dist (o, S).

This completes the proof. O
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Table 1 Example 4.1

€ Algorithm 2.2 [6, Algorithm 1]

It. (Num.) CPU (Sec.) It.(Num.) CPU (Sec.)
103 38 0.640625 67 0.546875
107 66 0.8125 120 0.828125
107 9% 1.10938 173 1.15625

Table 2 Example 4.1

€ Algorithm 2.2 [11, Algorithm 1]

It. (Num.) CPU (Sec.) It.(Num.) CPU (Sec.)
103 38 0.640625 71 0.96875
107 66 0.8125 126 153125
107 9 1.10938 181 2.14063

4 Numerical experiments

In this section, we present some numerical experiments for the proposed algorithm. The
MATLAB codes are run on a PC (with CPU Intel P-T2390) under MATLAB Version
7.0.1.24704(R14) Service Pack 1. We compare the performance of our Algorithm 2.2, [6,
Algorithm 1] and [11, Algorithm 1]. In Tables 1 and 2, ‘It’ denotes the number of iteration
and ‘CPU’ denotes the CPU time in seconds. The tolerance ¢ means when |7, (x,£)|| < ¢,
the procedure stops.

Example 4.1 Letn =3,
n
C:= xeRf:in:I
i=1

and F : C — 2%" be defined by
Fx):={(t,t —x1,t —x5) : £ € [0,1]}.

Then the set C and the mapping F satisfy the assumptions of Theorem 3.2 and (0,0,1) is
a solution of the multi-valued variational inequality. Example 4.1 is tested in [6, 11]. We
choose o = 0.5, y = 0.9 for our algorithm; o = 0.1, y = 0.8, u =1 for Algorithm 1 in [6];
0 =0.9,y =04, u=1for Algorithm 1 in [11]. We use x, = (0,0.5,0.5) as the initial point
(Table 1 and Table 2).
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