
International Journal of the Physical Sciences Vol. 6(14), pp. 3369-3376, 18 July, 2011
Available online at http://www.academicjournals.org/IJPS
DOI: 10.5897/IJPS11.530
ISSN 1992 - 1950 ©2011 Academic Journals

Full Length Research Paper

An extensible autonomous search framework for
constraint programming

Broderick Crawford1,2, Ricardo Soto1,3*, Carlos Castro2, Eric Monfroy2,4 and Fernando
Paredes5

1
Pontificia Universidad Católica de Valparaíso, Chile.
2
Universidad Técnica Federico Santa María, Chile.

3
Universidad Autónoma de Chile, Chile.

4
CNRS, LINA, Université de Nantes, France.

5
Escuela de Ingeniería Industrial, Universidad Diego Portales, Santiago, Chile.

Accepted 25 May, 2011

Constraint programming is a modern programming paradigm devoted to solve constraint-based
problems, in particular combinatorial problems. In this paradigm, the efficiency on the solving process
is the key, which generally depends on the selection of suitable search strategies. However,
determining a good search strategy is quite difficult, as its effects on the solving process are hard to
predict. A novel solution to handle this concern is called autonomous search, which is a special feature
allowing an automatic reconfiguration of the solving process when a poor performance is detected. In
this paper, we present an extensible architecture for performing autonomous search in a constraint
programming context. The idea is to carry out an “on the fly” replacement of bad-performing strategies
by more promising ones. We report encouraging results where the use of autonomous search in the
resolution outperforms the use of individual strategies.

Key words: Constraint programming, autonomous search, heuristic search.

INTRODUCTION

Constraint programming (CP) is a modern and powerful
programming paradigm devoted to the efficient resolution
of constraint-based and optimization problems. It
interbreeds ideas from different domains, e.g. from opera-
tional research, numerical analysis, artificial intelligence,
and programming languages. Currently, CP is widely
used in different application areas, for instance, in
computer graphics to express geometric coherence, in
engineering design for the conception of complex
mechanical structures, in database systems to ensure
and/or restore data consistency, in electrical engineering
to locate faults, and even for sequencing the DNA in
molecular biology (Rossi, 2006). Solving a problem in CP
requires firstly modeling it as a constraint satisfaction
problem (CSP). A CSP is a formal problem representation
that mainly consists of a sequence of variables lying in a
domain and a set of constraints. The goal is to find a
complete variable-value assignment that satisfies the

*Corresponding author. E-mail: ricardo.soto@ucv.cl.

whole set of constraints. The common approach for
solving CSPs is based on the generation of a tree data
structure that holds the potential solutions by interleaving
two main phases: 1) enumeration and 2) propagation.

In the enumeration phase, a variable is instantiated to
create a branch of the tree, while the propagation phase
is responsible for pruning the tree by filtering from
domains the values that do not lead to any solution. In
the enumeration phase, there are two major decisions to
be made: the order in which the variables and values are
selected. This selection is known as the variable and
value ordering heuristics, and jointly constitutes the
enumeration strategy. Such a pair of decisions is crucial
in the performance of the resolution process, where a
correct selection can dramatically reduce the compu-
tational cost of finding a solution. For instance, if the right
value is chosen on the first try for each variable, a
solution can be found without performing backtracks. The
study of enumeration strategies has been the focus of
research during many years. From the 70’s, there exist
different studies concerning strategies. For instance,
preliminary studies were focused on defining general

3370 Int. J. Phys. Sci.

criteria, e.g. the smaller domain for variable selection,
and its minimum, maximum, or a random value. There is
also work focused on defining strategies for specific class
of problems, e.g. for job shop scheduling (Smith and
Cheng, 1993; Sadeh and Fox, 1996) and for
configuration design (Chenouard et al., 2009). We can
also find research focused on determining the best
strategy based on some static criterion (Beck et al.,
2004a, b; Sturdy, 2003).

However, it turns out that taking an a priori decision is
quite difficult, as the effects on the solving process are
hard to predict. During the last years there is a trend to
analyze the state of progress of the solving process in
order to automatically identify good-performing strategies
(or a combination of them). For instance, the adaptive
constraint engine (ACE) (Epstein et al., 2005) is a
framework that learns ordering heuristics by gathering the
experience from problem solving processes. The main
idea is to manage a set of advisors that recommend in
the form of comment a given action to perform e.g.
“choose the variable with maximum domain size”. The
reliability and utility of advisors is controlled by weights.
Those weights are determined by a DWL (digression-
based weight learning) algorithm, which learns by
examining the solution’s trace of problems successfully
solved.

Finally, a decision is computed as a weighted
combination of the comments done by the advisors in a
process called voting. Another interesting approach
following a similar goal is the weighted degree heuristic
(Boussemart et al., 2004). The idea is to associate
weights to constraints, which are incremented during
propagation whenever this causes a domain wipeout. The
sum of weights is computed for each variable involved in
constraints and the variable with the largest sum is
selected. The principles that support the weighted degree
procedure can be conceived in terms of an overall
strategy that combines two heuristic principles, the fail-
first and the contention principle. The fail-first principle
says: to succeed, you must first search where you are
most likely to fail; while contention principle says: those
variables directly related to failure (domain wipeouts) are
more likely to cause failure if they are chosen instead of
other variables. The random probing method (Grimes and
Wallace, 2007; Wallace and Grimes, 2009) address two
drawbacks of the weighted degree heuristic. On one hand,
the initial choices are made without information on edge
weights, and on the other, the weighted degree is biased
by the path of the search. This makes the approach too
sensitive to local, instead of to global conditions of failure.
The random probing method proposes to perform
sampling during an initial gathering phase arguing that
initial choices are often the most important. Preliminary
results demonstrate that random probing performs better
than weighted degree heuristic.

The aforementioned approaches are mainly focused on
sampling and learning good strategies after solving a
problem or a set of problems. In this paper, we focus on

reacting as soon as possible instead of waiting the entire
resolution process. To this end, we introduce a new
framework that smartly combines CP with autonomous
search (AS) (Hamadi et al., 2011). The CP component
runs a classical solving process while the AS part is
responsible for reacting as soon as a bad-performing
strategy is detected. Reacting implies to replace “on the
fly” the current strategy by another one looking more
promising. Promising strategies are selected from a
strategy rank which depends on a choice function. The
choice function determines the performance of a given
strategy in a given amount of time, and it is computed
based upon a set of indicators and control parameters.
Additionally, to guarantee the precision of the choice
function, control parameters (Nannen, 2009) are
smoothly adjusted by an optimizer. This framework has
been implemented in the ECL

i
PS

e
 Solver (Schimpf and

Shen, 2010) and it is supported by a 4-component
architecture described later in this paper. Another
important capability of this new framework is the
possibility of easily updating its components. This is
useful for experimentation tasks. Developers are able to
add new choice functions, new control parameter
optimizers, and/or new ordering heuristics in order to test
new CP-AS approaches. The experimental results
demonstrate the effectiveness of the proposed frame-
work, outperforming in several cases the use of individual
strategies.

BACKGROUND

Here, we formally describe the CSP and we present the basic
notions of CSP solving.

Constraint satisfaction problems

Formally, a CSP P is defined by a triple P = <X,D,C> where:

-X is an n-tuple of variables X = <x1, x2,..., xn>.
-D is a corresponding n-tuple of domains D = <D1, D2,..., Dn> such

that xi ∈ Di , and Di is a set of values, for i = 1,...,n.
-C is an m-tuple of constraints C = C1, C2, ..., Cm, and a constraint Cj
is defined as a subset of the Cartesian product of domains Dj1 × · · · ×
Djnj , for j = 1,..., m.
A solution to a CSP is an assignment {x1 → a1,..., xn → an } such that ai

∈ Di for i = 1,...,n and (aj1,...,ajnj) ∈ Cj , for j = 1,...,m.

CSP Solving

As previously mentioned, the CSP search phase is commonly
tackled by building a tree structure by interleaving enumeration and
propagation phases. In the enumeration phase, the branches of the
tree are created by selecting variables and values from their
domains. In the propagation phase, a consistency level is enforced
to prune the tree in order to avoid useless tree inspections.
Algorithm 1 depicts a general procedure for solving CSPs. The goal
is to iteratively generate partial solutions, backtracking when an
inconsistency is detected, until a result is reached. The algorithm
begins by loading the CSP model.

Then, a while loop encloses a set of actions to be performed until

Crawford et al. 3371

Table 1. Search process indicators.

Name Description

VFP Number of variables fixed by propagation

n Number of steps or decision points (n increments each time a variable is fixed enumeration)

Tn(Sj) Number of steps since the last time that an enumeration strategy Sj was used until step nth

SB Number of Shallow Backtracks

B Number of Backtracks

In1
Represents a Variation of the Maximum Depth. It is calculated as: CurrentMaxDepth −
PreviousMaxDepth

In2
Calculated as: CurrentDepth − PreviousDepth. A positive value means that the current node
is deeper than the one explored at the previous step

B-real Number of backtracks considering also the number of shallow backtracks

d Current depth in the search tree

Thrash
The solving process alternates enumerations and backtracks on a few number of variables
without succeeding in having a strong orientation. It is calculated as: dt−1 − VFPt−1

Table 2. Variable ordering heuristics.

Name Description

First (F) The first variable of the list is selected

Minimum remaining values (MRV) At each step, the variable with the smallest domain size is selected

Anti minimum remaining values (AMRV) At each step, the variable with the largest domain size is selected

Occurrence (O) The variable with the largest number of attached constraints is selected

Table 3. Value ordering heuristics.

Name Description

In Domain (ID)
It starts with the smallest element and upon backtracking
tries successive elements until the entire domain has been
explored

In Domain Max (IDM) It starts the enumeration from the largest value downwards

fixing all the variables (that is assigning a consistent value) or a
failure is detected (that is no solution is found). The first two
enclosed actions correspond to the variable and value ordering
heuristics. The third action is a call to a propagation procedure,
which is responsible for attempting to prune the tree. Finally, two
conditions are included to perform backtracks. A shallow backtrack
(Barták and Rudová, 2005) corresponds to try the next value
available from the domain of the current variable, and the
backtracking returns to the most recently instantiated variable that
has still values to reach a solution.

ARCHITECTURE

Our framework is supported by four components: 1) SOLVE, 2)
OBSERVATION, 3) ANALYSIS and 4) UPDATE.
1) The SOLVE component runs a generic CSP solving algorithm

performing the aforementioned propagation and enumeration
phases.
The enumeration strategies used are taken from the quality rank,

which is controlled by the UPDATE component.
2) The OBSERVATION component aims at regarding and recording
relevant information about the resolution process. These
observations are called snapshots.
3) The ANALYSIS component studies the snapshots taken by the
OBSERVATION. It evaluates the different strategies, and provides
indicators to the UPDATE component. The indicators as well
variable and value ordering heuristics used in this implementation
are depicted in Tables 1, 2 and 3, respectively.
4) The UPDATE component makes decisions using the choice
function. The choice function determines the performance of a
given strategy in a given amount of time. It is calculated based on
the indicators given by the ANALYSIS component and a set of
control parameters computed by an optimizer.

3372 Int. J. Phys. Sci.

Figure 1. General schema of the architecture.

Figure 2. Hyper-heuristic approach for the UPDATE component.

The UPDATE component

The framework has been designed to allow easy modification of the
UPDATE component. In fact, UPDATE is the most susceptible
component to suffer modifications, since the most obvious
experiment –in the context of AS– is to tune or replace the choice
function or the optimizer. Figure 1 depicts a general schema of the
architecture. The SOLVE, OBSERVATION, and ANALYSIS
component have been implemented in ECL

i
PS

e
. The UPDATE

component has been designed as a plug-in for the framework.
Indeed, we have implemented a Java version of the UPDATE
component which computes the choice function and optimizes its
control parameters through a genetic algorithm. Another version of
the UPDATE component, which is currently under implementation,
uses a swarm optimizer.

Let us note that the UPDATE component is carefully supported
by a hyperheuristic approach (Figure 2). The hyperheuristic is a
heuristic that operates at a higher level of abstraction than the CSP

solver (problem domain). The hyperheuristic is responsible for
deciding which enumeration strategy to apply at each decision step
during the search. It manages the portfolio of enumeration
strategies having no prior problem specific knowledge. The hyper-
heuristic and the choice function work in conjunction. The choice
function provides guidance to the hyperheuristic by indicating which
enumeration strategy should be applied next based upon the
information of the search process. The choice function is defined as
a weighted sum of indicators expressing the recent improvement
produced by the enumeration strategy that had been called.

The choice function

The choice function (Soubeiga, 2009) attempts to capture the
correspondence between the historical performance of each
enumeration strategy and the decision point currently being
investigated. Here, a decision point or step is every time the solver
is invoked to fix a variable by enumeration. The choice function is
used to rank and choose between different enumeration strategies
at each step. For any enumeration strategy Sj, the choice function f
in step n for Sj is defined by Equation 1, where l is the number of
indicators considered and α is a parameter to control the relevance
of the indicator within the choice function.

() ()
j

n
i

l

=i

ijn
Sfα=Sf ∑

1 (1)

Additionally, to control the relevance of an indicator i for a strategy
Sj in a period of time, we use a popular statistical technique for
producing smoothed time series called exponential smoothing. The
idea is to associate, for some indicators, greater importance to
recent performance by exponentially decreasing weights of older
observations. In this way, recent observations give relatively more
weight than older ones. The exponential smoothing is applied to the

computation of 1
if

 (Sj), which is defined by Equations 2 and 3,
where v1 is the value of the indicator i for the strategy Sj in time 1, n
is a given step of the process, β is the smoothing factor, and 0 < β <
1.

()
1

1

v=Sf ji
 (2)

() ()
jniinjni

Sfβ+v=Sf
1− (3)

Let us note that the speed at which the older observations are
smoothed (dampened) depends on β. When β is close to 0,
dampening is quick and when it is close to 1, dampening is slow.
The general solving procedure including AS can be seen in
Algorithm 2. Three new function calls have been included at the
end: for calculating the indicators, the choice function, and for
choosing promising strategies, that is, the ones with highest choice
function. They are called after constraint propagation to compute
the real effects of the strategy (some indicators may be impacted by
the propagation).

The parameter optimizer

As previously mentioned, an optimizer determines the most
appropriate set of parameters αi for the choice function. The
parameters are fine-tuned by a genetic algorithm (GA) which trains
the choice function carrying out a sampling phase. Sampling occurs
during an initial information gathering phase where the search is
run repeatedly to a fix cutoff (that is until a fixed number of variables

Crawford et al. 3373

instantiated, visited nodes or backtracks). After sampling, the
problem is solved with the most promising set of parameter values
for the choice function. The GA evaluates and evolves different
combinations of parameters, relieving the task of manual
parameterization. Each member of the population encodes the
parameters of a choice function. Then, these individuals are used in
order to create a choice function instance. Each choice function
instantiated (each chromosome) is evaluated in a sampling phase
trying to solve partially the problem until a fixed cutoff. As an
evaluation value for the chromosome, an indicator of performance
process is used (number of backtracks). After each chromosome of
the population is evaluated, selection, crossover and mutation are
used to breed a new population of choice functions. As noted
above, the GA is used to tune the choice function.

A population size of 10 is used and the domain of parameters αi
is [-100, 100]. The crossover operator randomly selects two
chromosomes from the population and mates them by randomly
picking a gene and then swapping that gene and all subsequent
genes between the two chromosomes. The two modified chromo-
somes are then added to the list of candidate chromosomes. The
crossover operator uses a fixed crossover rate; this operation is
performed 0.5 as many times as there are chromosomes in the
population. The mutation operator runs through the genes in each
of the chromosomes in the population and mutates them in
statistical accordance to the given mutation rate (0.1). Mutated
chromosomes are then added to the list of candidate chromosomes
destined for the natural selection process.

EXPERIMENTAL RESULTS

Our implementation has been written in the ECL

i
PS

e

Solver version 5.10. Tests have been performed on a
2.33 GHZ Intel Core2 Duo with 2GB RAM running
Windows XP. The stop criterion is 65535 steps for each
experiment and the problems used were the following:

-N-queens (NQ) -10 linear equations (10-Equation)
-Magic Squares (MS) -20 linear equations (20-Equation)
-Sudoku -Knight’s tour (Knight)

Tables 4 and 5 present the results measured in terms of
number of backtracks, Tables 6 and 7 present the results
in terms of number of visited nodes, and Tables 8 and 9
show the runtimes. For the evaluations, we consider 8
enumeration strategies (F+ID, AMRV + ID, MRV + ID, O
+ ID, F + IDM, AMRV + IDM, MRV + IDM, and O + IDM),
a random selection, and our autonomous search (AS)
approach. Let us note that the portfolio of AS is
composed of the same eight strategies mentioned earlier.
Results show that the AS approach gain very good
position in the global ranking. It is the best in several
cases, for instance in almost all instances of the N-
Queens problem (n=8, 20, 50, 75), in both instances of
the magic squares, in Equation 10, and in the Knight
problem (n=6). Considering only backtracks, the AS
approach is also the best one for the Sudoku, and
considering visited nodes, it takes the second place by a
short difference w.r.t. F+IDM. Tables 8 and 9 depict the
runtimes for the benchmarks. We include them in order to
illustrate the expected overhead of using the choice
function.

3374 Int. J. Phys. Sci.

Table 4. Number of backtracks solving different instances of the N-Queens problem with different strategies.

Strategy NQ (n=8) NQ (n=10) NQ (n=12) NQ (n=15) NQ (n=20) NQ (n=50) NQ (n=75)

F + ID 10 6 15 73 10026 >27406 >26979

AMRV + ID 11 12 11 808 2539 >39232 >36672

MRV + ID 10 4 16 1 11 177 818

O+ID 10 6 15 73 10026 >26405 >26323

F+IDM 10 6 15 73 10026 >27406 >26979

AMRV + IDM 11 12 11 808 2539 >39232 >36672

MRV+ IDM 10 4 16 1 11 177 818

O+IDM 10 6 15 73 10026 >26405 >26323

Random 5 8 18 98 32 >32718 >32973

AS 4 6 4 73 0 7 74

Table 5. Number of backtracks solving Eq-10, Eq-20, Magic Squares, Sudoku, and the Knight problem with
different strategies.

Strategy Eq-10 Eq-20 MS (n=4) MS (n=5) Sudoku Knight (n=5) Knight (n=6)

F + ID 3 3 12 910 18 767 >19818

AMRV + ID 5 1 1191 >46675 10439 >42889 >43098

MRV + ID 4 3 3 185 4 767 >19818

O+ID 3 3 10 5231 18 >18838 >19716

F+IDM 10 5 51 >46299 2 767 >19818

AMRV +IDM 8 3 42 >44157 6541 >42889 >43098

MRV+ IDM 3 8 97 >29416 9 767 >19818

O + IDM 10 5 29 >21847 2 >18840 >19716

Random 4 5 17 >39742 250 >40022 >35336

AS 3 3 0 7 2 8190 4105

Table 6. Number of visited nodes solving different instances of the N-Queens problem with different strategies.

Strategy NQ (n=8) NQ (n=10) NQ (n=12) NQ (n=15) NQ (n=20) NQ (n=50) NQ (n=75)

F + ID 24 19 43 166 23893 >65535 >65535

AMRV + ID 21 25 30 1395 4331 >65535 >65535

MRV + ID 25 16 45 17 51 591 2345

O+ID 25 19 46 169 24308 >65535 >65535

F+IDM 24 19 43 166 23893 >65535 >65535

AMRV + IDM 21 25 30 1395 4331 >65535 >65535

MRV+ IDM 25 16 45 17 51 591 2345

O+IDM 25 19 46 169 24308 >65535 >65535

Random 15 23 41 205 78 >65535 >65535

AS 14 22 18 169 20 66 296

For instance, for smaller instances of the N-queens
problem (n=8, 10, 12, 15) as well as for the Sudoku and
Magic Squares (n=4) the overhead is nearly 2 s w.r.t. the
average runtime, which is around 0 s. We estimate that
such an overhead is reasonable, considering the strong
work done by the choice function. For harder problems,
the overhead begins to be less relevant, for instance for

20-Queens, the AS runtime is 7 s slower than the best
runtime, but about 15 s faster than four strategies (F+ID,
O+ID, F+IDM, and O+IDM). For the Knight problem
(n=5), five of ten strategies solve the problem before the
stop criterion, AS is one of them, being only about 5 s
slower than the best runtime. For the Magic Squares
(n=5), only four strategies are able to solve the problem,

Crawford et al. 3375

Table 7. Number of visited nodes solving eq-10, eq-20, Magic Squares, Sudoku, and the Knight problem with different
strategies.

Strategy Eq-10 Eq-20 MS (n=4) MS (n=5) Sudoku Knight (n=5) Knight (n=6)

F + ID 12 11 37 1901 158 3113 >65535

AMRV + ID 14 8 1826 >65535 30139 >65535 >65535

MRV + ID 12 11 22 546 76 3113 >65535

O+ID 12 11 31 13364 196 >65535 >65535

F+IDM 19 13 110 >65535 58 3113 >65535

AMRV + IDM 17 11 69 >65535 19550 >65535 >65535

MRV+ IDM 10 17 230 >65535 153 3113 >65535

O+IDM 19 13 61 >65535 62 >65535 >65535

Random 13 13 47 >65535 1019 >65535 >65535

AS 10 11 16 40 61 28643 16840

Table 8. Runtimes in seconds for different instances of the N-Queens problem with different strategies.

Strategy NQ (n=8) NQ (n=10) NQ (n=12) NQ (n=15) NQ (n=20) NQ (n=50) NQ (n=75)

F + ID 0 0 0.031 0.109 23.468 t.o. t.o.

AMRV + ID 0 0 0.015 1.625 8.391 t.o. t.o.

MRV + ID 0.016 0 0.016 0.015 0.031 1.031 8.562

O+ID 0.016 0 0.015 0.109 23.109 t.o. t.o.

F+IDM 0 0.015 0.016 0.109 22.922 t.o. t.o.

AMRV + IDM 0 0.015 0.015 1.609 8.328 t.o. t.o.

MRV+ IDM 0.016 0.015 0.015 0 0.031 1.031 8.579

O+IDM 0 0 0.016 0.094 22.875 t.o. t.o.

Random 0.0063 0.083 0.0306 0.3739 5.1619 t.o. t.o.

AS 1.89 1.89 1.89 2.485 7.875 24.343 49.859

Table 9. Runtimes in seconds for eq-10, eq-20, Magic Squares, Sudoku, and the Knight problem with different
strategies.

Strategy Eq-10 Eq-20 MS (n=4) MS (n=5) Sudoku Knight (n=5) Knight (n=6)

F + ID 0.219 0.016 0.015 2.437 0.063 2.985 t.o.

AMRV + ID 0.016 0.016 3.781 t.o. 34.735 t.o. t.o.

MRV + ID 0.016 0.015 0.015 0.516 0.016 2.61 t.o.

O+ID 0.016 0.031 0.046 9.344 0.11 t.o. t.o.

F+IDM 0.031 0.031 0.141 t.o. 0.015 2.578 t.o.

AMRV + IDM 0.015 0.032 0.062 t.o. 22.953 t.o. t.o.

MRV+ IDM 0 0.031 0.156 t.o. 0.063 2.594 t.o.

O+IDM 0.031 0.031 0.063 t.o. 0.015 t.o. t.o.

Random 0.021 0.021 0.0568 t.o. 0.3041 t.o. t.o.

AS 3.687 5.375 2.203 2.875 18.328 7.422 114.906

being the AS approach the third best runtime. For 50-
Queens and 75-Queens,
AS is one of the only three strategies that solve the

problem before the stop criterion. Finally, AS is the unique
strategy that solves the Knight problem with n=6, and as
a consequence the only one that solves the complete set

of problems.

CONCLUSION

In this work, we have presented an extensible AS

3376 Int. J. Phys. Sci.

framework for CP. Based on a set of indicators; our
approach measures the resolution process state to allow
the replacement of strategies exhibiting poor perfor-
mances. A main element of the architecture is the choice
function, which is responsible for determining the quality
of strategies. The choice function is calculated based
upon a set of indicators and control parameters, while the
adjustment of parameters is handled by a genetic
algorithm.

We have applied our approach to solve different CSPs,
the results demonstrate that in several cases the dynamic
selection outperforms the use of classic enumeration
strategies. The framework introduced here is ongoing
work, and we believe there is a considerable scope for
future work, for instance, the addition of new combination
of enumeration strategies, analysis of the control para-
meters, as well as the study of new statistical methods for
improving the choice function.

REFERENCES

Barták R, Rudová H (2005). Limited assignments: A new cutoff strategy

for incomplete depth-first search. In Proceedings of the 20th ACM
Symposium on Appl. Comput., (SAC), pp. 388–392.

Beck JC, Prosser P, Wallace RJ (2004a). Trying again to fail-first. In
Workshop on Constraint Solving and Constraint Logic Programming
(CSCLP), volume 3419 of Lecture Notes in Comput. Sci., pp. 41–55.
Springer.

Beck JC, Prosser P, Wallace RJ (2004b). Variable ordering heuristics
show promise. In Proceedings of the 10th International Conference
on Principles and Practice of Constraint Programming (CP), volume
3258 of Lecture Notes in Comput. Sci., pp. 711–715.

Boussemart F, Hemery F, Lecoutre C, Sais L (2004). Boosting
systematic search by weighting constraints. In Proceedings of the
16th Eureopean Conf. Artif. Intell., (ECAI), 146–150. IOS Press,
2004.

Chenouard R, Granvilliers L, Sebastian P (2009). Search heuristics for
constraint- aided embodiment design. AI EDAM. 23(2):175–195.

Epstein SL, Freuder E, Wallace RJ (2005). Learning to support

Constraint Programmers. Computa. Intell., 21(4): 336-371.
Grimes D, Wallace RJ (2007). Learning to identify global bottlenecks in

constraint satisfaction search. In Proceedings of the Twentieth Int.
Florida Artif. Intell. Res. Society (FLAIRS) Conference, pp. 592–597.
AAAI Press.

Hamadi Y, Monfroy E, Saubion F (2011). Autonomous Search. Springer,
2011. To appear.

Nannen V, Smit SK, Eiben AE (2008), Costs and Benefits of Tuning
Parameters of Evolutionary Algorithms. In Proceedings of the 10th
Conference on Parallel Problem Solving from Nature (PPSN), volume
5199 of Lecture Notes in Comput. Sci., pp. 528-538. Springer.

Rossi F (2006). Handbook of Constraint Programming. Elsevier, 2006.
Sadeh NM, Fox MS (1996). Variable and value ordering heuristics for

the job shop scheduling constraint satisfaction problem. Artif. Intell.,
86(1):1–41.

Schimpf J, Shen K (2010). ECLiPSe - from LP to CLP. To appear in
Theory and Practice of Logic Programming - Special issue on Prolog
systems, Preprint arXiv:1012.4240v1.

Smith SF, Cheng C (1993). Slack-based heuristics for constraint
satisfaction scheduling. In Proceedings of the Eleventh National
Conference on Artif. Intell. (AAAI), pp. 139–144.

Soubeiga E (2009). Development and Application of Hyperheuristics to
Personnel Scheduling. PhD thesis, University of Nottingham Sch.
Comput. Sci.,

Sturdy P (2003). Learning good variable orderings. In Proceedings of
the 9th International Conference on Principles and Practice of
Constraint Programming, volume 2833 of Lecture Notes in Comput.
Sci., 997. Springer.

Wallace RJ, Grimes D (2008). Experimental studies of variable selection
strategies based on constraint weights. J. Algorithms, 63(1-3):114–
129.

