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LOCAL PROJECTION STABILIZATION FOR INCOMPRESSIBLE FLOWS:
EQUAL-ORDER VS. INF-SUP STABLE INTERPOLATION*

G. LUBE', G. RAPINT, AND J. LOWET

Abstract. A standard approach to the non-stationary, incompressible Navier-Stokes model is to split the problem
into linearized auxiliary problems of Oseen type. In this paper, a unified numerical analysis for finite element
discretizations using the local projection stabilization method with either equal-order or inf-sup stable velocity-
pressure pairs in the case of continuous pressure approximation is presented. Moreover, a careful comparison of
both variants is given.
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1. Introduction. Consider the non-stationary incompressible Navier-Stokes model

0tu—1/Au+(u-V)u+Vp:f inQ x (0,7),
V-u=0 inQ x (0,T),

for velocity u and pressure p in a bounded domain 2 C R%, d = 2,3. A usual approach
is to semi-discretize in time first with an A-stable implicit scheme [17]. In each time step,
the resulting problems can be solved via a fixed-point or Newton-type scheme [17, 22]. This
leads to auxiliary problems of Oseen type

(1.1) Los(u,p) :=—vAu+(b-V)u+ou+Vp=f inQ,
(1.2) V-u=0 inQ,

with a new right-hand side f € [L?(2)]%, with coefficients b € [H1(Q) N L>°(Q)]¢, and
o > 0 (stemming from time discretization).

The Galerkin approximation of (1.1), (1.2) may suffer from two problems: violation of
the discrete inf-sup (or BabusSka-Brezzi) stability condition and dominating advection, i.e.,
v L ||b||[Loo(Q)]d. The traditional way to cope with both problems in a common frame-
work is the combination of the streamline-upwind/Petrov-Galerkin method (SUPG) [7] and
the pressure-stabilization/Petrov-Galerkin method (PSPG) [18]. An overview about residual
stabilized methods can be found in [5, 24]. More recent results for h-p finite elements are
proven in [20].

This class of residual based stabilization techniques is still quite popular, since they are
robust and easy to implement. Nevertheless, they have severe drawbacks which mainly stem
from the strong coupling between velocity and pressure in the stabilization terms [5]. There-
fore, other stabilization techniques have appeared recently, in particular the edge-stabilization
method [5, 8] and variational multiscale (VMS) methods [9, 13, 15, 16]. We emphasize that
almost all stabilization methods can be interpreted as special VMS methods. The key idea
of VMS methods is a separation of scales: large scales, small scales, and unresolved scales.
The influence of the unresolved scales on the other scales has to be modeled. Mostly, it is
assumed that the unresolved scales do not influence the large scales.
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Currently, there are two variants to apply VMS methods to the full Navier-Stokes model.
In most papers, an equal-order interpolation of velocity-pressure is applied; see, e.g., [2, 9].
Besides the rather simple implementation into existing codes, a formal reason is appearantly
that in the Euler limit » — 0 no second-order derivatives occur. Other authors prefer discrete
inf-sup stable velocity-pressure pairs [16] as this is the “natural” choice from regularity point
of view for fixed v > 0. A comparison of both approaches is still missing.

Local projection stabilization (LPS) as special VMS-type methods are of current interest
[4, 21]. Here the influence of the unresolved scales on the small scales is modeled by addi-
tional artificial diffusion terms for the small scales. In particular, the sub-grid viscosity model
[14] can be interpreted as a special LPS method. In Section 3 of this paper, we present a uni-
fied theory of LPS methods for equal-order and inf-sup stable pairs in the case of continuous
pressure approximation. In Section 4, a comparison of both variants is given with respect to
theory and simple numerical experiments.

Throughout this paper, the standard notation || - ||, for the norm in the Sobolev spaces
H*(G) = W*2(GQ),G C Q are used. The L2-inner product in a domain G is denoted by
(*s+)g- The norm in L*°(G) is denoted by || - || g (). For G = , the index is eventually
omitted.

2. Variational formulation and stabilization. Here, the basic Galerkin finite element
formulation and its stabilized variants via local projection (LPS) are introduced. Moreover,
different technical tools are given.

2.1. Basic Galerkin approximation. The basic variational formulation for the Oseen
problem (1.1), (1.2) with homogeneous Dirichlet data reads: Find U = (u,p) € V x Q :=
[H ()] x LE(Q), such that

(21) (VV’U,,V’U)Q + ((b . V)U + O'U,’IJ)Q - (p7v . U)Q + (Q7 V- U)Q = (faU)Q
——

~ J

::AE;J,V) =:L(V)

foralV = (v,q) € V x Q.

ASSUMPTION 2.1. Let Q C R¢,d € {2, 3}, be a bounded, polyhedral domain. More-
over, assume that v € L>®(2) with v > 0in Q, f € [L2(Q)]%, b € [L>®(Q) N H1(Q)]¢ with
V-b=0a.e. in Q and constant & > 0.

REMARK 2.2. Usually, b is a finite element solution of the Oseen equation. In particular,
there holds (V - b,q) = 0 for certain test functions gp. Therefore V - b is small but does
not vanish in general. A remedy for iterative methods within a Navier-Stokes simulation is to
replace ((b - V)u,v)a by 3((b- V)u,v)a — 3((b- V)v,u)a — :((V - b)u, v)a.

REMARK 2.3. It is possible to extend the analysis in this paper to a situation result-
ing from Newton iteration including the term (w - V)b. A small time step, resulting in a
sufficiently large o > 2||Vb||(e(q))axe, ensures coercivity of the Oseen operator since
(cu, u)o + ((u- V)b,u)a > (0 = [|Vbl|(r=(oyaxa) lullf > ollull3.

We consider a shape-regular, admissible decomposition 75 of €2 into d-dimensional sim-
plices, quadrilaterals in the two-dimensional case or hexahedra for three dimensions. Let hp
be the diameter of a cell T € T}, and h be the maximum of all Ay, T € T. Let T be a
reference element of the decomposition 7.

We set

Py,7,, = {vn € L*(Q) | vp|r o Fr € Py(T) ,T € Ta},
where Py, (T) is the space of all polynomials of degree k defined on T, and
Qk,Th = {’Uh S Lz(Q) | ’Uh|T oFr e Qk(T) , T € 771},
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with Q (T) the space of all polynomials on T with maximal degree k in each coordinate
direction. The finite element space of the velocity is given by V1, = [Qku,frh]d NV or
Vi, = [Pku,’rh]d NV with scalar components Y7, j, of Vi, ..

For simplicity, we restrict the analysis to continuous discrete pressure spaces Qp .k, =
Q ky, 72 NC(Q) or Qpk, = Pr, 7, NC (). For an extension to discontinuous pressure spaces,
we refer to [23].

The subsequent numerical analysis takes advantage of the inverse inequality

(2.2) H,Uz'n'u | |U|1,T < Hinvkgh;}“"]”O,T; VT € 771; Yoy, € Vh,k,u

and of the interpolation properties of the finite element space V.. For the Scott-Zhang
quasi-interpolant operator Iy, [26, 1], one obtains for v € H{(Q) N HY(Q), t > & with
Vlwy € H"(wr), 7 > ¢, on the patches wr := Ugrngzg T',

l-m

h
23) 3C>0| |v=TI g 0llmr < CE 0llrwr, 0<m <1=min(k, +1,r).

kT'fm
U

This property can be extended to the vector-valued case with I'}; , : V' — V. Similarly, an
interpolation operator I ﬁ’ k satisfying (2.3) can be defined for the pressure.

2.2. Local projection stabilization (LPS). The idea of LPS-methods is to split the dis-
crete function spaces into small and large scales and to add stabilization terms of diffusion-
type acting only on the small scales. Consider two obvious choices of the large scale space:

(1) The first variant [4, 6, 21] is to determine the large scales with the help of a coarse
mesh. The coarse mesh M}y = {M;};cr is constructed by coarsening the basic mesh Tp,
such that each macro element M € M}, with diameter hps is the union of one or more
neighboring cells T € Tp,. Assume that the decomposition My, of €2 is non-overlapping and
shape-regular. Moreover, the interior cells are supposed to be of the same size as the macro
cell:

(2.4) AC >0| hy <Chr, VYT € Th,M € My, withT C M.

Following the approach in [21] we define the discrete space D}, for the velocity as a dis-
continuous finite element space defined on the macro partition M. The restriction on a
macro-element M € My, is denoted by D}'(M) := {vs|m | v, € D)}

The next ingredient is a local projection 7%, : L*(M) — D¥(M), which defines the
global projection ¥ : L*(Q) — D¥ by (7v)|am := 7% (v|ar) for all M € My, Denoting
the identity on L?(f2) by id, the associated fluctuation operator k¥ : L?(Q) — L*(f) is
defined by s; := 4d — 7. These operators are applied to vector-valued functions in a
component-wise manner. This is indicated by boldface notation, e.g., w¥ : [L2(Q)]¢ —
Dy} and s : [L2(Q)]F = [L(Q)]".

(ii) The second choice [10, 21] consists of choosing a finite element discretization D}’ of
lower order on the original mesh 7} or by enriching the spaces V' 1, and Qh,kp. The same
abstract framework as in the first approach can be used by setting My = Tp,.

Analogously a discrete space D} and a fluctuation operator «} can be defined. The
stabilized discrete formulation reads: find Uy, = (up,pr) € Vg, X thkp, such that

(2.5 A(Un, Vo) + Sn(Un, Vi) = L(Vh),  YVh = (vh;qn) € Vhk, X Qhkys

where the additional stabilization term is given by

Su(Un, Vi) == > [rar(ik (b Vyun) 85 (5 V)ow) It
MeMy,

@6) a6l (V) 68 (Y on))ar + g (<5(Vpn), 68 (Van)) g |-
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REMARK 2.4. Another variant is to replace the first right-hand side term of Sy, (-, ) by

> dm(kl (Vun) , &5 (VOr)) s

MeMy,

see the corresponding result in Remark 3.9.

The constants Ty, ftar, car, and dpr will be determined later, based on an a priori esti-
mate. Notice that the stabilization Sy, (-, -) acts solely on the small scales. Of course, there are
some more degrees of freedom in the choice of Sy; see also [4, 21].

In order to control the consistency error of the x}-dependent stabilization terms, the
space D} has to be large enough; more precisely we assume the following.

ASSUMPTION 2.5. The fluctuation operator 7} satisfies, for 0 <1 < k,, the following
approximation property:

@7 3C.>0]  |kgdl

hl
0,M < an—jlv[|q|l,M, Vq S HI(M), VM € M,,.

Due to the consistency of the /cﬁ -dependent stabilization term, thus involving the space
Dﬁ, we do not need such a condition for Dﬁ. In Section 3.5 several choices for the dis-
crete spaces will be presented. For the analysis, the following properties of the stabilization
term (2.6) are required.

LEMMA 2.6. There holds for all U,V € V x [Q N H(Q)]

(2.8) (i) |SK(U, V)| < Sp(U,U)? Sp(V, V)3,
(2.9) (it) Sp(U,U) > 0,
Q10) (i) Sy(0.0) < Csfult + €2 (jmax ane ) I, U= (w.p),

with Cs := C2 maxyre m,, [TM||b||%L°°(M))d + [LM].
Proof. Property (ii) is trivial and (i) follows from the Cauchy-Schwarz inequality. In-
equality (iii) can be derived from

Sw(U,U) < C; Z [TM“b”?Leo(M))dWﬁ,M + pluli ar +amlpli |
MeMy,

using Assumption 2.5 with [ = 0 for the fluctuation operator. d

2.3. Special interpolation operator. Following [21], we construct a special interpolant
J¥: HY(Q) — Y}, for the velocity, such that the error v — j{v is L?-orthogonal to D¥ for all
v € H}(Q). In order to conserve the standard approximation properties, let us suppose the
following.

ASSUMPTION 2.7. There exists a constant 3,, > 0 (possibly depending on k), such that

@.11) inf sup  —Om@M g g

WED} o, Yy, (M) |[Vnllo,a1lgnllo, ae

where Yh,ku (M) = {’Uh|M | Vp € Yh,kuavh =0on \ M}

REMARK 2.8. The space D} must not be too rich, since the inf-sup condition (2.11)
has to be satisfied. On the other hand, D} must be rich enough to fulfill the approximation
property (2.7) . Later on, we will present several function spaces D}’ which satisfy (2.11).
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In the following, we use the notation a < b, if there exists a constant C' > 0 independent
of all relevant sizes, such as mesh size, polynomial degree or coefficients, such that a < Cb.

LEMMA 2.9. Let Assumption 2.7 be satisfied. Then there are interpolation operators
JEHy(Q) = Yy and §y - V — Vg, such that

(2.12) (v—jiv,qn)e =0, Van € D},Vv € Hy(Q),
. h . 1\ A
@13) o= jtvllowr + 5o —divlm S {1+ 2 ) 22 0lltwns
k2 Bu) K,

forallv € HY(Q) N HY(Q) and

(214) (U _jZUJIh)Q = 07 th € [Dz]d7 Vv € V7
. h . 1\ A
(2.15) v — g3vlloas + —5- v — givliw S (1+ L {[0]l1 e

forallv € [H{(Q]¢NV, M € My, and1 <1 < ky, + 1. Here wy := Urcywrisa
neighborhood of M € My,

For better readability, we put the proof in the Appendix. Analogously, a corresponding
result can be proved for the pressure.

LEMMA 2.10. Suppose that there exists a constant 3, > 0 (possibly depending on ky),
such that

(2.16) inf  sup (vn, gn) or

anE€DE v e@n uy (M) lVnllo.arllanllone = 7

Then there exists an interpolation operator jy : Q — Qh,k,» such that

(217) (U - jﬁ”;Qh)Q = 07 th € DZ;

hy 1

. . ht
@18) 1o = ol + 5o = vhow < (1+5) Bl Yo € Q)

REMARK 2.11. The estimates of Lemmas 2.9 and 2.10 are optimal with respect to has.
The estimates in the norm | - |1, as are seemingly sub-optimal regarding to k,, and k.

3. A priori analysis. The next goal is an error estimate for the scheme (2.5). Therefore,
further assumptions on the finite element spaces V', .., Dp k., , Qh,kp and Dy, , are required.

3.1. Stability. First, the stability of the scheme will be shown. The standard approach
is to provide this in the mesh-dependent norm

1
2

V== (VI +6llali2)? . |[V]? = w2 Voll2 + [lo 2|3 + Sh(V, V),

for V. = (v,q) € V x @ with suitable § > 0. Here we prefer a separated approach for
velocity and pressure by using first the |[]| semi-norm and then a post-processing argument
for the pressure.

LEMMA 3.1. The following a-priori estimate is valid

3.1) [[v2 Va2 + [lo 2 unl < [[Un]]? < (f, un)a-

Hence, uniqueness and existence of up, € V p i, in the scheme (2.5) follows.
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Proof. Integration by parts yields ((b - V)up, up)o = —3((V - b)uy, up)e = 0, and
therefore

(32 (A+SK)(Un,Up) = 2 V|2 + lloFunl2 + Su(Un, Un) = |[Un][-

This implies (3.1), hence uniqueness and existence of the discrete velocity field up € Vi,
of the scheme (2.5). a

The corresponding result for the pressure pp, € Qg , follows from Lemma 3.2 and
Lemma 3.1. Here, we use the notation vo, = [|v|| (), o = infg v(2), beo = [[b]|(L(0))a-

LEMMA 3.2. There exists a constant v > 0 dependent on the continuous inf-sup constant
[ and on the polynomial degree k., but independent of the mesh size h, such that

Cpbs 1
G lnllo <9 (V7o + VOra + 724 /Cs 4 Cr) [Uhl] + 511fll,

1]

where Cs = C? maxprem, I:TM”b”%Loo(M))d + HM] and Ct = 5 max s kC\/hi Cp is
the constant in the Poincaré inequality.

Proof. Using the closed range theorem, the continuous inf-sup condition yields the exis-
tence of v € [H} ()]¢ with V-v = —pp, and |v]; < %th”o. We set vy, := jyv. Lemma 2.9
together with the triangle inequality imply

oale < ol +C(1+ 2 )halols < 51+ C(1+ 2 )] lnlle == Callonlo

1
Bu B Bu

Consider now

3
(B4 (f,vn)a = (A+ Sp)(Un, (v4,0)) = —(pn, V- v)o — > Ti = [Ipalls — ZTu

i=1

with terms 7T given below. Standard inequalities and integration by parts imply

T = (I/V’u,h,V’Uh)Q (U’Ll,h,’vh)g + ((b . V)uh,vh)g

Crbee ) (b Tunll + Ivzunl?) [onk

VvV + 02

Cpbs

Vo +oC%

1
where C'p stems from the Poincaré inequality ||vp||lo < C3|vp|1. Lemma 2.6 gives

+ +

)CallUA] Ipall.

Ty = Sp(Un, (0n,0)) < Sh(Un, Up)2 Sp((vp,0), (vp,0))2
<VCs |[U]] lvnl < V/CsCa |[UR]] llpallo-

Integration by parts (for continuous discrete pressure space) and Lemma 2.9 yield

T3 = |(V - (vh —v),pn)al = |(vh — v, Vpr)a| = [(vn — v, 6, VPr)al
h

02 hay : 1 M
5( k2a | |1M> [[Un]] < Emﬁmx o

2

|[Uh]| llpllo-
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Furthermore, there holds (—f,v4)a < ||f||-1|vs|1 with the norm || - ||_; in [H~1(Q)]%.
Using all these estimates, we obtain from (3.4),

Cpbs

(3.5 lipnllo < (Ca|vim +VCro+ —=222— + /Cs| + Cr ) [Tl + Callfl|-1,
v+ 0C%h

where C := %max kc\/h% a

3.2. Approximate Galerkin orthogonality. In LPS methods the Galerkin orthogonal-
ity is not fulfilled and a careful analysis of the consistency error has to be done.

LEMMA 3.3. LetU € V x Q and U, € Vg, X Qh,, be the solutions of (2.1) and of
(2.5), respectively. Then, there holds

3.6) (A + Sh)(U — Uh,Vh) = Sh(U, Vh), YV, € Vik, X Qh,kp-

Proof. The assertion (3.6) follows by subtracting (2.5) from (2.1). a

Now the consistency error can be estimated with the help of Lemma 2.6.

LEMMA 3.4. Let Assumption 2.5 be fulfilled and (u,p) € V x Q with (b-V)u €
(H=*Y (M), V-u = 0, p € H» (M) for all M € My. Then, we obtain for
0 <lu,lp <ku,

h2lu h2lp 1
6D ISV (X B0 Vul o+ v 31l ) VA
MeMy u k

Proof. Lemma 2.6 yields
Su(U, Vi) < Sh(U,U)2Sh(Vi, Vi) ® < Sh(U,U)%[[Vi]|-

Assumption 2.5 and V - 4 = 0 imply

21 2lp
Z Tngl (b- V)“|l M oM o |p|z +1,M-
MeM kp*
Now the assertion follows from these estimates. O

3.3. A priori error estimate. The a priori estimate can be shown by using the standard
technique of combining the stability and the consistency results of the last subsections.

THEOREM 3.5. Let U = (u,p) € V x Q be the continuous solution of (2.1) and
U = (un,pr) € Vg, X Qh,kp the discrete solution of (2.5). We assume that the solution
U = (u,p) € V x Q is sufficiently regular, i.e., p € H'»T1(Q), u € [H“11(Q)]%, and
(b-V)u € [H"(Q)]% Furthermore, let the Assumptions 2.5 and 2.7 for the coarse velocity
space D} be satisfied. For the space DY we assume that (2.16) is satisfied. Then, there holds
forl <l, <kyandl <l, <min{k,, k,},

38) W-UPs ¥ (TMH—J‘{HII(b-V)uIIi,wM
MeMy, u

142 h%[ 1y? h?\/flp i 2
+(1+,8_u) 2= i Chrllullz, +1wM+(1+ﬂ_p) WCMHPH’P“’“’M)’
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where
2

h 1 1

CY = vl g My =y — b2, :

R = Wllman + 3400+ 2o ) i+ Bl ayyean
1 13

Cch i=ay+—-M.

M M Yy kg

Proof. The error is split into two parts

U—Uy=(u—upp—pr) = u—jru,p—jip) + (Gru — un, jip — pn)-

We start with the approximation error (u — jru,p — j7p). Lemma 2.9 (i) and Lemma 2.10
yield

N[

1 B3l 3
3G9 w=giup-ifpl S (1+ ) (X Samllpll 1.
Bp Memy, kp?
1 h3 3
(14 5) (5 [Wlamany + 0L+ mar + 7aa bl o] ot Il 1)
u u

MeMy,

Now we estimate the remaining part W, := (w, ) = (Ju—un, j,p—ps) viaLemma 3.1,

(4 + Sp)((Fhw — wn, j5p — Pr) Wh)

[(Ghwe = wn, jip — pa)ll =

[[Wh]|
_ (A+ Sn)((w = un,p — pn), Wh) 4 (A + Sk)((Fhu — u,jpp —p), Wh)
(W]l ) R W]l B
=TI =:IT

Applying Lemmas 3.3 and 3.4, the first term is bounded by

3y 2 h?\xflp 2 2
gt - Dl e+ a3 1Pl +1,00) "
u P

I = Sh((uap)awh) 5 Z
Wl P
Now we consider the terms of I] separately. Integration by parts and property (2.14) yield
¥V (Fhu —u), Vwr)a + (0(Ghu — u),wr)o + ((b- V)([Fru —u), wr)q
= (WV(jru —u), Vwn)a + (0(Jhu —u), wr)e — (k((b- V)ws), jru —u)g

1 hy 1, h3 H
) Ttk [lieian + (0 + ) ]l 100) 0730
h

The orthogonality property (2.14) results in

|(p = 4kp, V - wn)al = [(p— jyp, 6,V - wha)al

1 hzlp-i-z %
5(1+B_)( P ==Tevd 1 AR N LA
PT T MeM, kp

Integration by parts (due to continuous discrete pressure) and (2.14) lead to

G.10)  |(rn, V- (Fhu — w))al < |[(Vrr, dru —u)a| = [k5(Vra), jhu — u)ol

1 1 Rt 3
SO+ (2 A, o
o M;Mham%’“” it ) W]l
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The estimation of the stabilization term is straightforward

|Sh((Fru —u,jhp — p), Wh)
< (Sh((Fru —w,jhp —p), (Gru —u, jip — p))

s (1 ;u)( 2 kg;l_z [l1Blze anye + suae] Il 1 WM)%”W””

S

(Sh (Wi, Wh))?

MeMy,
1 Rl 3
+(1 + ﬂ_) ( Z OtMm“P”lerl,wM) [[Wh]]-
PT T Memy, kp

Adding up all inequalities for the estimate of |[W}]|> = I + I together with the estimate of
(3.9) gives the assertion. a

CORROLARY 3.6. Under the assumptions of Theorem 3.5 and the notation of Lemma 3.2,
we obtain

1

v o et

@10 o=l S (Vs +v/Cro +min (T2 e s on) -l

with constants vy, Cg, Ct and 3 as in Lemma 3.2.
Proof. The proof mimics the proof of Lemma 3.2. In equation (3.4), one has to replace
Un = (un; pn) by U =Up = (u —un, p—pp) and (f,vn)a by Sp(U = Us, (j4v,0)). O

3.4. Parameter design. Now we will calibrate the stabilization parameters s, Tars,
and pps with respect to the local mesh size hys, the polynomial degrees k,, and k, of the
discrete ansatz functions and problem data. The parameters are determined by minimizing
and balancing the terms of the right-hand side of the general a priori error estimation.

First, equilibrating the 7p7-dependent terms in C'y, yields

hp

(3.12) o~ M
6]l Loo (a2 k2

Similarly, equilibration of the terms in C¥, and C%, involving p5s and aps yields

plo—lutl plu—tot1
M M
(313) lj,M ~ klp*lu+2’ apr ~ klu*lp+27

where we used k ~ k,, ~ k,. For the following result, we assume that the solution (u, p) of
the continuous Oseen problem is sufficiently smooth.

CORROLARY 3.7. For equal-order interpolationk =k, =k, > 1, letl =1, =1, <k
and

p,oh,M OtohM TohM
14 = TR ~ bl aryak®”
(3.14) PME T T T bl (e k2

Then we obtain, under assumptions of Theorem 3.5,

th—‘,—l h2l+1 b

|[U—Uh]|2§ Z ((1+ﬂ) R ||p||l+1wM k.2l+2||(

Mem 1Bl (o0 (1)

V)ulli

1 h2 hM h2l
+(1+ﬂ_) [||I/||Loo(M) toor o+ 1Bl (ary)a 72 | ;2 i |[ullis, wM)
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For inf-sup stable interpolation with k,, = k, + 1, we assume l,, = l, + 1 = k,, and set

aoh3, 1o Tohum
(3.15) oy = , L L0\ S—
M= MM TR ™M T ] e aryye K2

Then we obtain, under assumptions of Theorem 3.5,

112 h2l h2l utl b
U-U 2 < 1+ — wu T
v -vl s 3 (14 5) bl + 21 =y

VUl s

1 h2, hy 17 h3
+(1+ T ) [IIVIIuo(M) toga T blemane gy + | s lulin )’

This result requires some further discussion:
o For equal-order pairs V}, ;, X Qp, , and for (inf-sup stable) Taylor-Hood pairs Vi, g1 X

Qn,x, We obtain the optimal convergence rates (9( 2) and O(h%F), respec-
tively, with respect to hps.

e Due to the non-optimal convergence order of the interpolation operators j}, ji in the
| - |1-norm, these estimates are presumably not optimal with respect to polynomial
degree k,,. Let us assume that in Lemma 2.9 there holds

h . 1 hl
3.16) k—fw—ggvh,M,s( m) B ol

and a similar result in Lemma 2.10 as well. A careful check of the proofs leads to

(3.17) o
) MM = o % M =0 M 0||b||(L°°(Q))dk“

for equal-order pairs with k¥ = k,, = kj, and

2
(3.18) aMzaoh—M, punr = po ~ 1, TMZTOhiM
K, 1] (Lo ()4 ku

for inf-sup stable pairs with k, = k, + 1. Then the a-priori estimate (3.8) in Theo-
rem 3.5 would be optimal with respect to k,, and k,,, too, with the possible exception
of the factors depending on 3, and 3,. The latter reason eventually leads to a non-
optimal parameter design with respect to k.

e The formulas for the stabilization parameters and the error estimates are only asymp-
totic statements. To the best of our knowledge, there is so far no general concept for
a more precise design of the stabilization parameters (with the possible exception of
one-dimensional problems with constant coefficients). Unfortunately, this leaves the
practitioner with the problem of choosing 79, v, ag. Table 4.1 below might give an
indication of suitable values in our experiments for an academic problem.

REMARK 3.8. The SUPG parameter 75, in residual-based stabilization methods has

the typical design 77 ~ min (I ; see [20]. This can be rewritten as

hy L1, h%/[)

(6]l L oo (aryyayku? 07 kv 5l
(B (1.1 Y1) o _ halibllip oo (aryay

TAr ~ min (m min (1; m), % ) with the local Reynolds number Re py = ———4- =2

This means that the design of the SUPG-like parameter 7ps in (3.17)-(3.18) is strongly
simplified for the LPS method due to the symmetric stabilization term Sp. This choice
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will not cause problems for locally vanishing b as the corresponding stabilization term is
> (EE((b - V)uy, &} ((b - V)vi))m. Clearly, a proper implementation is required. In
the Stokes limit b = 0, the SUPG-type stabilization term given above does not occur, hence
T = 0. Regarding the remaining stabilization terms, the PSPG-type term can be omitted
for inf-sup stable elements. As a consequence, no suboptimality occurs in the analysis for the
Stokes limit.

REMARK 3.9. The corresponding result for the LPS scheme with local projection of the
full velocity gradient, see Remark 2.4, leads to the design dpsr ~ har/ ki (or dar ~ har/ky).
Please note that the error estimates deteriorate if the local projection of the divergence terms
is omitted. Then, the critical term in the proof of Theorem 3.5 is |(p — jip, V - wy)q|.

3.5. Choice of the discrete spaces. The paper [21] presents different variants for the
choice of the discrete spaces Vp 1, X Qp,x, and D} x D,’; using simplicial and hexahedral
elements. There are basically two variants:

e A two-level variant with a suitable refinement 7, of M} (formally denoted by
My, = Tan).
e A one-level variant with M} = T, hence hjs = hg, with a proper enrichment of
Py, 7, by using bubble functions.
In the numerical results below, we restrict ourselves to the two-level approach, but the the-
ory also covers the one-level approach. Note that the present analysis covers only the case
of continuous pressure approximation. For an extension to discontinuous discrete pressure
approximation, in particular to the case of Q /P_(;_1)-elements, we refer to [23].

The discontinuous coarse spaces are defined on the coarser mesh M, with polynomials

of one degree less. Thus, for hexahedral elements the coarse spaces are given by

- p_
Dz _Qkufl,th Dh = Qkpfl,Mh'
For simplicial elements we obtain
Dy = Pi, 1,My, D} = Pi, 1M,

Obviously, Assumption 2.5 is valid for our discrete spaces if the local L2-projection 7% :
L*(M) — D¥(M) for the velocity and similarly for the pressure is applied; see [21].
Moreover, for these choices the constants f3,/, in Assumption 2.7 and in (2.16) scale like

O(1/\/kyp) for simplicial elements and like O(1) for quadrilateral elements in the affine
linear case; see [23].

4. Numerical results.

4.1. The Oseen problem. A proper calibration of the stabilization parameters requires
careful numerical experiments going beyond the scope of this paper. Some papers validate
the parameter design and the theoretical convergence rates for the Oseen problem

4.1 Los(u,p) :i= —vAu+(b-V)u+ou+Vp=f in €,
V-u=0 in Q,

where = (0, 1)2, using the smooth solution
w(z1,32) = (sin(rzy), —m22 cos(rzy)), p(x1,x2) = sin(wzy) cos(mxs),

and b = u. The source term f and the Dirichlet data follow from u. We refer to a study in
[25] of the one-level variant for equal-order pairs with enrichment of the velocity space by
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using bubble functions. The two-level variant with inf-sup stable pairs can be found in [19]
for equal-order and for inf-sup stable pairs; for the latter case, see also [23]. In all these cases,
the local L2-projection is used for the definition of the fluctuation operators KZZ/ P,

As an example, some typical results are presented for the two-level variant with Q2/Q1
and the (Q2/Q)» pairs on unstructured, quasi-uniform meshes. More precisely, the coarse
spaces D}, is constructed as discussed in Subsection 2.2. Moreover, we set Dﬁ = {0}, which
results in full grad-div-stab stabilization, i.e., /eﬁ = id. The results in Table 4.1 with the errors
€, = u—uy, and e, = p — py, for the advection-dominated case v = 10~ show comparable
results for the best variants of Q2 /@1 and Q2/Q)2, although the results for Q2 / Q2 are slightly
better due to the better pressure approximation.

TABLE 4.1

Two-level LPS scheme: Comparison of different variants of stabilization for problem (4.1) with Q2/Q1 and
Q2/Q2 pairsandv =108, = 1,h = 2.

64
Pair o Mo g leuls  leullo  [IV-uallo  llepllo

0.000 0.000 0.000 | 2.56E-1 5.42E-4  2.02E-1 2.31E-4
0.056 0.562 0.010 | 1.91E-3 6.21E-6  1.82E-4  9.08E-5
Q2/Q1 || 0.056 0.562 0.000 | 1.91E-3 6.20E-6  1.66E-4 8.06E-5
0.000 0.562 0.000 | 2.61E-3 7.42E-6  1.72E-4 8.05E-5
3.162 0.000 0.000 | 1.87E-2 7.50E-5  1.56E-2 1.08E-4
0.000 0.000 0.000 | 2.38E+1 5.35E-2 1.45E+1  1.66E+3
0.000 0.000 0.018 | 1.65E-2 3.48E-5 9.37E-3 6.96E-6
Q2/Q2 || 0.056 1.000 0.018 | 9.30E-4 2.85E-6 2.14E-4  4.31E-6
0.056 0.000 0.018 | 1.77E-3 4.18E-6  1.46E-3 3.25E-6
0.000 5.623 0.018 | 3.26E-3 7.20E-6  2.00E-4  7.56E-6

Nevertheless, the importance of the stabilization terms is different. The small-scale
SUPG- and PSPG-type terms are necessary for the equal-order case but not for the inf-sup
stable pair. At least the PSPG-type term can be omitted for the inf-sup stable case. On the
other hand, the divergence-stabilization gives clear improvement for the inf-sup stable case
and some improvement for the equal-order case. Let us remark that the divergence stabiliza-
tion without local projection has better algebraic properties than its LPS variant.

In Figure 4.1, convergence plots are shown for the two-level LPS scheme with optimized
parameters in the diffusion- and advection-dominated cases with v = 1 and v = 1075,
respectively. The numerical convergence rates confirm the theoretical results. Interestingly,
no gain of the better pressure approximation for the QQ2/()2 pair can be observed in the
diffusion-dominated case.

Let us finally check the effect of increasing polynomial degree for inf-sup stable Taylor-
Hood pairs Q/Q,—1 withr € {2, 3,4, 5}. This is shown in Figure 4.2 forv = 107%,0 = 1,
and different values of h. Similar results are obtained (but not shown) for equal-order approx-
imation with Q,./Q-elements with r € {1,2,3,4,5}.

4.2. Navier-Stokes problem. Finally, we apply the LPS stabilization to the lid-driven
cavity flow as a standard Navier-Stokes benchmark problem (4.1) with b = u, 0 = 0 and
f = 0. Homogeneous Dirichlet data are prescribed with the exception of the upper part of the
boundary where u = (1,0)7 is given. An unstructured quasi-uniform mesh is used together
with the Taylor-Hood pair (02 /@1 and the equal-order Q2 /()2 pair using the two-level variant
of LPS stabilization with scaling parameter 7o and po according to our theory and a,p = 0. In
particular, the cases 79 = po = 0 correspond to no stabilization.
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FIG. 4.1. h-convergence for the Oseen problem with v = 1 (left) and v = 108 (right) with o = 1.

In Figure 4.3, we present typical solution profiles of the velocity for the case of
Re = 5,000. The results for h = 6%1 for both variants are in excellent agreement with the
reference data in [11], where the stream function-vorticity formulation of the Navier-Stokes
problem on very fine meshes with up to 601 x 601 nodes is used. In particular, the boundary
layers are well resolved even on this quasi-uniform mesh. Moreover, the solution for a coarse
grid with h = % is in good agreement with the data in [11] away from the boundary layers.
The results confirm the previous remarks for the linearized problem of Oseen type. For the
Q)2/@Q1 element, only the divergence stabilization is necessary whereas for the Q2 /@2 pair
all stabilization terms are important.

Then, we compare in Table 4.2 the positions and values of extrema of the velocity profiles
for different values of Re. The results for the two-level LPS scheme with the Q2 /@)1 pair on
the fine mesh with A & 1/256 are in good agreement with the results in [3, 27]. Moreover,
the LPS results on the coarser grid with h & 1/32 are in good agreement with the case
h = 1/256. This is verified in h-convergence studies in [19].

Finally, we compare in Table 4.3 the position (z., y.) of the main vortex and the values
of the streamfunction ¥, and of the vorticity w, in the (z.,y.). for two values of Re. The
results for the two-level LPS scheme with the Q2 /@)1 pair on the fine mesh with h =~ 1/256
are in very good agreement with the results in [3, 11], but slightly different from the results
in [27]. Studies of h-convergence can be found in [19].

5. Summary. A unified a-priori analysis of stabilized methods via local projection (LPS)
is given for equal-order and inf-sup stable velocity-pressure pairs on isotropic meshes. The
error estimates are comparable to classical residual-based stabilized (RBS) methods. This
shows that only stabilization of the fine scales is necessary. Compared to the RBS methods,
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FIG. 4.2. Polynomial convergence for the Oseen problem with v = 109, 0 = 1 for fixed h.
1 . .
o Q2Q1, h=1/16 ||
iz o ———Q2Q1, h=1/64
06 / | f — — —Q2Q2, h=1/64
: | qé O ECG04
/ \ | 0.2
g osf 08 009 g '
8 0 _ 8
g //@/@ %, D(L
: 04 5 j
2 z ~
2 0.9 0.95 1 2 03 /
g 7 S 02 |
£ e £ ~0.4 |
o o® /e/ © N / |
=1 I >
\ 0.4 A [4
-0.4f -05
\ // Q2Q1, h=1/16 |
{ - ——— Q2Qt1, h=1/64 "gp
— - -Q2Q2, h=1/64
) 0. X . 1 ]
W O ECG04 06 09 0.9
05 . . . : . . . .
0.2 0.4 06 08 1 0 0.2 0.4 0.6 0.8 1

y-coordinate, (x = 0.5)

x-coordinate, (y = 0.5)

FIG. 4.3. Lid driven-cavity problem with Re = 5,000: Cross-sections of the discrete solutions for Q2/Q1
pair with 7o = ap = 0 and po = 0.562 and Q2/Q2 pair with 19 = 0.056, ap = 0.018, pp = 1.

the design of the stabilization parameters is much simpler for LPS schemes as the strong
coupling of velocity and pressure in the stabilization terms does not occur.

Numerical results from the literature and our own experiments confirm both, the design
of the stabilization terms and the theoretical convergence rates. A major difference between
equal-order pairs and inf-sup stable pairs is that LPS-stabilization is always necessary for
equal-order pairs. For inf-sup stable pairs, the necessity of stabilization is seemingly much
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TABLE 4.2
Lid driven-cavity problem for different values of Re: Maxima and minima on cross-sections x = 0.5 and
y = 0.5, a) LPS Q2Q1, h = 1/32, b) LPS Q2Q1, h ~ 1/256, ¢) h = 1/256 (in [12]), d) h = 1/256 (in
[27]), e) spectral method with N = 1/160 (in [3]).

Re Umin Ymin Umaz Tmaz Umin Tmin

100 | a) | —0.21399 0.45703 | 0.17951 0.23828 | —0.25376  0.80859
b) | —0.21404 0.45703 | 0.17957 0.23828 | —0.25378 0.80859
d) | —0.21411 0.45898 | 0.17946 0.23633 | —0.25391 0.81055
e) | —0.21404 0.4581 0.17957 0.2370 | —0.25380 0.8104

1000 | a) | —0.38512 0.17578 | 0.37404 0.16016 | —0.52295 0.90625
b) | —0.38857 0.17188 | 0.37692 0.15625 | —0.52701 0.91016
d) | —0.39009 0.16992 | 0.37847 0.15820 | —0.52839 0.90820
e) | —0.38857 0.1717 | 037695 0.1578 | —0.52708 0.9092

7500 | a) | —0.43940 0.07031 | 0.43749 0.07813 | —0.56560 0.96484
b) | —0.45478 0.06250 | 0.45836 0.06641 | —0.58043 0.96484
c) | —0.43590 0.0625 | 0.44030 0.0703 | —0.55216 0.9609
d) | —0.46413 0.06445 | 0.47129 0.06836 | —0.58878 0.96289

TABLE 4.3

Lid driven-cavity problem for different values of Re: Position of center of main vortex and values of stream
Sunction Ui and of vorticity we; a) LPS Q2Q1, h & 1/32, b) LPS Q2Q1, h ~ 1/256, c) h = 1/256 (in
[11]), d) h = 1/256 (in [27]), e) spectral method with N = 1/160 (in [3]).

Re lI’mzn We Zc Ye

1000 | a) | —0.118310 —2.06527 0.5314 0.5676
b) | —0.118936 —2.06772 0.5308 0.5651
c) | —0.118942 —-2.06721 0.5300 0.5650
d) | —0.1193 - 0.5313 0.5664
e) | —0.118937 —2.06775 0.5308 0.5652

7500 | a) | —0.119315 —1.86210 0.5192 0.5293
b) | —0.122386 —1.92691 0.5122 0.5321
c) | —0.122386 —1.92697 0.5133 0.5317
d) | —0.1253 - 0.5177 0.5313

less pronounced as for equal-order pairs. In particular, the grad-div stabilization is much
more important than the fine-scale SUPG stabilization. Moreover, the fine-scale PSPG part
seems to be superfluous.

Appendix.
LEMMA A.1. Let Assumption 2.7 be satisfied. Then there are interpolation operators
JEHY Q) > Yyand gy, - V = Vi, such that

(A.D) (v — v, qn)a = 0 Vg, € DY, Yo € Hy(Q),
) h . 1\ A
A2 o= tollonr + M jo — ol < (1 n —) T e

forallv € H(Q) N HE(Q), and

(A.3) (v —jiv,q;)e =0 Vg, € [D¥]?, Vw € V,
- huv . 1\ A
A o= dtollas+ 2o —gtolus § (145 ) Pl
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forallv e [H(Q)4NV, M € My, and1 <1 < ky, + 1. Here wyr := Urcywrisa
neighborhood of M € Mj,.

Proof. We follow the lines of the proof of [21, Theorem 2.2], but we take into account
the dependency of the constants on the polynomial order and the inf-sup constant 3,,.

Define the linear continuous operator By, : Y, (M) — D} (M)’ by

(Brvh,qn) == (Vn,qn) M, Yoy € Yy (M), qn € Dy(M).

The Closed-Range Theorem yields via Assumption 2.7 that By is an isomorphism from
Wi (M)* onto D} (M) with By|vkllo,pr < | Brvnllpe(ary» v € Wh(M)®, where W, (M)+
is the orthogonal complement of W, (M) := K er(BhSL with respect to (-, ) pr.

Let M € My and v € H}(Q) be arbitrary. Then, there exists a unique z (v, M) €
Wh(M)J‘ with ||Zh(1}, M)” < %UHU — Ih,kuU”O,M’ such that

(A.S5) (Bhzn(v, M), qn) = (2n(v),qn)m = (v — In g, v, qn) M, Vaun € Dy (M).

Now, we define local operators jj ,, : H}(Q) — Yp(M), M € My, by I v =
(I} )M + zn(v, M). Since My, is a partition of €2, we can define a global operator
Ju o Hy(Q) — Y, by (jRo)|lm = Jh.av- Due to (2.3), the operator ji satisfies for
1<I<k,+1landallT € Tp,v € HY(Q)N HY(Q),

» 1\° Y 1)° h2!
a6 ool < (143 ) o= Teoli <0 (14 5) T 2l
u u TCM u

TET),
The approximation property in the H!-seminorm follows from inequality (2.2),
2
_ |15 _
Jzn (0, M) ar < D pimokahz llzn (o, M) < =22 3 Kyhz®llo = Iy ollg 1

TCM U rcMm
TETH TETH

and using the approximation property (2.3),

v — ngﬁ,M = |v = Iy, v — zn(v, M)EM <20 - If?,kuvﬁ,M + 2|24 (v, M)EM

1 ) hl—l
s(—+““)ﬂ4MwM

ko o BL ) R
Finally, the orthogonality property (A.1) is a consequence of (A.5). |
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