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To improve the prediction performance of chaotic time series, a new method is proposed for 
parameters joint optimization of phase space reconstruction and support vector machine (SVM). The 
main idea of the joint optimization method is that the parameters from phase space reconstruction and 
SVM are designed jointly using uniform design firstly, and then the parameters are optimized jointly 
based on self-calling SVM. The results tested by chaotic time series indicate that the proposed method 
has more advantages than traditional methods, such as better prediction accuracy and lower 
computational complexity. 
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INTRODUCTION 
 
The chaotic time series prediction has been widely 
applied in many fields, such as economics, signal 
processing, communication, biology and control, etc. It is 
a key problem to determine the optimal delay time (τ) and 
embedding dimension (m) in phase space reconstruction 
(Chen et al., 2004; Liu et al.,2005) . τ and m were selec-
ted independently in previous studies and some relative 
methods were developed. The methods determining τ 
mainly include autocorrelation function method (Albano et 
al., 2002) and average mutual information method 
(Fraser, 1989); while the methods determining m mainly 
include trial method and false neighbor point method 
(Maguire et al., 1998). Although Takens theory has 
proved τ and m of an infinite and noiseless time series 
are mutually independent, all time series are finite and 
influenced inevitably by various noises in real world, so 
now many researchers address that τ and m are 
interrelated. Correspondingly, C-C (Kim, 1999) and τ-m 
automatic method (Zhang et al., 2010) are emerged, 
However, C-C method calculation results are under-
stable and τ-m automatic method evaluation criteria are 
subjective (Ma et al., 2004). Developing a new and 
effective  joint  optimization  method  of  τ-m is  a  hotspot  
 
 
 
*Corresponding author: E-mail: zhmyuan@sina.com. 

in the current chaotic time series analysis. 
After determining τ and m, the support vector 

machine（SVM）was adopted to model in the most 

current researches because of nonlinear characteristics 
of chaotic time series. SVM is a machine learning method 
based on the structural risk minimization principle. It 
eliminates the problems of small sample, nonlinearity, 
over fitting, dimensionality curse, local minimum and 
generalization ability is very good. So SVM has been 
widely used in nonlinear time series prediction (Wu et al., 
2007). SVM prediction precision is related to kernel 
function and its parameters. In most cases, radial basis 
kernel function (RBF) has a good prediction performance. 
The representative software of SVM—Libsvm adopts grid 
search to obtain SVM parameters, which is very time-
consuming and not suitable for large samples. If default 
parameters not optimized are adopted, prediction 
precision will decrease sharply (Huang et al., 2007). The 
least squares support vector machine (LSSVM) is 
reformulations to standard SVM (Pan et al., 2009). 
LSSVM is suitable for solving large-scale problems and 
its prediction precision is slightly less than Libsvm result. 
When the RBF is selected for LSSVM, LSSVM needs to 
optimize two parameters: regularization parameter γ and 
kernel width σ. In previous studies, phase space 
reconstruction involving τ and m and LSSVM optimization  
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Figure 1. The Mackey-Glass time series when ∆=30. 

 
 
 
involving γ and σ are determined independently, so the 
determined τ and m are not always ensure LSSVM has 
the optimal prediction precision. Therefore, parameters 
joint optimization of τ, m, γ and σ purely from data driven 
not based on any priori knowledge, is a very attractive 
choice. Multilevel exhaustive search optimization is very 
time-consuming, so uniform design (UD) will be 
introduced because it can effectively reduce the number 
of experiments (Yuan et al., 2009). 

Aimed at the joint optimization of τ, m, γ and σ of 
chaotic time series prediction, a new optimization method 
is proposed based on UD and SVM (UD-SVM) in this 
paper. Simulation experiments are carried out based on 
two chaotic time series data to test the validity of UD-
SVM. 

 
 
MACKEY-GLASS TIME SERIES PREDICTION 

 
Mackey-Glass time series 

 
Mackey-glass time series is often used as a standard to test the 
prediction performance of nonlinear system models. The definition 
of Mackey-glass time series is as follows: 
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Where ∆  is parameter. When ∆ ≥17, chaos is presented.  

The higher the ∆ , the higher the chaotic degree. In this paper, 

∆ =30, the fourth-order five-step Runge-Kutta method to carry out 
numerical integration and get chaotic time series data (Figure 1). 

In order to compare the results of literature (Cui et al., 2004), γ is 
fixed to 50, the train set is the first 3000 data points, the test set is 
the data points from 3001 to 6000 and the valid set is the data 
points from 6001 to 9000 of the time series. Data preprocessing is 
as follows: 
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where 
_ ( )mean x i

 and 
_ ( )std x i

 are arithmetic mean value 

and standard deviation of the ith column of input vector 
( )x i

 

respectively; 
_mean y

 and 
_std y

 are arithmetic mean value 

and standard deviation of output vector 
( )y k

 respectively. 
 
 
UD and LSSVM prediction 
 
The predetermination upper and lower limits of 3 factors (τ, m and 
σ) are listed in Table 1 according to the relevant studies of Mackey-
Glass time series. 24 treatments (parameters combination) are 
produced by 3 factors and 8 levels UD based on DPS 6.0. For each 
treatment, the train set is trained while the valid set  is  predicted  by  
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Table 1. The predetermination upper and lower limits of the parameters for Mackey-Glass time series. 
 

Factors τ m σ 

Upper limit 8 8 4 

Lower limit 1 1 0.5 

Step 1 1 0.5 

 
 
 

Table 2. 24 treatments designed by UD and RMSEs calculated by LSSVM for Mackey-Glass 

time series. 
 

No. RMSE τ M σ 

N1 0.003189 1 4 4 

N2 0.003275 1 8 1 

N3 0.005110 1 2 2 

N4 0.008495 5 8 3 

N5 0.011255 7 6 4 

N6 0.010084 8 8 2.5 

N7 0.010604 6 7 2 

N8 0.008328 2 5 1.5 

N9 0.009395 2 7 3.5 

N10 0.011790 6 6 1.5 

N11 0.020350 3 6 2.5 

N12 0.026522 8 4 3 

N13 0.024580 7 5 0.5 

N14 0.029389 3 3 0.5 

N15 0.029241 3 3 3 

N16 0.040853 4 5 3.5 

N17 0.036683 4 7 0.5 

N18 0.065221 5 4 1 

N19 0.057433 2 1 2.5 

N20 0.063453 4 2 1.5 

N21 0.111680 6 2 3.5 

N22 0.126060 7 3 2 

N23 0.133870 5 1 4 

N24 0.191660 8 1 1 
 
 
 

LSSVM, and the predicted root mean square errors (RMSEs) are 
listed in Table 2. 

 
 
Parameters optimization based on Libsvm 

 
Taking RMSE values as dependent variable and τ, m and σ as 
independent variables from 24 treatments to form a new train set 
(Table 2), while taking τ, m and σ of all combinations to form a new 
test set. The new test set has 512 (8×8×8) samples and the 
dependent variable (RSMEs) values are unknown. Because 
traditional empirical risk minimization models, such as multiple 
linear regressions, response surface method and artificial neural 
network have many defects, especially poor generalization ability 
under the condition of small samples. The prediction precision of 
LSSVM is a little less than that of SVM, so SVM is used as the 
regression model here. Libsvm2.8 is a simple and easy SVM 
software package, which contains four programs, namely svmscale 
used  for  normalizing  original  data,  svmtrain   used   for   training,  

svmpredict used for predicting and gridregression.py used for 
automatic searching the optimal c, g, p. The usage and parameters 
setting of various programs refer to literature (Lin et al., 2007). 

Based on Libsvm, the new train set is trained and the new test 
set is predicted. The optimal parameters combination (τ=1, m=8, 
σ=2) is confirmed according to the smallest RMSE value. Based on 
the optimal parameters combination, the train set (the first 3000 
data of Mackey-Glass) is trained and the valid set (from 6001 to 
9000 data of Mackey-Glass) is predicted using LSSVM, and the 
RMSE value is equal to 0.002326. The results show the prediction 
precision is very high, so the optimal parameters are reasonable 
based on the proposed joint optimization method. 
 
 
Model verification 
 

Based on the optimal parameters combination (τ=1, m=8, σ=2), the 
train set (the first 3000 data of Mackey-Glass) is trained and the test 
set (from 3001 to 6000 data of Mackey-Glass) is predicted using 
LSSVM. The results are shown as Figure 2 and the RMSE  value  is 
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Figure 2. Comparison of the true values and corresponding predicted values using UD-SVM of Mackey-
Glass time series. 

 
 
 

 
 
Figure 3. The Lorenz time series. 

 
 
 

0.0028. The optimal results reported by Cui (2004) are as follows: 
τ=1, m=3, σ=2, RMSE=0.0034. The results show UD-SVM 
prediction precision is superior to that reported by Cui (2003). So 
UD-SVM is a fast and efficient τ-m-SVM parameters joint 
optimization method. 

 
 
Lorenz chaotic time series prediction 

 
Lorenz system is a deterministic nonlinear dissipative system and 
has disordered and non-periodic phenomena. Its studies run 
through the whole chaos science development and therefore it is an 
important chaotic time series. 
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Under initial conditions (x0=5，y0=5，z0=15), using the fourth-order 

five-step Runge-Kutta algorithm to get its numerical solution and 
sampling interval time is 0.05, the first 1400 data points of chaotic 
time series about x component are produced (Figure 3), and the 
time series have complex nonlinear chaotic characteristics 
obviously. 

In order to compare with literature (Cui et al., 2005), the first 600 
data points are selected as the train set, 400 data points from 601 
to 1000 as the test set and γ is fixed to 10. In addition, 400 data 
points from 1001 and 1400 are selected as the valid set. The 
predetermination upper and lower limits of 3 factors are list in Table 
3. 24 treatments are produced by 3 factors and 8 levels UD based 
on DPS 6.0. For each treatment, the train set is trained the valid set 
is predicted using LSSVM and the predicted RMSEs are show in 
Table 4. 

The data in Table 4 are taken as a new train set, the 3 para-
meters and 8 levels complete combinations which are 512 samples 
as a new test set. The training and predicting are carried out based 
on Libsvm and get the optimal parameters combination (τ=1, m=5, 
σ=2).  The  train  set  of  Lorenz  time  series  are   trained   and  the 
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Table 3. The predetermination upper and lower limits of the parameters for 
Lorenz time series. 
 

Factors τ M σ 

Median 4 4 4 

Upper limit 8 8 8 

Lower limit 1 1 1 

Step 1 1 1 

 
 
 

Table 4. 24 treatments designed by UD and RMSEs calculated by LSSVM for Lorenz time series. 

 

NO. τ m σ RMSE 

N1 1 4 8 0.34108 

N2 1 8 2 0.34956 

N3 1 2 4 0.2906 

N4 5 8 6 4.9375 

N5 7 6 8 6.6285 

N6 8 8 5 7.7915 

N7 6 7 4 6.2560 

N8 2 5 3 0.4664 

N9 2 7 7 0.4702 

N10 6 6 3 4.8262 

N11 3 6 5 1.1097 

N12 8 4 6 5.5303 

N13 7 5 1 4.6805 

N14 3 3 1 0.5873 

N15 3 3 6 0.9594 

N16 4 5 7 2.4362 

N17 4 7 1 2.3891 

N18 5 4 2 2.5264 

N19 2 1 5 3.4680 

N20 4 2 3 1.7052 

N21 6 2 7 5.3989 

N22 7 3 4 4.8446 

N23 5 1 8 5.2356 

N24 8 1 2 6.1827 
 
 
 
the valid set of Lorenz time series are predicted based on LSSVM 
with the optimal parameters combination, and the RMSE is 
0.25188. The prediction precision has been improved significantly 
compared with the prediction precision before optimization (Table 
4). 

So, the optimal parameters combination (τ=1，m=5，σ=2) are 

used to train the train set and predict the test set of Lorenz data, 
The results are shown in Figure 4. The RMSE is 0.25884 and the 
correlation coefficient between predicted values and true values is 
0.9994. The optimal parameters reported by Cui (2005) are 

τ=1，m=6，σ=5, the correlation coefficient is 0.9991 while the 

RMSE reported has not given. It can be seen that the UD-SVM 
computational complexity is lower, its predicted values fit its true 
values very well and its prediction performance is superior to the 
method which is proposed by Cui (2005). Thus the results prove 
that UD-SVM is a fast and efficient method for τ-m-SVM parameters 
joint optimization. 

DISCUSSIONS 
 

Because the time series have noise inevitably and its 
lengths are finite, the existing methods for determining τ 
and m are not suitable for the practical application. Even 
though the τ and m can be got by different methods, they 
are contradictory sometimes. For example, for the 
monthly mean sunspots, Wu et al. (2004) think its m 

should be less than 8 (Wu et al. 2004; Gu et al. 1999）, 

but the opinion of Ma et al. (2009) is opposite Because 
phase space reconstruction and prediction model are 
interdependent relationship, they should be optimized 
jointly, but they are optimized independently in the 
current researches. Therefore, the τ-m-SVM parameters 
joint optimization based on data  driven  proposed  in  this  
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Figure 4. Comparison of the true values and corresponding predicted values using UD-SVM of Lorenz time series. 

 
 
 
paper provides a new idea for solving the problem. 

Multiparameter and multilevel joint optimization is very 
time consuming for large train samples, so UD and self-
calling SVM are used to reduce the number of 
experiments and convert large sample search into small 
sample search in this paper, thereby it greatly reduce 
computational complexity under the condition of ensuring 
prediction precision. Empirical risk minimization 
regression models, such as multiple linear regression and 
partial least square regression, etc, assume that the 
sample is sufficiently or infinitely large, but the 
parameters joint optimization after converting is a typical 
small sample and there are often complex nonlinear 
relations among various parameters and dependent 
variable. Therefore these models generalization ability 
has a serious shortage, and the prediction precision of 
the optimal parameters combination deduced by 
empirical risk minimization regression models is often 
unsatisfactory. When optimizing parameters by response 
surface method, the selection of reconstruction function is 
a key problem and the adopted usually quadratic 
polynomial has approximation limited the nonlinear ability 
for nonlinear functions (Gupta and Manohar, 2004). 
Artificial neural network has very good nonlinear 
prediction ability, but it has many defects such as 
undetermined model structure, over fitting and local 
minimum, etc (Zhang and Hu, 2008). This paper solves 
the problem by nonlinear SVM which is based on 
minimum structural risk principle and has strong 
generalization ability and is suitable for small samples. If 
the optimal parameters combination exceeds the 
predetermination upper or lower limit of parameters, a 
new UD needs to be carried out. 

Conclusions 
 
SVM parameters and phase space reconstruction are 
optimized jointly because they have interdependent 
relationships. A parameters joint optimization method is 
proposed based on UD-SVM in this paper. The 
simulation results show that UD-SVM is a fast and 
efficient τ-m-SVM parameters joint optimization method 
based on data driven for chaotic time series. But for noise 
and time-varying parameters hyper chaotic time series, 
both regularization parameter γ and the train set window 
length need to be optimized too and it will be explored in 
the further research. 
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