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Abstract

In this article, we consider the nonlinear viscoelastic equation

utt − �u +

t∫
0

g(t − τ )�u(τ )dτ − ω�ut + μut = |u|p−2u

with initial conditions and Dirichlet boundary conditions. We first prove a local
existence theorem and show, for some appropriate assumption on g and the initial
data, that this solution is global with energy which decays exponentially under the
potential well. Secondly, not only finite time blow-up for solutions starting in the
unstable set is proved, but also under some appropriate assumptions on g and the
initial data, a blow-up result with positive initial energy is established. Finally, we also
prove the boundedness of global solutions for strong (ω > 0) damping case.
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1. Introduction
In this article we study the behavior of solutions for the following nonlinear viscoelas-

tic equation⎧⎪⎪⎨
⎪⎪⎩
utt − �u +

t∫
0
g(t − τ )�u(τ )dτ − ω�ut + μut = |u|p−2u, x ∈ �, t > 0,

u(x, t) = 0, x ∈ ∂�, t > 0,
u(x, 0) = u0(x), ut(x, 0) = u1(x) x ∈ �,

(1:1)

where Ω is a bounded domain in ℝn with a smooth boundary ∂Ω, g is a positive

function satisfying some conditions to be specified later, ω, μ satisfy

ω ≥ 0, μ > −λω, (1:2)

l being the first eigenvalue of the operator -Δ under homogeneous Dirichlet bound-

ary conditions, and

2 < p ≤

⎧⎪⎨
⎪⎩

2n
n − 2

, for ω > 0,

2n − 2
n − 2

, for ω = 0,
if n ≥ 3, 2 < p < ∞ if n = 1, 2. (1:3)
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This problem has its origin in the mathematical description of viscoelastic materials. It is

well known that viscoelastic materials exhibit natural damping, which is due to the special

property of these materials to retain a memory of their past history. A general theory con-

cerning problem (1.1) in the case ω = 0 and μ = 0 is available in literature (see [1-4]). The

asymptotic behavior of the solutions to (1.1) has been studied in [5-8], we also refer to

[9,10] for the asymptotic decay of the solutions to problems analogous to (1.1). Among

other known results about problem (1.1) with ω = 0 and μ = 0, we recall that in [7,8], it is

proved that the exponential decay of g is a sufficient condition to the exponential decay of

the solution u. In [5] it is also proved that, when ω = 0 and μ = 0, the exponential decay

of g is necessary for the exponential decay of u. When ω + μ ≠ 0, Fabrizio and Polidoro

[11] showed that the exponential decay of g is a necessary condition for the exponential

decay of u. The case of only having
∫ t
0 g(t − τ )�u(τ )dτ may be very restrictive in many

physical problems. Also, problem (1.1) is applied to the theory of the heat conduction

with memory, see [12-16]. Therefore, the dynamics of (1.1) are of great importance and

interest as they have wide applications in natural sciences.

This type of problem have been considered by many authors and several results con-

cerning existence, nonexistence, and asymptotic behavior have been established. Caval-

canti et al. [17] studied the following equation:

utt − �u +

t∫
0

g(t − τ )�u(τ )dτ + a(x)ut + |u|γ u = 0, in � × (0,∞)

for a : Ω ® ℝ+, a function, which may be null on a part of the domain Ω. Under the

conditions that a(x) ≥ a0 > 0 on Ω1 ⊂ Ω, with Ω1 satisfying some geometry restric-

tions and

−ξ1g(t) ≤ g′(t) ≤ −ξ2g(t), t ≥ 0,

The authors established an exponential rate of decay. This latter result has been

improved by Cavalcanti and Oquendo [18] and Berrimi and Messaoudi [19]. In their

work, Cavalcanti and Oquendo [18] considered the situation where the internal dissipation

acts on a part of Ω and the viscoelastic dissipation acts on the other part. They established

both exponential and polynomial decay results under conditions on g and its derivatives

up to the third order, whereas Berrimi and Messaoudi [19] allowed the internal dissipation

to be nonlinear. They also showed that the dissipation induced by the integral term is

strong enough to stabilize the system and established an exponential decay for the solution

energy provided that g satisfies a relation of the form

g′(t) ≤ −ξg(t), t ≥ 0.

In [20], Berrimi and Messaoudi considered problem (1.1) for ω = μ = 0. They estab-

lished a local existence result and showed, for certain initial data and suitable condi-

tions on g, that this solution is global with energy which decays exponentially or

polynomially depending on the rate of the decay of the relaxation function g.

For nonexistence, we should mention that Messaoudi [21] looked into the equation

utt − �u +

t∫
0

g(t − τ )�u(τ )dτ + |u|m−2u = |u|p−2u, in � × (0,∞) (1:4)
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and proved, under appropriate relations between p, m and g, a blow-up result. This

work generalizes earlier ones by Georgiev and Todorova [22] and Messaoudi [23], in

which a similar result has been established for the wave equation (g ≡ 0). This result

was later improved by Messaoudi [24], to certain solutions with positive initial energy.

A similar result was also obtained by Wu [25] using a different method. For the pro-

blem (1.4) in ℝn and with m = 2, Kafini and Messaoudi [26] showed, for suitable con-

ditions on g and initial data, that solutions with negative energy blow up in finite time.

More recently, Wang [27] has investigated a sufficient condition of the initial data with

arbitrarily positive initial energy such that the corresponding solution of Equation (1.4)

with m = 2 blows up in finite time. This result improved the blow-up results in

[21,24].

In this article, we first consider (1.1) and establish a local existence result. In addi-

tion, using the ideas of the “potential well” theory introduced by Payne and Sattinger

[28], we show that for some appropriate assumption on g (but without exponential

decay property) and the initial data, that this solution is global with energy which

decays exponentially under the potential well. Secondly, not only finite time blow up

for solutions starting in the unstable set is proved, but also under some appropriate

assumptions on g and the initial data, a blow-up result with positive initial energy is

established. Finally, we also prove the boundedness of global solutions u(t) to problem

(1.1) for strong (ω > 0) damping, namely, u ∈ L∞ (
R+;H1

0(�)
) ∩ W1,∞ (

R+; L2(�)
)
.

This article is organized as follows. In Section 2 we introduce some notation and

prepare some material. Section 3 is devoted to global existence for solutions under the

potential well and the decay result. In Section 4 we will show that there are solutions

of (1.1) with positive initial energy or with arbitrary positive initial energy that blow up

in finite time. The last Section we will prove the boundedness of global solutions u(t)

to problem (1.1) for strong (ω > 0) damping.

2. Preliminaries
We denote by ∥ · ∥q the Lq(Ω) norm for 1 ≤ q ≤ ∞ and by ∥∇ · ∥2 the Dirichlet norm in

H1
0(�) . Moreover, for later use we denote by 〈·,·〉 the duality pairing between H-1(Ω)

and H1
0(�). When ω > 0 (resp. ω = 0) for v, w ∈ H1

0(�) (resp. for all v, w Î L2(Ω)),

we put

(v,w)∗ = ω

∫
�

∇v · ∇w + μ

∫
�

vw, ‖v‖∗ = (v, v)1/2∗ ,

by (1.2), ∥ · ∥* is an equivalent norm over H1
0(�) (resp. L2(Ω)).

Let a > 0. Define Ja, Ia: H1
0(�) → R by

Ja =
a

2
‖∇u‖22 − 1

p
‖u‖pp , Ia = a ‖∇u‖22 − ‖u‖pp .

In this case, the “potential depth” is defined as

da = inf
w∈H1

0(�)\{0}
max
λ≥0

Ja(λu).
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It is easy to see that the “potential well” is positive, see [28,29] for details. Next, we

define stable and unstable sets respectively:

Wa =
{
u ∈ H1

0(�)|Ia(u) > 0, Ja(u) < da
} ∪ {0},

Va =
{
u ∈ H1

0(�)|Ia(u) < 0, Ja(u) < da
}
.

Finally, we consider the energy functional E(t) = E(u(t),ut(t)) defined by

E(t) =
1
2

∥∥ut(t)∥∥2
2 +

1
2

⎛
⎝1 −

t∫
0

g(s)ds

⎞
⎠∥∥∇u(t)

∥∥2
2 +

1
2

(
g ◦ ∇u

)
(t) − 1

p
‖u‖pp ,

where

(g ◦ v)(t) =

t∫
0

g(t − τ )
∥∥v(t) − v(τ )

∥∥2
2 dτ .

For the relaxation function g(t) we assume

(G1) g Î C1[0, ∞) is a non-negative and non-increasing function satisfying

1 −
∞∫
0

g(s)ds = 1 − κ = l > 0.

(G2)

∞∫
0

g(s)ds <
p/2 − 1

p/2 − 1 + 1/(2p)
.

Remark 2.1. Condition (1.3) is needed to establish the local existence result. In fact

under this condition, the nonlinearity is Lipschitz from H1(Ω) to L2(Ω). Condition

(G1) is necessary to guarantee the hyperbolicity and well-posedness of problem (1.1).

3. Global existence and exponential energy decay
In this section we study the global existence of solutions for problem (1.1). For this

purpose, we first consider a related linear problem. Then, we use the well-known con-

traction mapping theorem to prove the existence of solutions to the nonlinear pro-

blem. Throughout the section, we restrict ourselves to the case ω > 0, μ ≠ 0 and n ≥ 3,

the other cases being similar (and simpler).

For a given T > 0, we consider the space H = C
(
[0,T];H1

0(�)
) ∩ C1

(
[0,T]; L2(�)

)
equipped with the norm

‖u‖2H = max
0≤t≤T

(
l
∥∥∇u(t)

∥∥2
2 +

∥∥ut(t)∥∥22) .
Lemma 3.1. Assume (G1), (1.2) and (1.3) hold. For every T > 0, every u ∈ H and

every initial data (u0, u1) ∈ H1
0(�) × L2(�) there exists a unique

v ∈ H ∩ C2 (
[0,T];H−1(�)

)
such that vt ∈ L2

(
[0,T];H1

0(�)
)
,

which solves the linear problem⎧⎨
⎩
vtt − �v +

∫ t
0 g(t − τ )�v(τ )dτ − ω�vt + μvt = |u|p−2u, (x, t) ∈ � × [0,T],

v(x, t) = 0, (x, t) ∈ ∂� × [0,T],
v(x, 0) = u0(x), vt(x, 0) = u1(x) x ∈ �.

(3:1)
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Proof. The proof follows from a directly application of the Galerkin method as in

[22,30], thus we omit it here.

Theorem 3.2. Assume (G1), (1.2) and (1.3) hold. For any initial data

(u0, u1) ∈ H1
0(�) × L2(�) , there exists a real number Tm > 0 such that problem (1.1)

has a unique local weak solution

u ∈ H ∩ C2 (
[0,Tm) ;H−1(�)

)
such that ut ∈ L2

(
[0,T];H1

0(�)
)
.

If Tm < ∞, then

lim
t→Tm

(
l
∥∥∇u(t)

∥∥2
2 +

∥∥ut(t)∥∥22 = ∞.
)

(3:2)

Proof. Taking (u0, u1) ∈ H1
0(�) × L2(�) and letting R = 2

(‖∇u0‖22 + ‖u1‖22
)
. For any

T > 0, we consider

F =
{
u ∈ H : u(0) = u0, ut(0) = u1 and ‖u‖H ≤ R

}
.

By Lemma 3.1, for any u ∈ F we may define v = F(u), being the unique solution to

problem (3.1). We claim that, for a suitable T > 0, F is a contractive map from F
into itself. Given u ∈ F , multiplying (3.1) by vt and integrating over [0,t] ⊂ [0,T], we

have

∥∥vt(t)∥∥22 +
⎛
⎝1 −

t∫
0

g(s)ds

⎞
⎠∥∥∇v(t)

∥∥2
2 +

(
g ◦ ∇v

)
(t) + 2

t∫
0

∥∥vt(τ )∥∥2∗dτ

=

t∫
0

(
g′ ◦ ∇v

)
dτ −

t∫
0

g(τ )
∥∥∇v(τ )

∥∥2
2 dτ + ‖∇u0‖22 + ‖u1‖22 + 2

t∫
0

∫
�

∣∣u(τ )∣∣p−2
u(τ )vt(τ )dxdτ

≤ ‖∇u0‖22 + ‖u1‖22 + 2

t∫
0

∫
�

∣∣u(τ )∣∣p−2
u(τ )vt(τ )dxdτ ,

(3:3)

here taking into account the condition (G1). For the last term, using Hölder, Sobolev,

and Young inequalities, we have

2

t∫
0

∫
�

∣∣u(τ )∣∣p−2
u(τ )vt(τ )dxdτ ≤ C

T∫
0

∥∥u(τ )∥∥p−1
2∗

∥∥vt(τ )∥∥2∗dτ

≤ C1

T∫
0

∥∥u(τ )∥∥p−1
∗

∥∥vt(τ )∥∥∗dτ ≤ C2TR2(p−1) + 2

T∫
0

∥∥vt(τ )∥∥2∗ dτ ,
(3:4)

where 2* = 2n/(n-2). Combining (3.3) with (3.4) and taking the maximum over [0, T],

we get

‖v‖2H ≤ 1
2
R2 + C2TR2(p−1).

Choosing T sufficiently small such that C2TR
2(p-1) ≤ R2/2, we get ‖v‖H ≤ R , which

shows that F maps F into itself.

Next, we verify that F is a contraction. Taking w1 and w2 in F , subtracting the two

equations (3.1) for v1 = F(w1) and v2 = F(w2) and setting w = v1- v2, then we have for

all ϕ ∈ H1
0(�) and a.e. t Î [0,T]
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〈wtt,ϕ〉 +
∫
�

∇w(t) · ∇ϕdx +
∫
�

t∫
0

g(t − τ )�w(τ )dτϕdx +
∫
�

∇wt(t) · ∇ϕdx + μ

∫
�

wt(t)ϕdx

=
∫
�

(∣∣w1(t)
∣∣p−2

w1(t) − ∣∣w2(t)
∣∣p−2

w2(t)
)

ϕdx.

(3:5)

By taking � = wt in (3.5) and arguing as above, we obtain∥∥�(w1) − �(w2)
∥∥2
H = ‖w‖2H ≤ C3R2p−4T ‖w1 − w2‖2H ≤ ε ‖w1 − w2‖2H

for some ε < 1 provided T is sufficiently small. This proves the claim. By the contrac-

tion mapping principle, there exists a unique (weak) solution to (1.1) defined on [0,

Tm).

By the construction above, we observe that the local existence time of u merely

depends (through R) on the norms of the initial data. Therefore, as long as
∥∥u(t)∥∥H

remains bounded, the solution may be continued, see also [[31], p. 158], for a similar

argument. Hence, if Tm < ∞, we have

lim
t→Tm

(
l
∥∥∇u(t)

∥∥2
2 +

∥∥ut(t)∥∥22) = lim
t→Tm

∥∥u(t)∥∥H = ∞.

Before we state and prove our global existence result, we need the following lemmas.

Lemma 3.3. [24, Lemma 2.1] Assume (G1), (1.2) and (1.3) hold. Let u(t) be a solution

of (1.1). Then E(t) is nonincreasing, that is

E′(t) = −∥∥ut(t)∥∥2∗ + 1
2
(g′ ◦ ∇u)(t) − 1

2
g(t)

∥∥∇u(t)
∥∥2
2 ≤ 0. (3:6)

Moreover, the following energy inequality holds:

E(t) +

t∫
s

∥∥ut(τ )∥∥2∗ dτ ≤ E(s), for 0 ≤ s ≤ t < Tm. (3:7)

Lemma 3.4. Assume (G1), (1.2) and (1.3) hold, and 0 <a ≤ l. Let u(x, t) be a local

solution of problem (1.1) with initial data (u0, u1) ∈ H1
0(�) × L2(�) . Then the follow-

ing assertions hold.

(1) If there exists a number t0 Î [0,Tm) such that u(·,t0) Î Wa and E(t0) <da, then u(·,

t) Î Wa and E(t) <da for all t Î [t0,Tm).

(2) If there exists a number t0 Î [0,Tm) such that u(·, t0) Î Va and E(t0) <da, then u(·,

t) Î Va and E(t) <da for all t Î [t0,Tm).

Proof. The proof is almost the same that of Tsutsumi [32].

The following integral inequality plays an important role in our proof of the energy

decay of the solutions to problem (1.1).

Lemma 3.5. [33]Assume that the function � : ℝ+ ∪ {0} ® ℝ+ ∪ {0} is a non-increas-

ing function and that there exists a constant c > 0 such that

∞∫
t

ϕ(s)ds ≤ cϕ(t)
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for every t Î [0, ∞). Then

ϕ(t) ≤ ϕ(0) exp(1 − t/c)

for every t ≥ c.

Theorem 3.6. Assume (G1), (1.2) and (1.3) hold, and 0 <a ≤ l. Let u(x, t) be a local

solution of problem (1.1) with initial data (u0, u1) ∈ H1
0(�) × L2(�) . In addition

assume that u(0) Î Wa and E(0) <da, then the corresponding solution to (1.1) globally

exists, i.e., Tm = ∞. Moreover, if da <θ and s = 1 - l > 0 is small sufficiently such that

1 − Cp(�)
(
2pE(0)
p − 2

)p − 2
2 l

−p
2 − 5p(1 − l)

2(p − 2)l
> 0

where θ = (p − 2)/(2p)l
p/(p−2)

C−2p/(p−2)(�)and C(Ω) is the optimal constant of Sobolev

imbedding H1
0(�) ↪→ Lp(�) , then the energy decay is

E(t) ≤ E(0) exp(1 − C−1t)

for every t Î [0, ∞), where C is some positive constant.

Proof. We only consider the case ω > 0 and μ > - lω. In order to get Tm = ∞, by

Theorem 3.2, it suffices to show that

l
∥∥∇u(t)

∥∥2
2 +

∥∥ut(t)∥∥22
is bounded independently of t. Since u(0) Î Wa and E(0) <da, it follows from Lemma

3.4 that

u(t, ·) ∈ Wa, E(t) < da for [0,Tm) .

On the other hand, since u(t, ·) Î Wa means

Ja(u) ≥ (p − 2)a
2p

∥∥∇u(t)
∥∥2
2 for [0,Tm) . (3:8)

So, it follows from (3.8) and Lemma 3.3 with s = 0 that

(p − 2)a
2p

l
∥∥∇u(t)

∥∥2
2 +

1
2

∥∥ut(t)∥∥22 ≤ Ja(u) +
1
2

∥∥ut(t)∥∥2
2

≤ E(t) +

t∫
0

∥∥ut(τ )∥∥2∗dτ ≤ E(0) < da for [0,Tm) ,

which implies

l
∥∥∇u(t)

∥∥2
2 +

∥∥ut(t)∥∥22 ≤ Cda,

where C is a positive constant depending only on l and p.

From Lemma 3.3 we have

E(0) ≥ E(t) ≥ 1
2

⎛
⎝1 −

t∫
0

g(s)ds

⎞
⎠∥∥∇u(t)

∥∥2
2 − 1

p
‖u‖pp ≥ l

2

∥∥∇u(t)
∥∥2
2 − 1

p
‖u‖pp ,
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which together with u(t, ·) Î Wa yields

∥∥∇u(t)
∥∥2
2 ≤ 2p

(p − 2)l
E(t) ≤ 2p

(p − 2)l
E(0). (3:9)

In addition,

(
1 − 2

p

)∥∥u(t)∥∥p
p ≤

(
1 − 2

p

)
Cp(�)

∥∥∇u(t)
∥∥p
2

≤ 2
l
Cp(�)

(
2p

(p − 2)l
E(0)

)p − 2
2 E(t) ≤ 2(1 − ε)E(t),

(3:10)

where

ε = 1 − Cp(�)
(

2p
(p − 2)

E(0)
)p − 2

2 l

−p
2 .

Note that E(0) <θ, we see that � > 0.

Multiplying (1.1) by u(t) and integrating over Ω × [t1,t2] (0 ≤ t1 ≤ t2), we get

0 =
∫
�

t2∫
t1

u

⎛
⎝utt − �u +

t∫
0

g(t − τ )�u(τ )dτ − ω�ut + μut − |u|p−2u

⎞
⎠dtdx

=

⎡
⎣∫

�

u(t)ut(t)dx

⎤
⎦

t2

t1

−
t2∫

t1

∥∥ut(t)∥∥22 dt +
t2∫

t1

∥∥∇u(t)
∥∥2
2 dt −

t2∫
t1

∥∥u(t)∥∥p
p dt

+

t2∫
t1

(u(t), ut(t))∗dt +

t2∫
t1

∫
�

t∫
0

g(t − τ )�u(τ )u(t)dτdxdt

=

⎡
⎣∫

�

u(t)ut(t)dx

⎤
⎦

t2

t1

− 2

t2∫
t1

∥∥ut(t)∥∥22 dt + 2

t2∫
t1

E(t)dt +
(
2
p

− 1
) t2∫

t1

∥∥u(t)∥∥p
pdt

−
t2∫

t1

(
g ◦ ∇u

)
(t)dt +

t2∫
t1

t∫
0

g(τ )dτ
∥∥∇u(t)

∥∥2
2 dt +

t2∫
t1

(u(t), ut(t))∗dt

+

t2∫
t1

∫
�

t∫
0

g(t − τ )�u(τ )u(t)dτdxdt.

(3:11)

For the last term in (3.11), one has

−2
∫
�

t∫
0

g(t − τ )�u(τ )u(τ )dτdx = 2
∫
�

t∫
0

g(t − τ )∇u(τ )∇u(t)dτdx

=

t∫
0

g(t − τ )
(∥∥∇u(t)

∥∥2
2 +

∥∥∇u(τ )
∥∥2
2

)
dτ −

t∫
0

g(t − τ )
(∥∥∇u(t) − ∇u(t)

∥∥2
2

)
dτ .

(3:12)
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Combining (3.11) and (3.12), we have

2

t2∫
t1

E(t)dt +
(
2
p

− 1
) t2∫

t1

∥∥u(t)∥∥pp dt

= −
⎡
⎣∫

�

u(t)ut(t)dx

⎤
⎦

t2

t1

+ 2

t2∫
t1

∥∥ut(t)∥∥22 dt + 1
2

t2∫
t1

(
g ◦ ∇u

)
(t)dt

− 1
2

t2∫
t1

t∫
0

g(τ )dτ
∥∥∇u(t)

∥∥2
2 dt +

1
2

t2∫
t1

t∫
0

g(t − τ )
∥∥∇u(τ )

∥∥2
2 dτdt −

t2∫
t1

(u(t), ut(t))∗dt

≤ −
⎡
⎣∫

�

u(t)ut(t)dx

⎤
⎦

t2

t1

+ 2

t2∫
t1

∥∥ut(t)∥∥22 dt + 1
2

t2∫
t1

(g ◦ ∇u)(t)dt

+
1
2

t2∫
t1

t∫
0

g(t − τ )
∥∥∇u(τ )

∥∥2
2 dτdt −

t2∫
t1

(u(t), ut(t))∗dt,

(3:13)

where the last inequality comes from (G1). For the left-hand side of the (3.13), by

(3.10) we obtain

2

t2∫
t1

E(t)dt +
(
2
p

− 1
) t2∫

t1

∥∥u(t)∥∥pp dt ≥ 2ε

t2∫
t1

E(t)dt. (3:14)

We next estimate every term of the right-hand side of the (3.13). Firstly, by Hölder

inequality and Poincaré inequality

∫
�

∣∣u(t)ut(t)∣∣ dx ≤ 1
2

∥∥u(t)∥∥22 + 1
2

∥∥ut(t)∥∥22 ≤ λ

2

∥∥∇u(t)
∥∥2
2 + E(t).

Using (3.9) we see that∫
�

∣∣u(t)ut(t)∣∣ dx ≤ c1E(t),

where c1 is a constant independent on u, from which follows that⎡
⎣∫

�

u(t)ut(t)dx

⎤
⎦

t2

t1

≤ 2c1E(t1). (3:15)

Since u(t, ·) Î Wa, we have 0 <Ia(u) ≤ E(t). Thus, from (3.7), we deduce that

t2∫
t1

∥∥ut(t)∥∥2∗ ≤ E(t1),

which implies

t2∫
t1

∥∥∇ut(t)
∥∥2
2 ≤ c2E(t1).
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Hence, by Poincaré inequality we get

2

t2∫
t1

∥∥ut(t)∥∥22 dt ≤ 2c3E(t1), (3:16)

where c3 is a constant independent on u. In addition, using Young’s inequality for con-

volution ∥f*g∥q ≤ ∥f∥r∥g∥s with 1/q = 1/r + 1/s - 1 and 1 ≤ q,r,s ≤ ∞, noting that if q = 1,

then r = 1 and s = 1, we have

t2∫
t1

t∫
0

g(t − τ )
∥∥∇u(τ )

∥∥2
2 dτdt ≤

t2∫
t1

g(t)dt

t2∫
t1

∥∥∇u(t)
∥∥2
2 dt ≤ (1 − l)

t2∫
t1

∥∥∇u(t)
∥∥2
2 dt.

Further, by (3.9) we then have

t2∫
t1

t∫
0

g(t − τ )
∥∥∇u(τ )

∥∥2
2 dτdt ≤ 2p(1 − l)

(p − 2)l

t2∫
t1

E(t)dt (3:17)

and

t2∫
t1

t∫
0

g(t − τ )
∥∥∇u(τ )

∥∥2
2 dτdt ≤ 2p(1 − l)

(p − 2)l

t2∫
t1

E(t)dt. (3:18)

Combining (3.17) and (3.18), we get

1
2

t2∫
t1

(g ◦ ∇u)(t)dt

t2∫
t1

t∫
0

g(t − τ )
(∥∥∇u(t)

∥∥2
2 +

∥∥∇u(τ )
∥∥2
2

)
dτdt ≤ 4p(1 − l)

(p − 2)l

t2∫
t1

E(t)dt. (3:19)

By Poincaré inequality and (3.9), we also have the following estimate

− 2

t2∫
t1

(u(t), ut(t))∗dt = −
t2∫

t1

d
dt

∥∥u(t)∥∥2∗ =
∥∥u(t1)∥∥2∗ − ∥∥u(t2)∥∥2∗

≤ 2
λω + μ

λ

∥∥∇u(t1)
∥∥2
2 ≤ 4p(λω + μ)

λ(p − 1)l
E(t1) ≤ c4E(t1),

(3:20)

where c4 is a constant independent on u.

Combining (3.13)-(3.20), we obtain

2ε

t2∫
t1

E(t)dt ≤ 2CE(t1) +
5p(1 − l)
(p − 2)l

t2∫
t1

E(t)dt,

where C is a constant independent on u, that is

⎛
⎜⎝1 − Cp(�)

(
2pE(0)
p − 2

)p − 2
2 l

−p
2 − 5p(1 − l)

2(p − 2)l

⎞
⎟⎠

t2∫
t1

E(t)dt ≤ CE(t1). (3:21)

Denote

a = 1 − Cp(�)
(
2pE(0)
p − 2

)p − 2
2 l

−p
2 − 5p(1 − l)

2(p − 1)l
.
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We rewrite (3.21)

a

∞∫
t

E(τ )dτ ≤ CE(t)

for every t Î [0, ∞).

Since a > 0 when s = 1 - l > 0 small sufficiently by Lemma 3.5, we obtain the fol-

lowing energy decay for problem (1.1) as

E(t) < E(0) exp(1 − aC−1t)

for every t ≥ Ca-1.

Remark 3.1. For the definition of da and Sobolev imbedding inequality, we have

da ≤ p − 2
2p

a
p

p−2

(
‖∇u‖2
‖u‖p

) 2p
p − 2

and

‖u‖p ≤ C‖∇u‖2.

Since Lp(�) ↪→ H1
0(�) is compact, the best constants and the best function v(x) in

the above Sobolev imbedding inequality can be attained. For example, n = 1, p = ∞, Ω

= (c, d) ⊂ ℝ, the best C and the best function v(x) are attained, see [34]. In this case,

da ≤ p − 2
2p

a
p

p−2C
−2p
p−2 < θ . Then, we can take the initial data u0 = v(x) which yields

the set of the initial data that yields the exponential decay is not empty.

4. Blow-up solution
In this section, we deal with the blow-up solutions of problem (1.1). The basic idea

comes from [30], however our argument contains nontrival modifications.

Lemma 4.1. Assume (G1), (1.2) and (1.3) hold. Let u(x,t) be a local solution of pro-

blem (1.1) on [0,Tm) with initial data (u0, u1) ∈ H1
0(�) × L2(�) . If Tm < ∞, then

lim
t→Tm

∥∥u(t)∥∥q = ∞ for all q ≥ 1 such that
n(p − 2)

2
< q < p. (4:1)

Moreover, if n ≥ 3 and p = 2n/(n - 2) = 2* (ω > 0), then (4.1) also holds for q = p.

Proof. From (3.7), we have

1
2

∥∥ut(t)∥∥22 + l
2

∥∥∇u(t)
∥∥2
2 ≤ 1

p

∥∥u(t)∥∥pp + E(0), t ∈ [0,Tm) , (4:2)

which, together with (3.2), implies

lim
t→Tm

∥∥u(t)∥∥p = ∞. (4:3)

This proves (4.1) at once for the case of p = q = 2n/(n - 2). For the remaining cases,

notice (4.3) that implies
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lim
t→Tm

∥∥∇u(t)
∥∥
2 = ∞. (4:4)

Moveover, by (4.2) we obtain

l
∥∥∇u(t)

∥∥2
2 ≤ 2

p

∥∥u(t)∥∥pp + 2E(0), t ∈ [0,Tm) .

From the Gagliardo-Nirenberg inequality we have

∥∥u(t)∥∥pp ≤ C
∥∥u(t)∥∥p(1−α)

q

∥∥∇u(t)
∥∥pα
2 for α =

2n(p − q)
p(2n + 2q − nq)

,

which yields

∥∥∇u(t)
∥∥2
2 ≤ 2

l
E(0) + C1C

∥∥u(t)∥∥p(1−α)
q

∥∥∇u(t)
∥∥pα
2 .

Since n(p - 2)/2 <q <p implies 0 <a < 1 and pa < 2, the above inequality combined

with (4.4) immediately yields (4.1).

Next we will prove the main blow-up result by the concavity method of Levine

[35,36] and the estimates similar as [30].

Theorem 4.2. Assume (G1), (G2), (1.2) and (1.3) hold. Let u(x,t) be a local solution of

problem (1.1) with initial data (u0, u1) ∈ H1
0(�) × L2(�) . If ω > 0, then there is a real

number t0 Î [0,Tm) such that u(t0, ·) Î Vk and E(t0) <dk if and only if Tm < ∞, where

k = l − 1
p(p − 2)

∞∫
0

g(s)ds.

Proof. We first consider “if part”, without loss of generality, we may assume that t0 =

0. Assume by contradiction that the solution u is global. Then, for any T > 0 we con-

sider H(t) : [0,T] ® ℝ+ defined by

H(t) =
∥∥u(t)∥∥22 +

t∫
0

∥∥u(τ )∥∥2∗ dτ + (T − t) ‖u0‖2∗ .

A direct computation yields

H′(t) = 2
∫
�

u(t)ut(t)dx +
∥∥u(t)∥∥2∗ − ‖u0‖2∗ = 2

∫
�

u(t)ut(t)dx + 2

t∫
0

(u(τ ), ut(τ ))∗dτ

and

H′′(t) = 2
〈
utt , u(t)

〉
+ 2

∥∥ut(t)∥∥2
2 + 2(u(t), ut(t))∗, for a.e. t ∈ [0,T].

By multiplying (1.1) by u and integrating over Ω, we have

〈
utt, u(t)

〉
+ (u(t), ut(t))∗ = −∥∥∇u(t)

∥∥2
2 −

∫
�

t∫
0

g(t − τ )�u(τ )dτu(t)dx +
∥∥u(t)∥∥pp , (4:5)
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which implies

H′′(t) = 2
∥∥ut(t)∥∥22 − 2

∥∥∇u(t)
∥∥2
2 − 2

∫
�

t∫
0

g(t − τ )�u(τ )dτu(t)dx + 2
∥∥u(t)∥∥pp.

Therefore, we have

H(t)H′′(t) − p + 2
4

H′(t)2

= 2H(t)

⎛
⎝∥∥ut(t)∥∥22 − ∥∥∇u(t)

∥∥2
2 −

∫
�

t∫
0

g(t − τ )�u(τ )dτu(t)dx +
∥∥u(t)∥∥pp

⎞
⎠

− (p + 2)

⎛
⎝∫

�

u(t)ut(t)dx +

t∫
0

(
u(τ ), ut(τ )

)
∗dτ

⎞
⎠

2

= 2H(t)

⎛
⎝∥∥ut(t)∥∥22 − ∥∥∇u(t)

∥∥2
2 −

∫
�

t∫
0

g(t − τ )�u(τ )dτu(t)dx +
∥∥u(t)∥∥pp

⎞
⎠

+ (p + 2)

⎛
⎝G(t) − (

H(t) − (T − t) ‖u0‖2∗
) ⎛
⎝∥∥ut(t)∥∥22 +

t∫
0

∥∥ut(τ )∥∥2∗ dτ
⎞
⎠

⎞
⎠ ,

(4:6)

where G(t) : [0,T] ® ℝ+ is the function defined by

G(t) =

⎛
⎝∥∥u(t)∥∥22 +

t∫
0

∥∥u(τ )∥∥2
∗ dτ

⎞
⎠

⎛
⎝∥∥ut(t)∥∥22 +

t∫
0

∥∥ut(τ )∥∥2∗ dτ
⎞
⎠

−
⎛
⎝∫

�

u(t)ut(t)dx +

t∫
0

(u(τ ), ut(τ ))∗dτ

⎞
⎠

2

.

Using the Schwarz inequality, we have

⎛
⎝∫

�

u(t)ut(t)dx

⎞
⎠

2

≤ ∥∥u(t)∥∥22 ∥∥ut(t)∥∥2
2 ,

⎛
⎝ t∫

0

(u(τ ), ut(τ ))∗dτ

⎞
⎠

2

≤
t∫

0

∥∥u(τ )∥∥2∗ dτ
t∫

0

∥∥ut(τ )∥∥2∗ dτ ,
and

∫
�

u(t)ut(t)dx

t∫
0

(u(τ ), ut(τ ))∗dτ ≤ ∥∥u(t)∥∥2

⎛
⎝ t∫

0

∥∥ut(τ )∥∥2∗ dτ
⎞
⎠

1
2 ∥∥ut(t)∥∥2

⎛
⎝ t∫

0

∥∥u(τ )∥∥2∗ dτ
⎞
⎠

1
2

≤ 1
2

∥∥u(t)∥∥22
t∫

0

∥∥ut(τ )∥∥2∗dτ +
1
2

∥∥ut(t)∥∥22
t∫

0

∥∥u(τ )∥∥2∗dτ .

Liang and Gao Journal of Inequalities and Applications 2012, 2012:33
http://www.journalofinequalitiesandapplications.com/content/2012/1/33

Page 13 of 27



These three inequalities entail G(t) ≥ 0 for every [0, T]. Using (4.6), we get

H(t)H′′(t) − p + 2
4

H′(t)2 ≥ H(t)L(t) for a.e. t ∈ [0,T], (4:7)

where

L(t) = −p
∥∥ut(t)∥∥22 − 2

∥∥∇u(t)
∥∥2
2 + 2

∥∥u(t)∥∥pp − (p + 2)

t∫
0

∥∥ut(t)∥∥2∗ dτ

− 2
∫
�

t∫
0

g(t − τ )�u(τ )dτu(t)dx.

(4:8)

For the last term on the left of (4.8), we have

−
∫
�

t∫
0

g(t − τ )�u(τ )dτu(t)dx =

t∫
0

g(t − τ )
∫
�

∇u(τ )∇u(τ )dxdτ

=

t∫
0

g(t − τ )
∫
�

∇u(t)∇ (
u(τ ) − u(τ )

)
dxdτ +

t∫
0

g(t − τ )
∥∥∇u(t)

∥∥2
2 dτ

=

t∫
0

g(t − τ )
∫
�

∇u(t)∇(u(τ ) − u(τ ))dxdτ +

t∫
0

g(τ )
∥∥∇u(t)

∥∥2
2 dτ .

(4:9)

Combining (4.8) with (4.9), we get

L(t) = −p
∥∥ut(t)∥∥22 − 2

⎛
⎝1 −

t∫
0

g(τ )dτ

⎞
⎠∥∥∇u(t)

∥∥2
2 + 2

∥∥u(t)∥∥pp
+ 2

t∫
0

g(t − τ )
∫
�

∇u(t)∇(u(τ )− u(τ ))dxdτ − (p + 2)

t∫
0

∥∥ut(τ )∥∥2∗ dτ

≥ −p
∥∥ut(t)∥∥22 − 2

⎛
⎝1 −

t∫
0

g(τ )dτ

⎞
⎠∥∥∇u(t)

∥∥2
2 + 2

∥∥u(t)∥∥pp − 2

⎛
⎝ p
2

t∫
0

g(t − τ )|∇u(τ )

−∇u(t)|2dτ +
1
2p

t∫
0

g(τ )
∥∥∇u(t)

∥∥2
2 dτ

⎞
⎠ − (p + 2)

t∫
0

∥∥ut(τ )∥∥2
∗ dτ

≥ −2pE(t) + (p − 2)

⎛
⎝1 −

t∫
0

g(τ )dτ

⎞
⎠∥∥∇u(t)

∥∥2
2 − 1

p

t∫
0

g(τ )
∥∥∇u(t)

∥∥2
2 dτ

− (p + 2)

t∫
0

∥∥ut(τ )∥∥2∗ dτ .

Using (3.7), we have

E(t) +

t∫
0

∥∥ut(τ )∥∥2∗dτ ≤ E(0),
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and then

L(t) ≥ −2pE(0) + (p − 2)

⎛
⎝1 −

t∫
0

g(τ )dτ

⎞
⎠∥∥∇u(t)

∥∥2
2 − 1

p

t∫
0

g(τ )
∥∥∇u(t)

∥∥2
2 dτ

+ (p − 2)

t∫
0

∥∥ut(τ )∥∥2∗ dτ

≥ −2pE(0) + (p − 2)

t∫
0

∥∥ut(τ )∥∥2
∗ dτ +

⎛
⎝(p − 2)

⎛
⎝1 −

t∫
0

g(τ )dτ

⎞
⎠ − 1

p

t∫
0

g(τ )dτ

⎞
⎠∥∥∇u(t)

∥∥2
2

≥ 2p

⎛
⎝p − 2

2p

⎛
⎝

⎛
⎝1 −

t∫
0

g(τ )dτ

⎞
⎠ − 1

p(p − 2)

t∫
0

g(τ )dτ

⎞
⎠∥∥∇u(t)

∥∥2
2 − E(0)

⎞
⎠

+ (p − 2)

t∫
0

∥∥ut(τ )∥∥2∗ dτ

≥ 2p

⎛
⎝p − 2

2p

⎛
⎝l − 1

p(p − 2)

t∫
0

g(τ )dτ

⎞
⎠∥∥∇u(t)

∥∥2
2 − E(0)

⎞
⎠ + (p − 2)

t∫
0

∥∥ut(τ )∥∥2∗ dτ

≥ 2p
(
p − 2
2p

k
∥∥∇u(t)

∥∥2
2 − E(0)

)
+ (p − 2)

t∫
0

∥∥ut(τ )∥∥2∗ dτ .

Since

∞∫
0

g(s)ds <
p/2 − 1

p/2 − 1 + 1/(2p)
,

we have

0 < k = l − 1
p(p − 2)

∞∫
0

g(τ )dτ ≤ l.

By Lemma 3.4, we have

u(t, ·) ∈ Vk and E(t) < dk for t ∈ [0,Tm) .

Then, we have

dk ≤ p − 2
2p

k
p

p−2

∥∥∇u(t)
∥∥ 2p
p−2
2∥∥u(t)∥∥ 2p
p−2
p

≤ p − 2
2p

k
∥∥∇u(t)

∥∥2
2 , for t ∈ [0,Tm) . (4:10)

The above inequality comes from [29]; see [28,29] for further details. Since E(0) <dk,

there exists δ > 0 (independent of T) such that

L(t) ≥ δ, for t ∈ [0,T]. (4:11)

From (4.10) and the definition of H(t), there also exists r > 0 (independent of T)

such that

H(t) ≥ ρ, for t ∈ [0,T]. (4:12)
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By (4.7), (4.11), and (4.12) it follows that

H(t)H′′(t) − p + 2
4

H′(t)2 ≥ δρ, for a.e. t ∈ [0,T].

Setting y(t) = H(t)-(p-2)/4, then we have

y′(t) ≤ p − 2
4

δρy(t)
p+6
p−2 , for a.e. t ∈ [0,T],

which implies that y(t) reaches 0 in finite time, say as t ® T*. Since T* is indepen-

dent of the initial choice of T, we may assume that T* <T. This tells us that

lim
t→T∗

H(t) = ∞.

In turn, this implies that

lim
t→T∗

∥∥∇u(t)
∥∥2
2 = ∞. (4:13)

Indeed, if
∥∥u(t)∥∥2

2 → ∞ as t ® T*, then (4.13) immediately follows. On the contrary,

if
∥∥u(t)∥∥2

2
remains bounded on [0,T*), then

lim
t→T∗

t∫
0

∥∥u(τ )∥∥2∗ dτ = ∞,

so that again (4.13) is satisfied. This implies a contradiction, i,e., Tm < ∞.

Conversely, for “only if part” we assume now that Tm < ∞. Notice first that, for every

t > 0, there holds

t∫
0

∥∥ut(τ )∥∥2
∗ dτ ≥ 1

t

⎛
⎝ t∫

0

∥∥ut(τ )∥∥∗dτ

⎞
⎠

2

≥ 1
t

(∥∥u(t)∥∥∗ − ‖u‖∗
)2.

Hence, by (3.7) and 0 <k ≤ l, we have

1
2
Ik(u(t)) ≤ E(t) ≤ E(0) − 1

t

(∥∥u(t)∥∥∗ − ‖u‖∗
)2. (4:14)

By Lemma 4.1 we have ∥∇u(t)∥2 ® ∞ as t ® Tm, i.e., ∥u(t)∥* ® ∞ as t ® Tm,

together with (4.14) which implies

lim
t→Tm

Ik(u(t)) = lim
t→Tm

E(t) = −∞. (4:15)

Since Jk(u(t)) ≤ E(t), by (4.15) we obtain that

Jk(u(t0)) ≤ E(t0) < dk Ik(u(t0)) < 0

for some t0 Î [0,Tm). These imply u(t0) Î Vk, E(t0) <dk.

Remark 4.1. The “if part” of Theorem 4.2 means that the solution to (1.1) blows up

in a finite time for suitable “large” initial data u0 and u1 in the sense of u0 Î Vk and E

(0) <dk. Also, (4.15) is an essential behavior for which the solution of (1.1) blows up in

a finite time.
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Remark 4.2. In Theorem 4.2, we restrict ω > 0 in order to prove the “only if part”.

In fact, if ω > 0, it is easy to obtain ∥u(t)∥* ® ∞ as t ® Tm from ∥∇u(t)∥2 ® ∞ as t ®
Tm, which implies E(t) ® -∞ as t ® Tm. If ω = 0 (only with weak damping), assuming

2 <p ≤ 2 + 2/n, then we can obtain ∥u (t)∥2 ® ∞ as t ® Tm (see [37] for details)

which yields that Theorem 4.2 also holds for the case of ω = 0 with 2 <p ≤ 2 + 2/n.

Next, we consider the blow-up solution of problem (1.1) for the case of weak damp-

ing (ω = 0) with arbitrary positive initial energy. We need an addition assumption on

the relaxation function g:

(G3) The function of e
t
2 g(t) is of positive in the following sense:

t∫
0

v(s)

s∫
0

e
s−r
2 g(s − τ )v(τ )dτds ≥ 0,

∀v Î C1([0,∞)) and ∀t > 0.

Obviously, g(t) = εe-t with 0 <ε < 1 satisfies assumptions (G1)-(G3). Let

I(u) = I1(u) = ‖∇u‖22 − ‖u‖pp .

Lemma 4.3. [27, Lemma 2.1]) Assume that g(t) satisfies (G1), (G3) and Λ(t) is a

function that is twice continuously differentiable, satisfying⎧⎨
⎩�′′(t) + μ�′(t) >

t∫
0
g(t − τ )

∫
�

∇u(τ )∇u(t)dxdτ ,

�(0) >, �(0) > 0,

for every t Î [0,Tm), where u(t) is the corresponding solution of problem (1.1) with

weak damping. Then the function Λ(t) is strictly increasing on [0,Tm).

Lemma 4.4. Suppose that u0 ∈ H1
0(�) , u1 Î L2(Ω) satisfy∫

�

u0(x)u1(x)dx > 0.

If the local solution u(t) of problem (1.1) with weak damping exists on [0,Tm) and

satisfies I(u(t)) < 0, then
∥∥u(t)∥∥2

2
is strictly increasing on [0,Tm).

Proof. Since u(t) is the local solution of problem (1.1) with weak damping, by a sim-

ple computation we have

1
2
d2

dt2
∥∥u(t)∥∥2

2 =
∫
�

(∣∣ut(t)∣∣2 + uutt
)
dx

=
∥∥ut(t)∥∥2

2 − μ

∫
�

uutdx − I(u(t)) +

t∫
0

g(t − τ )
∫
�

∇u(τ )∇u(t)dxdτ

≥ −μ

∫
�

uutdx +

t∫
0

g(t − τ )
∫
�

∇u(τ )∇u(t)dxdτ ,

where the last inequality uses I(u(t)) < 0. Then we get

d2

dt2
∥∥u(t)∥∥22 + μ

d
dt

∥∥u(t)∥∥22 >

t∫
0

g(t − τ )
∫
�

∇u(τ )∇u(t)dxdτ .
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Therefore, this lemma comes from Lemma 4.3.

Theorem 4.5. Assume (G1), (G3), (1.2) and (1.3) hold. Let u(x,t) be a local solution of

problem (1.1) with initial data (u0, u1) ∈ H1
0(�) × L2(�) . If ω = 0, g(s) also satisfies

∞∫
0

g(s)ds <
(p − 2)2

(p − 1)2
, (4:16)

and (u0,u1) satisfies the following conditions

E(0) > 0,
∫
�

u0(x)u1(x)dx > 0, I(u0) < 0, ‖u0‖22 >
2pE(0)

(kp − 2)λ
. (4:17)

where

k = l − 1
p(p − 2)

∞∫
0

g(s)ds > 0

and l is the first eigenvalue of the operator -Δ under homogeneous Dirichlet bound-

ary conditions, then the corresponding solution u(t) of problem (1.1) blows up in a finite

time, i.e., Tm < ∞.

Proof. Without loss of generality, we may assume μ = 1. First, by a contradiction

argument we claim that

I(u(t)) < 0, (4:18)

and

∥∥u(t)∥∥2
2 >

2pE(0)
(kp − 2)λ

, (4:19)

for every t Î [0,Tm). If this was not the case, then there would exist a time t1 such

that

t1 = min
{
t ∈ (0,Tm) : I(u(t)) = 0

}
> 0. (4:20)

By the continuity of the solution u(t) as a function of t, we see that I(u(t)) < 0 when t

Î (0,t1) and I(u(t)) = 0. Thus by Lemma 4.4 we have

∥∥u(t)∥∥22 > ‖u0‖22 >
2pE(0)

(kp − 2)λ
,

for every t Î [0,t1). In addition, it is obvious that
∥∥u(t)∥∥2

2
is continuous on [0,t1].

Thus the following inequality is obtained:

∥∥u(t1)∥∥22 >
2pE(0)

(kp − 2)λ
. (4:21)

On the other hand, it follows from the definition of E(t) and (3.7) that

1
2

⎛
⎝1 −

t1∫
0

g(s)ds

⎞
⎠∥∥∇u(t1)

∥∥2
2 − 1

p

∥∥u(t)∥∥pp ≤ E(0). (4:22)
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Since 0 < k ≤ l ≤ 1 −
∫ t1

0
g(s)ds , from (4.22), we have

k
2

∥∥∇u(t1)
∥∥2
2 − 1

p

∥∥u(t)∥∥pp ≤ E(0).

Noting the fact that I(u(t1)) = 0, we then have

kp − 2
2p

∥∥∇u(t1)
∥∥2
2 ≤ E(0).

Thus, by the Poincaré inequality and (4.16) we have

∥∥u(t1)∥∥22 ≤ 2pE(0)
(kp − 2)λ

. (4:23)

Obviously, there is a contradiction between (4.21) and (4.23). Thus, we have proved

that (4.18) is true for every for every t Î [0,Tm). Furthermore, by Lemma 4.4 we see

that (4.19) is also valid on t Î [0,Tm).

Secondly, we prove that the solution of problem (1.1) blows up in a finite time. The

proof is similar “if part” in the Theorem 4.2, for the convenience of the readers, we

give the sketch of the proof here. Assume by contradiction that the solution u is glo-

bal. Then, for sufficiently large T > 0 we consider F(t) : [0,T] ® ℝ+ defined by

�(t) =
∥∥u(t)∥∥22 +

t∫
0

∥∥u(τ )∥∥22 dτ + (T − t) ‖u0‖22 .

A direct computation yields

�′(t) = 2
∫
�

u(t)ut(t)dx +
∥∥u(t)∥∥22 − ‖u0‖22 = 2

∫
�

u(t)ut(t)dx + 2

t∫
0

(u(τ ), ut(τ ))dτ

and

�′′(t) = 2
〈
utt, u(t)

〉
+ 2

∥∥ut(t)∥∥22 + 2
(
u(t), ut(t)

)
, for a.e. t ∈ [0,T].

where (u(t),ut(t)) = ∫Ωu(t)ut(t)dx. By multiplying (1.1) by u and integrating over Ω,

we have

〈
utt, u(t)

〉
+

(
u(t), ut(t)

)
= −∥∥∇u(t)

∥∥2
2 −

∫
�

t∫
0

g(t − τ )�u(τ )dτu(t)dx +
∥∥u(t)∥∥pp ,

which implies

�′′(t) = 2
∥∥ut(t)∥∥2

2 − 2
∥∥∇u(t)

∥∥2
2 − 2

∫
�

t∫
0

g(t − τ )�u(τ )dτu(t)dx + 2
∥∥u(t)∥∥pp .
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Therefore, we have

�(t)�′′(t) − p + 2
4

�′(t)2

= 2�(t)

⎛
⎝∥∥ut(t)∥∥22 − ∥∥∇u(t)

∥∥2
2 −

∫
�

t∫
0

g(t − τ )�u(τ )dτu(t)dx +
∥∥u(t)∥∥pp

⎞
⎠

− (
p + 2

)⎛
⎝∫

�

u(t)ut(t)dx +

t∫
0

(
u(τ ), ut(τ )

)
dτ

⎞
⎠

2

= 2�(t)

⎛
⎝∥∥ut(t)∥∥22 − ∥∥∇u(t)

∥∥2
2 −

∫
�

t∫
0

g(t − τ )�u(τ )dτu(t)dx +
∥∥u(t)∥∥pp

⎞
⎠

+
(
p + 2

)⎛
⎝�(t) − (

�(t) − (T − t) ‖u0‖22
)⎛
⎝∥∥ut(t)∥∥22 +

t∫
0

∥∥ut(τ )∥∥2
2 dτ

⎞
⎠

⎞
⎠ ,

(4:24)

where Ψ(t) : [0,T] ® ℝ+ is the function defined by

�(t) =

⎛
⎝∥∥u(t)∥∥22 +

t∫
0

∥∥u(τ )∥∥22 dτ
⎞
⎠

⎛
⎝∥∥ut(t)∥∥2

2 +

t∫
0

∥∥ut(τ )∥∥22 dτ
⎞
⎠

−
⎛
⎝∫

�

u(t)ut(t)dx +

t∫
0

(
u(τ ), ut(τ )

)
dτ

⎞
⎠

2

.

Using the Schwarz inequality, we have

⎛
⎝∫

�

u(t)ut(t)dx

⎞
⎠

2

≤ ∥∥u(t)∥∥22 ∥∥ut(t)∥∥2
2 ,

⎛
⎝ t∫

0

(
u(τ ), ut(τ )

)
dτ

⎞
⎠

2

≤
t∫

0

∥∥u(τ )∥∥22 dτ
t∫

0

∥∥ut(τ )∥∥22 dτ ,

and

∫
�

u(t)ut(t)dx +

t∫
0

(
u(τ ), ut(τ )

)
dτ ≤ ∥∥u(t)∥∥2

⎛
⎝ t∫

0

∥∥ut(τ )∥∥22 dτ
⎞
⎠
1
2 ∥∥ut(t)∥∥2

⎛
⎝ t∫

0

∥∥u(τ )∥∥22 dτ
⎞
⎠
1
2

≤ 1
2

∥∥u(t)∥∥22
t∫

0

∥∥ut(τ )∥∥22 dτ +
1
2

∥∥ut(t)∥∥22
t∫

0

∥∥u(τ )∥∥2
2 dτ .

These three inequalities entail Ψ(t) ≥ 0 for every [0,T]. Using (4.24), we get

�(t)�′′(t) − p + 2
4

�′(t)2 ≥ �(t)ϒ(t) for a.e. t ∈ [0,T], (4:25)
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where

ϒ(t) = − p
∥∥ut(t)∥∥22 − 2

∥∥∇u(t)
∥∥2
2 + 2

∥∥u(t)∥∥pp − (p + 2)

t∫
0

∥∥ut(τ )∥∥22 dτ

− 2
∫
�

t∫
0

g(t − τ )�u(τ )dτu(t)dx.

(4:26)

Combining (4.9) with (4.26), we get

ϒ(t) = −p
∥∥ut(t)∥∥2

2 − 2

⎛
⎝1 −

t∫
0

g(τ )dτ

⎞
⎠∥∥∇u(t)

∥∥2
2 + 2

∥∥u(t)∥∥p
p

+ 2

t∫
0

g (t − τ )

∫
�

∇u(t)∇(u(τ ) − u(t)) dxdτ − (p + 2)

t∫
0

∥∥ut(τ )∥∥22 dτ

≥ −p
∥∥ut(t)∥∥2

2 − 2

⎛
⎝1 −

t∫
0

g(τ )dτ

⎞
⎠∥∥∇u(t)

∥∥2
2 + 2

∥∥u(t)∥∥p
p − 2

⎛
⎝ p
2

t∫
0

g(t − τ )|∇u(τ )

− ∇u(t)|2dτ +
1
2p

t∫
0

g(τ )
∥∥∇u(t)

∥∥2
2 dτ

⎞
⎠ − (p + 2)

t∫
0

∥∥ut(τ )∥∥22 dτ

≥ −2pE(t) + (p − 2)

⎛
⎝1 −

t∫
0

g(τ )dτ

⎞
⎠∥∥∇u(t)

∥∥2
2 − 1

p

t∫
0

g(τ )
∥∥∇u(t)

∥∥2
2 dτ

− (p + 2)

t∫
0

∥∥ut(τ )∥∥22 dτ .
Using (3.7) for ω = 0, we have

E(t) +

t∫
0

∥∥ut(τ )∥∥22 dτ ≤ E(0),

and then

ϒ(t) ≥ −2pE(0) + (p − 2)

⎛
⎝1 −

t∫
0

g(τ )dτ

⎞
⎠∥∥∇u(t)

∥∥2
2 − 1

p

t∫
0

g(τ )
∥∥∇u(t)

∥∥2
2 dτ

− (p + 2)

t∫
0

∥∥ut(τ )∥∥22 dτ

≥ −2pE(0) + (p − 2)

t∫
0

∥∥ut(τ )∥∥22 dτ +

⎛
⎝(p − 2)

⎛
⎝1 −

t∫
0

g(τ )dτ

⎞
⎠ − 1

p

t∫
0

g(τ )dτ

⎞
⎠∥∥∇u(t)

∥∥2
2

≥ 2p

⎛
⎝ p − 2

2p

⎛
⎝

⎛
⎝1 −

t∫
0

g(τ )dτ

⎞
⎠ − 1

p(p − 2)

t∫
0

g(τ )dτ

⎞
⎠ ∥∥∇u(t)

∥∥2
2 − E(0)

⎞
⎠

+ (p − 2)

t∫
0

∥∥ut(τ )∥∥22 dτ

≥ 2p

⎛
⎝ p − 2

2p

⎛
⎝l − 1

p(p − 2)

t∫
0

g(τ )dτ

⎞
⎠ ∥∥∇u(t)

∥∥2
2 − E(0)

⎞
⎠ + (p − 2)

t∫
0

∥∥ut(τ )∥∥22 dτ

≥ 2p
(
p − 2
2p

k
∥∥∇u(t)

∥∥2
2 − E(0)

)
+ (p − 2)

t∫
0

∥∥ut(τ )∥∥22 dτ

≥ 2p
(
p − 2
2p

λk ‖u0‖22 − E(0)
)
+ (p − 2)

t∫
0

∥∥ut(τ )∥∥22 dτ ,
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where the last inequality follows from Lemma 4.4 and the Poincaré inequality. Since

0 <k < 1, we have pk - 2 < (p - 2)k. From (4.17), we get

(p − 2)k
2p

λ ‖u0‖22 − E(0) >
pk − 2
2p

λ ‖u0‖22 − E(0) > 0.

Therefore, there exists δ1 > 0 (independent of T) such that

ϒ(t) ≥ δ1 for t ∈ [0,T]. (4:27)

From Lemma 4.4, (4.17) and the definition of F(t), there also exists r1 > 0 (indepen-

dent of T) such that

�(t) ≥ ρ1 for t ∈ [0,T]. (4:28)

By (4.24), (4.27), and (4.28) it follows that

�(t)�′′(t) − p + 2
4

�′(t)2 ≥ δ1ρ1 for a.e. t ∈ [0,T].

The rest of the proof is the same as “if part” in the Theorem 4.2, so we omit it here.

5. The boundedness of global solution
In this section, we will prove the boundedness of global solutions u(t) to problem (1.1)

for strong (ω > 0) damping, namely,

u ∈ L∞ (
R+;H1

0 (�)
) ∩ W1,∞ (

R+; L2 (�)
)
. (5:1)

Throughout this section, we assume that

E
(
u(t), ut(t)

)
= E(t) ≥ dk for all t ≥ 0. (5:2)

If (5.2) holds, then the solution to problem (1.1) for strong (ω > 0) damping is global.

Indeed, if u(t) blows up in finite time, by Theorem 4.2, E(t0) <dk for some t0 > 0.

Hence, E(u(t),ut(t)) = E(t) <dk for all t ≥ t0. This is a contradiction.

Since ut(t) ∈ H1
0(�) for a.e. t ≥ 0, we combine Poincare inequality with (3.7) and

(5.2) to show that, for every t > 0 we have

t∫
0

∥∥ut(τ )∥∥22 dτ ≤ C

t∫
0

∥∥ut(τ )∥∥2∗ dτ ≤ C(E(0) − dk).

Letting t ® ∞, we conclude that

∞∫
0

∥∥ut(τ )∥∥22 dτ < ∞,

∞∫
0

∥∥∇ut(τ )
∥∥2
2 dτ < ∞. (5:3)

Furthermore, observe that by the definition of E(t), we have

∥∥u(t)∥∥pp ≥ pl
2

∥∥∇u(t)
∥∥2
2 − pE(0). (5:4)
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Since

〈
utt , u(t)

〉
=

d
dt

∫
�

ut(t)u(t)dx − ∥∥ut(t)∥∥22 for a.e. t ∈ [0,∞].

from (4.5), we have

d
dt

⎛
⎝∫

�

ut(t)u(t)dx +
1
2

∥∥u(t)∥∥2∗
⎞
⎠ = ‖ut‖22−‖∇u‖22+‖u‖pp−

∫
�

t∫
0

g(t − τ )�u(τ )dτu(t)dx. (5:5)

Combining (4.9) with (5.5), we get

d
dt

⎛
⎝∫

�

ut(t)u(t)dx +
1
2

∥∥u(t)∥∥2∗
⎞
⎠

= ‖ut‖22 − ‖∇u‖22 + ‖u‖pp +
t∫

0

g(τ )
∥∥∇u(t)

∥∥2
2 dτ

+

t∫
0

g(t − τ )
∫
�

∇u(t)∇(u(τ ) − u(t))dxdτ

≥ ‖ut‖22 − ‖∇u‖22 + ‖u‖pp +
1
2

t∫
0

g(τ )
∥∥∇u(t)

∥∥2
2 dτ − 1

2
(g ◦ ∇u)(τ )

≥
(
1 − 1

p

)
‖u‖pp − 1

2
‖∇u‖22 − E(t) ≥ (p − 1)l − 1

2
‖∇u‖22 − pE(0),

(5:6)

where the last inequality follows from (5.4).

Inspired by Gazzola and Weth [38] we now prove a crucial stability result.

Lemma 5.1. Assume (G1), (G2), (1.2) and (1.3) hold. If u(t) is a solution to problem

(1.1) for strong (ω > 0) damping satisfying E(u(t),ut(t)) = E(t) ≥ dk for all t ≥ 0, then we

have

lim
t→∞

∥∥∇u(t) − ∇u(t + η)
∥∥
2 = 0, ∀η > 0.

Proof. Fixed h > 0, by (3.7), for every t > 0 we have

∫
�

∇u(t) − ∇u(t + η)
∣∣2dx = ∫

�

∣∣∣∣∣∣
t+η∫
t

∇ut(τ )dτ

∣∣∣∣∣∣
2

≤ η

∫
�

t+η∫
t

∣∣∇ut(τ )
∣∣2dτ

≤ Cη

t+η∫
0

∥∥ut(τ )∥∥2∗ dτ ≤ Cη(E(t) − E(t + η)).

Since E(t) is nonincreasing and lower bounded by dk, E(t) admits finite limit as t ® ∞.

This immediately yields the assertion by letting t ® ∞ in the previous inequality.

Theorem 5.2. Assume (G1), (1.2) and (1.3) hold. In addition, g(s) also satisfies

∞∫
0

g(s)ds <
p − 2
p − 1

. (5:7)
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If u(t) is a solution to problem (1.1) for strong (ω > 0) damping satisfying E(u(t),ut(t))

= E(t) ≥ dk for all t ≥ 0, then the solution u(t) satisfies (5.1).

Proof. Assuming by contradiction that (5.1) fails, namely that there exists a diverging

sequence tj ⊂ ℝ+ such that∥∥ut(tj)∥∥2
2 +

∥∥∇u(tj)
∥∥2
2 → ∞ as j → ∞. (5:8)

Then, by the definition of E(t) and (5.2), we have ∥u(tj)∥p ® ∞ as j ® ∞. By Sobolev

inequality we get∥∥∇u(tj)
∥∥
2 → ∞ as j → ∞. (5:9)

By (5.9) and continuity, we can select a diverging sequence t̄m ⊂ R+ such that∥∥u(t̄m)∥∥2
∗ = m2 + 1 . Moreover, by Lemma 5.1, we have

lim
τ→∞ sup

{
η > 0 :

∥∥u(t) − u(t + η)
∥∥

∗ < 1, ∀t ≥ τ
}
= ∞.

Then, we find a second diverging sequence τm ⊂ ℝ+ such that

m2 ≤ ∥∥u(t)∥∥2∗ ≤ m2 + 2 for every t ∈ [t̄m, t̄m + τm]. (5:10)

In view of (5.3), for all m sufficiently large,

there exists tm ∈ [t̄m, t̄m + 1] such that
∥∥ut(tm)∥∥22 < 2dk. (5:11)

Clearly, up to renaming τm into (τm - 1) we now have

m2 ≤ ∥∥u(t)∥∥2∗ ≤ m2 + 2 for every t ∈ [tm, tm + τm]. (5:12)

Also, for m large enough, there holds∫
�

u(tm)ut(tm)dx +
1
2

∥∥u(tm)∥∥2
∗ ≥ 0. (5:13)

Indeed, by (5.10), (5.12), Young, Hölder, and Poincaré inequalities,∫
�

u(tm)ut(tm)dx +
1
2

∥∥u(tm)∥∥2∗ ≥ 1
2

∥∥u(tm)∥∥2
∗ − ∥∥u(tm)∥∥2

∥∥ut(tm)∥∥2

≥ 1
4

∥∥u(tm)∥∥2
∗ − c′

∥∥ut(tm)∥∥2
2 ≥ m2

4
− 2c′dk ≥ 0

for every m large enough. By (5.13) integrating (5.6) on the time interval [tm,t] for t

Î (tm,tm + τm] entails

∫
�

u(t)ut(t)dx +
1
2

∥∥u(t)∥∥2∗ ≥
t∫

tm

(
(p − 1)l − 1

2

∥∥∇u(τ )
∥∥2
2 − pE(0)

)
dτ ≥ c′1

t∫
tm

∥∥u(τ )∥∥2
∗ dτ (5:14)

provided m is sufficiently large, where the last inequality follows from (5.7) and the

equivalent norm ∥·∥* and H1
0(�). On the other hand, by Young, Hölder, and Poincaré

inequalities,
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∫
�

u(t)ut(t)dx +
1
2

∥∥u(t)∥∥2
∗ ≤∥∥u(t)∥∥2∥∥ut(t)∥∥2 + 1

2

∥∥u(t)∥∥2∗ ≤ 1
2

∥∥ut(t)∥∥22 + c′2
∥∥u(t)∥∥2∗ . (5:15)

Set

�m(t) =

t∫
tm

∥∥u(τ )∥∥2∗ dτ for every t ∈ (tm, tm + τm].

Combining (5.14) with (5.15), we have the following differential inequality

�′
m(t) ≥ γ�m(t) − c′3

∥∥ut(t)∥∥22 for every t ∈ (tm, tm + τm],

for some g > 0 and c3 > 0. Hence

�′
m(t)

�m(t)
≥ γ − c′3

∥∥ut(t)∥∥22
�m(t)

for every t ∈ (tm, tm + τm]. (5:16)

By (5.12), we have

�m(t) ≥ m2(t − tm) ≥ m2τm

2
for every t ∈ [tm +

τm

2
, tm + τm]. (5:17)

Then, from (5.16) and (5.17), we obtain

�′
m(t)

�m(t)
≥ γ − 2c′3

∥∥ut(t)∥∥22
m2τm

for every t ∈ [tm +
τm

2
, tm + τm]. (5:18)

Integrating (5.18) over [tm + τm
2 , tm + τm] and taking into account (5.3) we find

log�m(tm + τm) ≥ log�m(tm + τm) +
γ τm

2
− 2c′3α

m2τm
,

where we have set α =
∫ ∞

0

∥∥ut(τ )∥∥22 dτ . Hence, up to enlarging m, we may take the

exponential and we finally conclude that

tm+τm∫
tm

∥∥u(τ )∥∥2∗ dτ = �m(tm + τm) ≥ 1
2

�m

(
tm +

τm

2

)
e
γ
τm

2 ≥ m2τm

4
e
γ
τm

2 , (5:19)

where we also used (5.17). On the other hand, by inequality (5.12), it turns out that

tm+τm∫
tm

∥∥u(τ )∥∥2∗ dτ ≤ (
m2 + 2

)
τm,

which contradicts (5.19) as τm ® ∞. Therefor, (5.8) is false and {u(t)} is bounded,

namely there exists C such that∥∥ut(t)∥∥22 + ∥∥∇u(t)
∥∥2
2 ≤ C, for all t ≥ 0.
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