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technique because the sinc-Gaussian technique has a convergence rate of the
exponential order, O(e" @2/ /N) where o, h are positive numbers and N is the
number of terms in sinc-Gaussian technique. As is well known, the other sampling
techniques (classical sinc, generalized sinc, Hermite) have a convergence rate of a
polynomial order. In this paper, we use the Hermite-Gauss operator, which is
established by Asharabi and Prestin (Numer. Funct. Anal. Optim. 36:419-437, 2015), to
construct a new sampling technique to approximate eigenvalues of regular
Sturm-Liouville problems. This technique will be new and its accuracy is higher than
the sinc-Gaussian because Hermite-Gauss has a convergence rate of order
O(e2m-hoN2y (/N). Numerical examples are given with comparisons with the best
sampling technique up to now, i.e. sinc-Gaussian.

MSC: 34L16; 65L15; 94A20

Keywords: sinc methods; Sturm-Liouville problem; error bounds; convergence rate

1 Introduction

Let E,(¢), o > 0, be the class of entire functions satisfying the following condition:

IF(O)] < e(IR¢])e, ¢ eC, 11

where ¢ is a non-decreasing, non-negative function on [0,00). On the class E,(¢),

Schmeisser and Stenger [2] have introduced the so-called sinc-Gaussian operator

Gunlf1©):= Y fluh)sine(h™ig —m)e N0 e, (12)

neZy(h1¢)

where h € (0,7/0], a := (m —ho)/2, N € N, and

Zn(¢) = {neZ:|[M¢ +1/2] -n| <N}
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Note that the summation in (1.2) depends on the real part of ¢. Here, the sinc function is
defined as

(1.3)

The authors of [2] investigated a bound of the approximating function from the class E, (¢)
by the sinc-Gaussian operator. They proved that [2], if f € E, (¢), then we have for ¢ € C,
IS¢ <N

—aN

1£(¢) = Gan[F1(2)| < 2[sin(h~7¢) @ (I | + RN +1))Ex (h757) —

Nervd (1.4)

where
En(t) := cosh2at) + O(N?), as N — oc.

Annaby and Asharabi [3] have constructed a new sampling technique to approximate
eigenvalues of second order Birkhoff-regular eigenvalue problems using sinc-Gaussian op-
erator. Then some authors have used this technique, which is called the sinc-Gaussian
technique, to approximate eigenvalues of boundary value problems rather than the clas-
sical sinc technique; see, for example, [4—6]. The convergence rate of sinc-Gaussian tech-
nique is of order O(e~*~"IN'2/\/N)), where o, h is defined above, which is highly better
than the speed of the classical sinc method. The classical sinc method was investigated by
Boumenir and Chanane [7]. Then several studies appeared; see e.g. [4, 8—10], with different
classes of boundary value problems.

For the class E, (¢), Asharabi and Prestin [1] defined another localization operator H, x,
which is called a Hermite-Gauss operator, as follows:

W2
Hnl1©) = Y {(uw)ﬂnhm;—nhwnh)}

h:N
neZy(h1¢)

x sinc? (h*lg - n)e’%(h_lf’”ﬂ, (1.5)

where /1 € (0,27 /0] and B := (27w — ho)/2. For f € E;(¢) and ¢ € C, |J¢| < N we have [1]

-BN
[f () = Han[f1©)] < 2[sin® (7w g) [o(INg | + AN + 1)) En (h7'S¢) jm, (1.6)
where
4ePPIN o261 e2Bt
Ent):= JABN(1 - (t/N)?) T Qe T (1 e2niN0y
= 2cosh(2Bt) + O(N™'?), as N — oo. (1.7)

The bound of (1.6) shows that the Hermite-Gauss operator has a higher accuracy than the
sinc-Gaussian operator because it has a convergence rate of order O(e-?*~#IN/2//N).
We would like to mention here that the sinc-Gaussian and Hermite-Gauss operators are
generalized in [11] and extended for entire functions of two variables satisfying some con-
ditions; see [12].
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This paper is concerned with constructing a new sampling technique to approximate
eigenvalues of Sturm-Liouville problems with separate-type boundary conditions using
Hermite-Gauss operator #;, n. This sampling technique, which is called a Hermite-Gauss
technique, is new and it is expected to give us higher accuracy results. Since alternative
samples will be used in our sampling operator, the amplitude error appears in our scheme.
For this reason, we will derive estimates for the amplitude error associated with Hermite-
Gauss operator, H,n. This will be done in the next section. Section 3 contains the tech-
nique adopted and the associated error analysis. The last section involves numerical ex-

amples and comparisons.

2 Amplitude error

In this section, we will investigate the amplitude error associated with the Hermite-Gauss
operator (1.5). The amplitude error arises when the exact values f”(nh), i = 0,1, of (1.5)
are replaced by closer approximate ones. We assume thatf(i)(nh) are close to f(nh), i.e.

there is ¢ > 0, sufficiently small such that

sup [f(i)(nh) —f(i)(nh)‘ <&, (2.1)
neZy(h1¢)

for all i = 0,1. Now, we define the amplitude error as follows:

AN(E) = Hunlf1(©) = Han [F1(©)
2
= Y ) -Fu) <1 . M) dinc? (i — e o icn?

N
neZy (h1¢)
b 0 ) =F )} (¢ - ) sine? (7 - n)e RO, (2.2)
neZy (h1¢)

In the following theorem, we will estimate a bound for the amplitude error Ax(z) on com-
plex domain C. Unreservedly, in this paper we need the bound of amplitude error only
on a real domain because the eigenvalues of Sturm-Liouville problem (3.1)-(3.2) are real
numbers but in the general cases the eigenvalues are not necessarily real and this tech-
nique will be used for approximating eigenvalues of different classes of boundary value

problems.

Theorem 2.1 Leto >0,k € (0,27 /0], and B := (2w —ho)/2. Assume that (2.1) holds. Then
we have for { € C, |3¢| <N

|An(©)] < 2¢ <1 + 2’?\[ i )(1 + /NJB)elr O Relg-pIaN, (2.3)

—+_
w2 T

Proof From the definition of the amplitude error (2.2) and in view of (2.1), we get

s 2071y
|AN(§)| <eg Z (|SinC2(h_1C —Vl)| + 2,3|Sln (h § n)|>|e_%(h1§_n)2|

72N
neZn(h1¢)
+ eh Z |sin('¢ — n) sinc(h'¢ - n)e’%(h_lg’”)2 | (2.4)
T

neZy(h1¢)
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Since sinc and sin are entire functions of exponential type, we have

’sinc(h’lg - n)’ < el IR ’sin(h_lg“ - n)’ < TN,
Therefore
28 h TN B (=12
lAn(2)] < 8(1 + o+ —)e”’ mI¢l Z lemn e, (2.5)
TN neZy (h=1¢)
Using the inequality

’e—42| < e M0 (3¢)°
in (2.5) with the hypothesis |J¢| < N implies

2 h BN “1gy
|AN(;>|58(1+—‘9 +;>e(2’”5h R § e, (2.6)

2N
neZy(h1¢)

The summation in (2.6) is estimated [3], Eq (28), as follows:

Z e_%(}’flm‘:"’)2 <21 ++/N/Bm)e PN, (2.7)
neZn(h-1¢)
Combining (2.7) and (2.6) yields (2.3). O

In the real domain the bound of the amplitude error will be

A(e,N) := 28<1+ % + ﬁ)(1+\/N/ﬂ7r)e_"‘”‘“\[, (2.8)

T

which is of the uniform type. This bound will be used when we investigate the error anal-

ysis of this technique.
3 The technique and its error analysis

In this section, we discuss the technique and study its error analysis. The error analysis is
derived with two types of errors. Now consider the regular Sturm-Liouville problem

-y (@) + q(6)y(t) = u?y(t), te(0,bl,neC, (3.1)

with separate-type boundary conditions

on1y(0, 1) + a12y'(0, 1) = 0, (3.2)

a21y(b’ ,LL) + azz)’/(b; M) = O, (3.3)

where o € R, 1 <i,j <2 such that |og| + |axe| # 0, k = 1,2, and ¢(-) € L'[0,b] is a real
valued function. Let y(-, #) denote to the solution of (3.1) satisfying the following initial
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conditions:

¥(0, 1) = auza, ¥ (0, 1) == —an. (3.4)

From the theory of Sturm-Liouville problems, cf e.g. [13, 14], the solution y(x, 1) and its
derivative y'(x, i) are entire functions in u for ¢ € [0, b] and problem (3.1)-(3.3) has a count-
able set of real and simple eigenvalues {;Lf}l‘?fa which can be ordered as an increasing se-
quence tending to infinity,

2_,2_ 2
Mo < Uy <y < -+ —> 00.
Moreover, the eigenvalues are the zeros of the characteristic function, which is defined by

D() := any(b, i) + agy (b, ). (3.5)

The authors of [15] used the successive iterations to prove that D(-) can be written as

o]

D(1) = —ny0ipaju sin(ub) — ez cos(ub) + ety Y T" cos(yub)
n=0

ad sin(ub) >
— 010011 Z T i + 019 Z TT" COS(/Lb)

n=0 n=0

2~ . sin(ub)
—azzauZTT TM, (3.6)

n=0

where the operators T and T are Volterra operators acting in the space of continuous
functions, C[0, b], which are defined, respectively, by

(T9) (1) = /0 Wq(t)y(t,u)dt, (37)
(Ty)(x, 1) = /0 cos(u(x — 1)) q(0)y(t, ) dt, (3.8)

and 77 is the identity operator. All series in (3.6) converge uniformly on [0,5] for any
u € C. Asiin [15] we split D(-) into parts via

D(u) = Ki(p) + Un(w), k€ No, (3.9)

where Ky is known,

k
Ki(u) == —appopppsin(bp) — aygorny cos(bp) + i Z T" cos(bp)
n=0

L sin(bp) L
— 010011 Z T" " + 02012 Z TT” COS(b/L)

n=0 n=0

k-1 .

~ b

— 020011 Z TT"M, (3.10)

n=0 K
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and U () involves the infinite sum of integral operators

sin(bu)
m

o0 o0
U () = agronp Z T" cos(bp) — agr0m Z Ui
n=k+1 n=k
sin(bu)

+ 0p 1o Z ’TTM COS(b/,L) — 020011 Z TT” "

n=k+1 n=k

(3.11)

Lemma 3.1 Assume that q(-) € L[0, b], then we have Uy(-) € Ey(¢) for all k € Ny.

Proof Since g(-) € L}[0, b], the solution y(b, ) and its derivative y'(b, 1) are entire func-
tions in p and then D(u) is an entire function. Therefore, Uy is also an entire func-
tion and then we will prove that U satisfies the condition (1.1) of the class E,(¢). Since
q(-) € L'[0, b], we have, cf. e.g. [16], Eq (2.2)-(2.4), for all k € Np and u € C

(e ¢]

Z ” cos tu (b)| < pre?H,

ek (3.12)

Z TT” cos(tu) (b)| < tpre?™H,

n=k

and

o0 . t R

> T"[Sm( M)}(b) < chpe’™H,

s (3.13)
3.13

2~ .| sin(tuw) bl

ZTT (b)| < cbtpre’™H,

n=k w

where pg =) 02, () ¢ = fo lg(2)| dt, and ¢ := 1.709. Combining (3.12), (3.13), and (3.11),

n!

we obtain for all k € Ny
U ()| < M, (314)
and thus Uy(-) € Ep(¢) where ¢ := M is a constant function which is given by

M := |agronz| pra1 + et |chpg + Tlopona | pre1 + cbT |oazom | o (3.15)
O

Since Ux(-) € Ep(p), we approximate the function Uy using the Hermite-Gauss operator,
(1.5), where # € (0,27 /b] and B := (2 — bh)/2 and then, from (1.6), we obtain

(1) = Hin U ()| < Tuni(n),  meR, (3.16)

where the function Ty, y is defined as

o 2 AN
Tnk() := &M |sin® (B ) | <1 + \/nﬁ_N) jm. (3.17)
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In (3.14), we let & € R because all eigenvalues of problem (3.1)-(3.3) are real. The samples
Ur(nh) = D(nh)— Ki(nh) and U, (nh) = D' (nh) - K, (nh), n € Zn(h™ 11) cannot be computed
explicitly in the general case, so we compute them numerically and this is the reason for
the appearance of the amplitude error. According to (3.5), we have

D(nh) = any(l, nh) + axdy(1, nh),
D' (nh) = 0210,¥(1, nh) + agzaity(l, nh).

The solution y(1,nh) and its derivative with respect to ¢, 9;y(1,nk), can be computed
directly by solving the initial value problem defined by (3.1) and (3.4) at the nodes
{nh},ez,, 0r1,)- Also, we can solve the initial value problem (3.1) and (3.4) approximately to
find the solution y(1, 1) and its derivative, d,y(1, i), as a function of the parameter © and
consequently, we can easily calculate the derivatives of solution, 9,y(1, n/) and aity(l, nh)
at the nodes {nh},,cz, 41, In all examples of Section 4, we use the code ‘ParametricND-
Solve’ of Mathematica to compute these values numerically. Now let Z/le(nh) and LNI,/((nh)
be the approximations of the samples Uy (nh) and U, (nh), n € Z (1), respectively. Let

sup |U,§i)(nh) —Z/N{,Ei)(nh)| <g i=1,2.
neZn (h~1 1)

Therefore we get, ¢f Theorem 2.1,
[N U (1) - Hin U1 )] < Ae,N),  peR, (3.18)

where A(g,N) is defined in (2.8). Now let Dy (i) := Ki(i) + Hun [Ue] (). Combining
(3.9), (3.16), and (3.18) implies

D) - D) < T () + Ale,N),  p€R. (3.19)

Now we determine enclosure intervals for the eigenvalues. Let (1*)? be an eigenvalue, that
is, let D(u*) = 0, and (ux «)? be its approximation, i.e. Dy x(tn ) = 0. In view of (3.19), we
obtain

D (17)] < Tama(n”) + Ale,N),  peR.

Since 5N,k(u*) is given and Ty sk (1*) + A(e, N) is computable, we can define an enclosure
for p*, by solving the following system of inequalities:

~Taoni (1) = Ale, N) < Dag (1) < Taoa (1*) + Ale, N).

Its solution in an interval will be denoted by Iy .. In the following theorem, we find a
bound for the error |u* — pun /.

Theorem 3.2 Let (11*)? be an eigenvalue of problem (3.1)-(3.3). For sufficiently large N, we
have the following estimate:

Tnni(uni) + Ale,N)
infeepy, D0

|~ ] < : (3.20)

for all k € Nyg. Moreover, |(t* — un x| —> O when N — oo and ¢ — 0.
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Proof Since D(un ) — 751\[,;((,11«;\;,1() =D(uni) — D(n*), then from (3.19) and after replacing
by un i we get

| D(uni) = D(*)| < Tk (ni) + Ale,N).

Using the mean value theorem yields

|(* = i) D' Q)] < Tamic(nsd) + A6, N), - ¢ € Ink C Inees (3.21)

for some ¢ € Jy i := (min{u*, un i}, max{u*, uni}). Since the zeros of D(u) are simple, for
sufficiently large N we have inf;cf . [D'(¢)| > 0 and then we get (3.20). In view of (3.17)
and (2.8), the right hand-side of (3.20) goes to zero uniformly when N — oo and ¢ — 0,
and therefore |u* — un | — 0 for all k € N. O

4 Examples and comparisons

This section includes three examples to illustrate our technique. All examples are com-
puted in [3] with the Hermite sampling technique and the authors compare their results
with the results of the classical sinc technique. In our approximations, i of (3.10) has
fewer terms than is used in [3]. Note that the accuracy of any sampling technique increases
when N is fixed but k increases. As is well known, the sinc-Gaussian is better than the
other sampling techniques (classical sinc, generalized sinc, Hermite) because of the con-
vergence rate of all these techniques being of polynomial order; see e.g. [7, 8, 10, 15-17].
As we mentioned before, the sinc-Gaussian has convergence rate of an exponential order.
Therefore, we compare our results only with the results of the sinc-Gaussian technique. As
predicted by the error estimates, the Hermite-Gauss technique gives us a higher accuracy
result than the results of sinc-Gaussian technique and the accuracy increases when N is
fixed, but /1 decreases without any additional cost except that the function is approximated
on a smaller domain. Denote by Eg and Ep the absolute errors associated with the results
of the sinc-Gaussian and Hermite-Gauss technique, respectively. We use Mathematica to
derive the following examples.

Example 4.1 Consider the Sturm-Liouville problem

—y'(t) - y(t) = *y(t), te(0,1], (4.1)

with the separate boundary condition of the form

¥ (0,1) =y(A, 1) = 0. (4.2)

In this case, the characteristic function is

D(u) :=cos(v'1+ u?), (4.3)

and the exact eigenvalues are p? := (2/ + 1)>7%/4 — 1, | € Z. Taking k = 2 in (3.10) and
making some computations gives

sin(ut) . sin(u) — 1 cos(i)
21 81’3

Ko (1) = cos(u) -

’
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Table 1 Comparison of Hermite-Gauss and sinc-Gaussian, N=7 and h=1
n Sinc-Gaussian Hermite-Gauss Eg Ey
I 1.211363322529934 1211363322984587 4547 x 107 3242 x 107
7% 4.605063512773664 4.605063506885792  5.888 x 1077 2309 x 10714
W3 7.790059528741462  7.790059531660102 2919 x 107 5329 x 107"°
s 10.950007028138126  10.950007028004358 1338 x 10710 8.882 x 107>
s 14.101754824352438  14.101754824207502 1449 x 10710 1776 x 107"°
Table 2 Comparison of Hermite-Gauss and sinc-Gaussian, N=7 and h=1
n Sinc-Gaussian Hermite-Gauss Eg Ey
73 2.978188104491012 2.978188107069353  2.578 x 109 3553 x 1074
|75 6.203097476060051 6.203097420189766 5587 x 1078 6048 x 10713
"3 9.371576077716716 9.371576153977529 7626 x 108 2114 x 10713
W4 12.526518591941482 12.526518687065739 9513 x 108 9,006 x 10713
s 15.676099922268510  15.676099962274689  4.001 x 1078 1741 x 10713
and then U, € B{®. Table 1 shows the first five approximate eigenvalues of problem (4.1)-
(4.2) using our techniques with N = 7 and % = 1 comparing with the results of the sinc-
Gaussian technique.
Example 4.2 The boundary value problem
-y () - y(t) = *y(t), te0,1], (4.4)
y(O, M) =)’(1¢ /'L) = 0: (45)
is a special case of problem (3.1)-(3.3) when a1 = ag; = 1 and a3 = gy = 0. The character-
istic function of this problem is
sin(y/1 + u?)
D) i= ———————, (4.6)

V1+u?

and the exact eigenvalues are ulz := (wl)> -1, | € Z. Taking k = 2 in (3.10), we have after

some calculations

sinp sin(u) — pcos(u)
+ .

Ka(u) = - E

Table 2 lists the first five approximate eigenvalues using our technique with N =7 and
h =1 in comparison with the results of the sinc-Gaussian technique.

Example 4.3 In this example, we introduce the Sturm-Liouville problem

-y () + £y(t) = y(t), t<[0,1], (4.7)
y/(o) ) =J’/(1: u)=0. (4.8)
The characteristic function is
1 o 1 ) 1 3
D) i==1Fi| g (L-w), 31 )+ (L= hF( 1+ 2 (1-47), 551), (4.9)
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Table 3 Comparison of Hermite-Gauss and sinc-Gaussian, N=5and h=1

n Sinc-Gaussian Hermite-Gauss Eg Ey

I 0.570034071342830  0.5700364899997709  2420x107°  1.195%107°
75 3.203133558042493 3.2031339580748464  4.001x107  2.233x107"
3 6.310731292841075 6.310731561722118 2690x1077  1.040x107"
1
1

M4 9442760320228043  9442760427276498  1.071x107  5665x107"
s 12579758893652732  12.579758897900415  4242x10°  6.036x107'2

where 1 F; is the hypergeometric function. In this case, putting k = 0 in (3.10) implies after

some calculations

w(B+2u*)cospu +3(u?—1)sinp
1213 ’

Ko(p) := —pu sin(u) +

As in the last examples, we summarize our results of this example in Table 3. To compute
the absolute error, the exact eigenvalues are computed approximately by Mathematica.
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