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Abstract

In the last decades greenhouse gases emissions are a great concern globally. It is well known that from the
agricultural sector, ruminant livestock due to natural fermentation process contributes substantially to the increase in
methane production. Methane emissions represent the second contributors to global warming but it has a potential of 23
times more than carbon dioxide. Ruminal methanogenesis represents an energy loss to the animal besides contribution to
greenhouse gases emissions. Many attempts have been initiated to reduce ruminal methane productions in an ecologically
and sustainable way, such us: immunization against ruminal methanogenesis, defaunation, uses of chemicals additives,
ionophore antibiotics, plant extracts or diet changes. This paper presents the methanogenesis process in rumen, its impact
on climate change and a number of mitigation strategies that can be effective in vivo and in vitro.
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1. Introduction

In the global worming terms, methane is a
particularly potent greenhouse gas (GHG) which has
a global potential 21 times that of carbon dioxide
[19], and accounts for 16% of total global GHGs
emissions. From anthropogenic sectors arise
approximately 70% of methane production and
agriculture accounts for about two-third [21] enteric
fermentation, a natural process produced by ruminant
animals, being responsible for one-third of methane
from agriculture [32].

The enteric methane produced by ruminants
has its origin in the rumen [29].
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Ruminal digestion of feed by the
microorganisms, under anaerobic conditions, results
in the production of acetate, propionate and butyrate
(volatile fatty acids) which are used by the animal as
energy source, and the production of ruminal gases
such as CO2 and CH4, eliminated through eructation
[29]. Since many years, national governments and
international organisations have therefore put much
effort in mapping the soil. Soil maps are also
increasingly used to derive spatially distributed soil
inputs to environmental and ecological process
models. For instance, soil maps provide important
information about physical, chemical and biological
soil properties needed by acidification and
groundwater flow models [1].

Methanogenesis process besides its negative
impact on the environment represents a loss of 2-15%
of gross energy intake [14] for the animal, leading to
an unproductive use of dietary energy [22].
Techniques to manipulate this process include
elimination of protozoa [15, 30], use of antibiotics
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(such Monensin) and bacteriocins such as Nisin [7],
use of lipids sources (fatty acids, oils, and seeds) [42;
11], organic acids [33] and ionophores [13] or change
in dietary composition [27]. Another attempt was
immunization and biological control.

These techniques were used by Wright et al.
(2004) and implied the production of a vaccine
against three rumen methanogens [44]. The results
from the study showed a decrease in CH4 production
by nearly 8% in Australian sheep. Another vaccine
prepared with a different set of methanogens species
and tested in other geographical region did not
achieve a positive result, maybe because the
community of methanogens species differs under
different conditions [44].

Cook et al. (2008) used passive immunization
with antibodies produced by laying hens against three
common methanogens present in the digestive tract
of ruminants. These treatment decreased CH4

production in vitro, but the effect was lost after 24
hours of incubation [9].

Plant extracts are a new, safe and inexpensive
way to reduce methane emission from ruminants [22]
since several plant secondary metabolites have
shown antimicrobial activity [6], as they can modify
ruminal fermentation in a way that the efficiency of
utilization of feed energy is enhanced and methane
production is decreased [12].

2. Methanogens and ruminal methanogenesis

Methanogens represent a distinct group of
microorganisms [31] which belong to the domain
Archaea and the phylum Euryarchaeota [38]. They
possess unique cofactors such as coenzyme M, HS-
HTP, F420 and lipids [31] important for
methanogenesis process. The F420 cofactor is
necessary for the activity of hydrogenase and formate
dehydrogenase enzymes and allows them to fluoresce
blue-green at 420 nm [1].

Coenzyme M acts as terminal methyl carrier in
methanogenesis process and represents the smallest
organic factor [40]. The cell wall of methanogens
contain nonrigid surface layers [40] consisting of
pseudomurein in Methanobrevibacter and
Methanobacterium [3], heteropolysaccharide acid in
Methanomicrobiales order [4] and protein in
Methanomicrobium [3].

Among methanogens, the cell shape and
characteristics vary as well. The most important
methanogen found in rumen, Methanobrevibacter
ruminantium is rod shaped [3] with pseudomurein in
the cell envelope and requires coenzyme M [31],
hydrogen, carbon dioxide and formate for methane
production [3]. From the same order
(Methanobacteriales) such M. ruminantium,

Methanobacterium formicicum [38] is nonmotile rod
or filament shaped with pseudomurein in the cell wall
[31]. The species that belong to Methanobacteriales
and Methanomicrobiales orders are methanogens
without cytochromes and their energy source is
represented by hydrogen and formate [31]. The
species from Methanosarcinales order are coccoid
shaped without motility [3] and they have
cytochromes [38]. Cytochromes or membrane bound
electron carriers, play a role in the oxidation of
methyl group to carbon dioxide [38].
Methanosarcina spp. can use a large range of
substrate such as H2, CO2, methanol, methylamines
and acetate [3].

The major part of methanogenesis in
ruminants occurs in the large fermentative chamber
known as rumen [36]. In here methanogens utilize
hydrogen and carbon dioxide to produce methane but
the Methanosarcina spp. are an exception because
they grow slowly on these two substrates [18] and
therefore these species utilize methanol and
methylamines to produce methane [37]. The
methanogenesis process in the rumen is the last step
in the anaerobic conversion of organic matter to
methane. This entire course involves a large number
of microorganisms (fig.1).

Bacteria species, fungi and protozoa hydrolyze
the proteins, starch and plant cell wall polymers in
amino acids and sugars [31].

The amino acids and sugars are then fermented
to volatile fatty acids (VFAs), hydrogen and carbon
dioxide [1]. Methanogens species using both
hydrogen (80%) and formate (18%) [18], produce the
methane gas.

During ruminal methanogenesis, the
hydrogenotrophic methanogens that use CO2 or
acetate as their carbon source and H2 the donor
electron source have an important role [2] (fig. 2).
Carbon dioxide is carried by methanofuran (MFR)
and is reduced to formate [26]. This first step
involves the electrons donated by ferredoxin (Fd)
reduced with H2 [26].

The formyl group created is transferred to
tetrahydrometanopterin (H4MPT) forming formyl-
H4MPT [26] which is reduced to methenyl- H4MPT
and then to methylene- H4MPT [26]. These reactions
are catalyzed by 5, 10-
methenyltetrahydrometanopterin cyclohydrolase and
methylene- H4MPT: coenzyme F420 oxidoreductase
[26]. In the next step, the reaction catalyzed by
methyl- H4MPT: HS-CoM methyltransferase (Mtr)
transfers the methyl group to H4MPT forming methyl
- H4MPT.

The last step involves methyl-CoM which is
reduced to CH4 by the reaction of methyl- coenzyme
M reductase [26].
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Figure 1. Microbial fermentation in the rumen. Primary digestive microorganisms digest feed to simple monomers
which are in turn utilized by both primary and secondary fermenters. Methanogens prevent the accumulation of

hydrogen by reducing carbon dioxide to methane [31]

Methanogens species have been classified into
28 genera and 113 species but in the nature can be
expected to occur many more [20]. From the rumen
few methnaogens have been isolated. The cultured
methanogens have been assigned to seven species:
Methanobrevibacter ruminantium,
Methanobrevibacter millerae, Methanobrevibacter
olleyae, Methanobacterium formicicum,
Methanobacterium bryantii Methnaomicrobium
mobile and Methanoculleus olentangyi [20].

Also, Methanobrevibacter smithii and
Methanosarcina spp. have been isolated from the
rumen lately [20]. To analyze the total methanogens
in the rumen some molecular techniques need to be

used, such as PCR to amplify the 16S rRNA genes of
archaea [20]. In some studies, Nicholson et al. (2007)
analyzed the diversity of methanogens in the rumen
using temporal temperature gradient gel electrophoresis
[34]. The results showed that 66 methanogens sequences
revealed the presence of methanogens species belonging
to Methanobacteriales, Methanosarcinales and to the
uncultured archaeal lineage [34]. The remaining 25
sequence were similar to Methanobrevibacter
ruminantium and some were similar M. smithii [34].
Methanobrevibacter ruminantium and
Methanomicrobium mobile were found in the bovine
rumen to be the most important population by Yanagita
et al. (2000) [45].
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Figure 2. Methanogenesis pathway from H2 and CO2. The seven enzymatic pathways in the formation of methane in
hydrogenotrophic methanogens are shown [2]

Clones similar with the methanogens from
Methanobacteriales order were found in ovine rumen
by Wright et al. (2004) [44]. Whitford et al. (2001)
detected Methanobrevibacter rumiantium as the
largest group of methanogens in lactating dairy cattle
[43].

3. Methane mitigation strategies

Uses of ionophore antibiotics
The most affective antibiotic in ruminant

fermentation is monensin, although other such as
nigercin, gramicidin and lasalocid are available [24].
Monensin is produced by Streptomyces
cinnamonensis and it is known to increase milk
production [39] and they do not alter the diversity and
quantity of rumen methanogens [17]. They shift the
bacterial population from gram-positive to gram-
negative and this means a change in rumen
fermentation from acetate to propionate [36]. This is
the reason why monensin does not affect methane
production by altering the methanogens population,
but instead inhibits the growth of bacteria and
protozoa [38]. Beauchemin and coworkers (2009)
included monensin in diets at a dose of <20 mg kg-1

but this dose did not affected the methane production
[5]. In higher doses such as 24-35 mg kg -1 diet,
monensin decreased methane production by 4-10 %
[35]. A decrease by up to 30% was been reported by
Guan and coworkers in 2006 when they used a dose
level of 33 mg kg-1 diet of monensin [13]. These
studies suggest that ionophore

antibiotics, in special monensin, can be used for
short-term decrease of methane production and also
can improve the feed utilization [36].

Plant extracts as feed additives
Some feed additives from plant extracts have

been analyzed for their ability to reduce rumen
methane production [25]. Such plants extracts are
saponins, tannins and essential oils, but in the last
years many other feed additives were studied.
Tavendale and coworkers (2005) used condensed
tannins from Lespedeza cuneata against rumen
methane production and found that reduced methane
emissions by up to 57% in terms of g/kg DMI [41].
Other authors found that sheep consuming 41 g of
tannin containing Acacia mearnsii per kg DM
produced methane with 13% less than sheep feed
normal forage [8]. Saponins containing Sapindus
saponaria reduced methane emissions by up to 20%
without affecting methanogens number in Rusitec
studies [16]. In other studies, saponins was found to
inhibit protozoa number in vitro and to limit
hydrogen availability for methanogenesis [14]. It was
found that essential oils present the same effect such
as monensin by inhibiting gram-positive bacteria
[38].

Uses of lipids as feed additives
Lipids are an option for feed

supplementation that has been studied for their
effects on methanogenesis process [38]. Oils, such as
coconut oil, was used in RUSITEC simulators against
rumen fermentation and showed that the main

67



GIUBURUNCA Mihaela et al./ProEnvironment 7(2014) 64 - 70

component (lauric acid) inhibited methanogenesis
[10]. Lauric acid may have the same mechanism such
monensin by inhibiting gram-positive bacteria
including cellulolytic ruminococci [23]. Eugenè and
coworkers (2008) made a meta –analysis of methane
output with lipid supplementation in lactating dairy
cows and found that 1% of lipids decreased methane
production with 2.2 % [11]. In some studies on sheep
and cattle, addition of lipids on diet, decreased
methane production with 5.6 % [4]. Martin et al.
(2009) made an excellent review on in vivo
experiments with lipids to investigate their effect on
rumen methanogenesis [29].

Defaunation
Defaunation represents the process that

eliminates protozoa population from the rumen. This
treatment has been used to investigate the role of
protozoa population in rumen and to study the effect
on methane production [38]. It is known that
methanogens in rumen are attached on protozoa and
they share a symbiotic relationship with participation
in hydrogen transfer [28]. Methanogens species that
are associated with protozoa are responsible for 9 to
37 % of the methane production in the rumen [28]
and for this reason treatments that affect protozoa
population in rumen may have an effect on
methanogenesis process [38]. Hegarty et al.
suggested that defaunation treatment reduced
methane with 13% but this impact varied with the diet
[15]. Other authors suggested that defaunation had an
effect on rumen methanogens for more than two
years and diet supplementation with ionophore
reduce methane production in short-term [13].

Immunization against rumen methanogens
In the last years researchers tried to found a

way to inhibit methanogens actions without affecting
other ruminal microorganisms. For this, it is essential
to evaluate methanogens-specific targets. The
genome sequence of Methanobrevibacter
ruminantium, strain M1 by Leahy et al. (2010),
provided new perspective on the lifestyle of the most
important methanogen found in rumen [25]. This is
also essential in evaluation of a vaccine against
methanogenesis process, which can be a long-term
methane mitigation technology [25]. Researchers
from Australia demonstrated that the vaccination
against rumen methanogens can be a method in
methane mitigation strategies [44]. They immunized
sheep with a mixed whole-cell preparation from three
methanogens and it was observed that these vaccine
reduced methane production with 7.7 %. Cook et al.
(2008) used IgY avian antibodies against rumen
metanogens [9]. The results showed a reduction of

methane production after 12 h of incubation but after
24 h the effect was lost [9].

After all the studies on vaccination against
rumen methanogens, it was found that methanogens
populations can be influenced by diets and
geographic position and this fact can be a challenge
to prepare an incolum which can be effective across
different production systems [36].

4. Conclusion

The strategies discussed above and many
others can have a potential effect on ruminl methane
production but these strategies have been tested
experimentally, and thus need more research to
confirm that they are effective. Researchers found
many aspects about rumen methanogens and these
can contribute to further evaluations in order to
improve ruminants productivity and to decrease
ruminal methane emissions. Maybe farmers are
unlikely to adopt some strategies and technologies
unless they are cost-effective and they cannot
improve animal productivity. Uses of feed additives
and uses of high-quality forages may be more likely
to encourage the farmers but a strategy that is
effective in long-term and that has not an indirect
effect on methanogenesis is needed.
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