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Abstract. The subject of this paper is the numerical simulation of the interaction of two-dimensional incom-

pressible viscous flow and a vibrating airfoil. A solid airfoil with two degrees of freedom can rotate around an
elastic axis and oscillate in the vertical direction. The numerical simulation consists of the finite element solution of
the Navier-Stokes equations coupled with a system of ordinary differential equations describing the airfoil motion.
The time-dependent computational domain and a moving grid are taken into account with the aid of the Arbitrary
Lagrangian-Eulerian formulation of the Navier-Stokes equations. High Reynolds numbers require the application
of a suitable stabilization of the finite element discretization. Numerical tests prove that the developed method is
sufficiently accurate and robust. The results are compared with experiments.
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method, stabilization for high Reynolds numbers

AMS subject classifications. 65M60, 76M10, 76D05

1. Introduction. The interaction of fluid flow with vibrating bodies plays a significant
role in many areas of engineering. We can mention, for example, development of airplanes or
turbines and some problems from civil engineering; see, e.g., [6]. In the design of airplanes
the point of interest is the analysis of deformations and vibrations of wings induced by flowing
air. In this paper we are concerned with numerical solution of an aeroelastic problem of two
dimensional viscous incompressible flow over an airfoil with two degrees of freedom in a
wind tunnel. The airfoil is represented by a solid body, which can perform vertical and
torsional vibrations. A mathematical model of the flow is formed by the system of two-
dimensional non-stationary Navier-Stokes equations and the continuity equation, equipped
with initial and mixed boundary conditions.

Due to the moving airfoil, the computational domain is time-dependent. This requires
the use of a suitable technique for the simulation on a moving computational grid. Here we
apply the Arbitrary Lagrangian-Eulerian (ALE) method [11].

The flow problem is discretized by the stabilized finite element method, which leads to
a large system of nonlinear algebraic equations. We overcome the nonlinearity by the use of
the Oseen linearization, resulting in a sequence of linear systems of saddle-point type. They
are solved by the direct solver UMFPACK [3]. The numerical results are compared with wind
tunnel measurements.

2. Mathematical model. We consider two-dimensional non-stationary viscous incom-
pressible flow past a vibrating airfoil inserted into a channel (wind tunnel) in a time interval� ���	��


, where
�
���

. The symbol ��� denotes the computational domain occupied by the fluid
at time � . The boundary ����� of the domain ��� consists of mutually disjoint sets ��� � ��� and����� on which different types of boundary conditions are prescribed. By ��� we denote im-
permeable walls and the inlet, through which the fluid flows into the domain ��� , ��� denotes
the outlet, where the fluid flows out and � � � is the boundary of the profile at the time � . In 
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FIG. 2.1. Model scheme.

contrast to �!��� , we assume that ��� and ��� are independent of time. The flow is character-
ized by the velocity field "$#%"�&(' � �	) , and the kinematic pressure *+#
*�&,' � �	) , for '.-/���
and ��- � �0�	��
 . The kinematic pressure is defined as 1�243 , where 1 is the pressure and 3 �5�
is the constant fluid density. The motion of the profile is described by functions 67&8�	) , repre-
senting the rotation around the elastic axis TR, and 9:&,�	) , denoting the vertical displacement;
see Figure 2.1.

2.1. ALE formulation of the Navier-Stokes equations. The time dependent computa-
tional domain can be treated with the aid of a smooth, one-to-one ALE mapping [11]; �=< �7>@?AB� � �DC ?AE'�& CF� �	)G# ; � & C ) � �7- � �0�H��
JI(2.1)

The coordinates of points 'K-.� � are called spatial coordinates, the coordinates of pointsC -L�7> are called ALE coordinates or reference coordinates. The ALE mapping reflects the
deformation of the computational domain; see Figure 2.2.

We define the domain velocity in the following wayMN & CF� �	)G# ��O� '�& C$� �	) I(2.2)

This velocity can be expressed in spatial coordinates asN &(' � �	)G# MNQP ;LR�S� &,'G) � �	T I(2.3)

Let us consider a function UV#WU!&(' � �	) � '/-V��� � �X- � �0�	��
J� U!&,' � �	)7-LY , where Y is the set of
real numbers. Let ZU!& C$� �	)�#[U!& ; �\& C ) � �	) . We define the ALE derivative of the function U
by ]_^] � U!&,' � �	)=# � MU�`� & CF� �	) �DC # ; R�S� &,'G) I(2.4)
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FIG. 2.2. The comparison of Lagrange(left) and ALE(right) transformations.

The application of the chain rule gives]_^] � Ua# ��U�`�cb Nedgf U I(2.5)

By using this relation we can obtain the Navier-Stokes equations in the form]_^] � " b � &8":h N ) dif 
 " b f *_hkj0lm"/# � in � � �
div "/# � in ��� I(2.6)

The symbol j denotes the kinematic viscosity of the fluid. We assume that j �n� is constant.

2.2. Equations for the moving airfoil. The equations of airfoil motion are derived from
the Lagrange equations for the generalized coordinates 9 and 6 . These equations have the
form [6] o�p &,�	) b:q rp &8�	) b:s tp &8�	)=#.u�&8�	) �(2.7)

where the stiffness matrix

o
, the viscous damping q and the mass matrix s have the formo #wv$xzy7y x{y�|x}|{y x}|{|Q~ � q #�v ] y7y ] y7|] |zy ] |}|�~ � s #�v�� ��|��| ��|Q~ I

The force vector u and the generalized coordinates

p
readu�&8�	)G#�v h���&,�	)� &8�	) ~ � p &,�	)G#�v 9:&,�	)67&8�	) ~ I

The symbol � stands for the component of the aerodynamic force acting on the profile in
the vertical direction,

�
is the torsional aerodynamic moment with respect to the elastic
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axis,

] y7y ,

] y�| ,

] |{y ,

] |{| are the coefficients of structural damping, � | � � | � � andx yXy � x |}| � x y�| � x |{y denote the static moment around the elastic axis TR, the moment of
inertia around TR, the mass of the profile and the stiffnesses of the profile elastic support.
The force � and moment

�
acting on the airfoil are given by the relations�e#$h����}�}� �%���H� S � � ���`���O� �(2.8) � #���� �}� �����8� �H� S � �����`� &�h��g) � P(� S	���	 8¡ h ��¢O£S	���  ,¡ T �O� I(2.9)

Here � is the airfoil depth in the direction orthogonal to the plane � S � � � , representing the
length of a wing segment in consideration. Further, ¤ is the unit outer normal to ��� � on � � � ,¥ ��� is the Kronecker symbol, i.e.,¥ ��� #$� for ¦!#¨§ � and

¥ �©� # � for ¦�ª#:§ �� S � � � are the coordinates of points on � � � , � ¢�£� , ¦=#«� �­¬ , are the coordinates of the elastic
axis ' ¢�£ , and � ��� #53¯®°h�* ¥ ��� b j v �`± �� � � b �`± �� � � ~�² I(2.10)

2.3. Initial and boundary conditions. The Navier-Stokes equations are completed by
the initial condition "@&,' �³� )�#W" > � '¨-´� > �(2.11)

and the following boundary conditions. On � � we prescribe the Dirichlet boundary condition"¶µ �{· #n"7� I(2.12)

On the outlet � � we consider the so-called do-nothing boundary conditionhn&�*_h�*O¸­¹�º})»¤ b j �`"�`¤ # � on ��� �(2.13)

where *`¸­¹�º is a given reference pressure. On ����� we consider the condition"@µ � � � # N µ � � � I(2.14)

Moreover, we equip system (2.7) with the initial conditions67& � )=#¼6�> � r6X& � )=#W6 S �9:& � )G#W9½> � r9:& � )G#W9 S �(2.15)

where 6�> � 6 S � 9½> � 9 S are input parameters of the model. The initial value problem (2.7),
(2.15) is transformed to a problem for a first-order system and then discretized by the fourth-
order Runge-Kutta method.

The interaction of a fluid and an airfoil consists in the solution of the flow problem (2.6),
(2.11)–(2.14) coupled with the structural model (2.7) and (2.15). In what follows, we shall
be concerned with the discretization of the flow problem and describe the algorithm for the
numerical solution of the complete fluid-structure interaction problem.
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3. Discretization of the flow problem.

3.1. Discretization in time. We construct an equidistant partition of the time interval� ���	��

, formed by time instants

� #5��>¿¾/� S ¾ d�did ¾ � , �	ÀÁ# x»Â , where Â �n� is a time step.
We use the approximation "¶&8�	Ã0)@Ä$" Ã , *�&8��Ã0)�ÄW* Ã of the exact solution and N &,�	Ã0)�Ä N Ã
of the domain velocity at time �	Ã . On each time level �	Ã ��S , under the assumption that the
domain � �8ÅgÆ   is already known, using the second-order backward difference formula, we
obtain the problem to find functions " Ã ��S < � �8ÅgÆ   ?AEY � and * Ã ��S < � �8ÅgÆ   ?AEY , such thatÇ " Ã ��S hÉÈ0Ê" Ã b Ê" Ã R�S¬ Â b P &," Ã ��S h N Ã ��S ) dif T�" Ã ��S h+j�l¿" Ã ��S b f * Ã ��S # ���

div " Ã ��S # � in � �8ÅiÆ   I(3.1)

This system is considered with the boundary conditions (2.12), (2.13), and (2.14). The sym-
bols Ê" Ã and Ê" Ã R�S mean the functions " Ã and " Ã R�S transformed from the domain � �8Å and� �8ÅÌË   to the domain � �8ÅiÆ   using the ALE mapping. This means that Í" � #5" �}Î ; � ¡ Î ;�R�S� ÅgÆ   .

3.2. Discretization in space. The starting point for the approximate solution is the
weak formulation of problem (3.1). Because of simplicity we shall use the notation �w#�7� ÅiÆ   � "¨#W" Ã ��S � *Ï#:* Ã ��S and �!�Ð#¼����� ÅgÆ   . The appropriate function spaces areÑ #[&,9 S &(��)H) � �ÓÒ #FÔiÕÉ- Ñ×Ö ÕXµ �}·�Ø}�}� # �ÚÙ}�ÓÛ #¼Ü � &J��) I(3.2)

We introduce the formsÝ &°Þ � � Þ �­ß )G# Ç¬ Â &8" � Õ�) b j�& f " � f Õ�) b &	&	&," � h N Ã ��S ) dif )»" � Õ�)(3.3) hÁ&à* � f«d Õ�) b & f«d " ��á ) �U!& ß )G# �¬ Â¨â ÈÚÊ" Ã h¨Ê" Ã R�S � Õ�ãahk� �}ä * ¸³¹�º Õ d ¤ ��� �
where Þ×#Q&8" � *`)¶- Ñæå Û.� Þ � #K&8" � � *ç)¶- Ñèå Û.�=ß #K&8Õ �³á )é- Ò å Û

, and & d � d )
denotes the scalar product in the spaces Ü � &(��) , � Ü � &J��) 
 � , and

� Ü � &(��) 
 �ÌêÚ� .The weak solution is defined as a couple Þ$#F& u � *ç) , such that it satisfies the conditionsÞ«- Ñëå Û.� Ý &°Þ � Þ �³ß )G#¼U!& ß ) �íì�ß #F& v �Há )7- Ò å Û.�
(3.4)

and " satisfies the boundary conditions (2.12) and (2.14).
Now we define an approximate solution. The spaces

Ñ �HÒ´�³Û
are approximated by their

finite-dimensional subspaces
Ñ+î �	Ò î �­Û î

, ï�-�& ��� ï�>g) , ï�> �c� , whereÒ î #FÔ�Õð- ÑÉî�Ö Õ=µ � · Ø}� � # �0ÙGI
The approximate solutions is defined as a couple Þ î #F&," î � * î )7- Ñ î å Û î , such thatÝ &JÞ î � Þ î �³ß î )G#
U!& ß î ) �ñìéß î #F&,Õ î �Há î )7- Ò î å Û î �(3.5)

and " î satisfies a suitable approximation of the boundary conditions (2.12) and (2.14).
In the construction of the spaces

Ñ+î �³Û î
we assume that the domain � is a polygonal

approximation of the computational domain at time �³Ã ��S . By ò î ( ï¼-«& ��� ï�>g) ) we denote
a triangulation of � with standard properties from the finite element method; see, e.g., [2].
Then

Ñðî
and

Û î
are defined as continuous piecewise polynomial functions satisfying the

Babuška-Brezzi condition; see [1]. Here we use the well-known Taylor-Hood 1 � 2Ì1 S ele-
ments over a triangulation ò î of � . This means that the velocity components are continuous
in � , quadratic on each element óô-Lò î , and the pressure is continuous piecewise linear.
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3.3. Stabilization of the finite element method. For high Reynolds numbers approxi-
mate solutions can contain nonphysical spurious oscillations. In order to avoid them, we shall
apply the streamline-diffusion and div-div stabilization based on the formsÜ î &JÞ � � Þ �³ß )=# �õ¶ö{÷iø ¥ õ v Ç¬ Â "khkj0lm" b & N�dgf )»" b f * � & N�dif )»Õ ~ õ �(3.6) ù î & ß )=# �õ¶ö{÷iø ¥ õ v �¬ Â &,È Ê" Ã h Ê" Ã R�S ) � & NQdif )»Õ ~ õ �1 î &JÞ �³ß )X# �õ¶ö{÷gø Â õ & f«d " � f[d Õ�) õ �(3.7)

where Þ$#F&8" � *ç)DÞ � #«&8" � � *ç) ß #F&,Õ �Há ) �¥ õ � Â õ«ú � are suitable parameters, N #¼" � h N Ã ��S is the transport velocity, and & d � d ) õ is
the scalar product in the space Ü � &(óÉ) or

� Ü � &(óÉ) 
 � .The solution of the stabilized discrete problem is Þ î #F&," î � * î )7- Ñðîûå Û î , such that
the component " î satisfies the boundary conditions (2.12) on � � and (2.14) on � � , andÝ î &JÞ î � Þ î �³ß î ) b Ü î &°Þ î � Þ î �³ß î ) b 1 î &JÞ î �³ß î )G#¼U î & ß î ) b

ù î & ß î ) �(3.8) ìéß î #[&,Õ î �³á î )7- Ò îûå Û î I
If we solve problem (3.8), we obtain an approximate solution at time �HÃ ��S , i.e., " Ã ��Sî #
" î
and * Ã ��Sî #+* î defined in the domain � �8ÅiÆ   #¼� .

Now, we describe how to choose parameters
¥ õ and Â õ . We follow the works [7] and

[10]. The magnitude of the velocity field varies in different subdomains of � . That is why
we split the domain into two subdomains. The diffusion component dominates on the first
subdomain and the convective component on the second. On both subdomains we choose
these parameters in a different way. The parameter

¥ õ is based on the transport velocity N
and the viscosity j . We put ¥ õ # ¥ � ï õ¬�ü N ü�ýOþ�ÿ õ�� � &�� N õ ) �(3.9)

where � N õ # ï õ ü N ü�ý þ ÿ õ��¬ j(3.10)

is the so-called local Reynolds number and ï õ is the size of the element ó measured in the
direction of N . The function

� & d ) is non-decreasing in dependence on � N õ in such a way
that for local convective dominance &�� N õ � �g) � A � and for local diffusion dominance&�� N õ ¾Q�g) � A �

. The parameter
¥ � -
& �0� � 
 is chosen suitably. The function

� & d ) can be
defined, e.g., by � &�� N õ )G#����
	 � � N õ� � ��
 I(3.11)

The parameters Â õ are defined byÂ õ # Â � ï õ ����� �=µ N µ � &���� N õ ) � Â � -+& ��� � 
°I(3.12)

In practical computations we use the values
¥ � # ��I �}¬�� and Â � #F� .
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4. Simulation of the flow induced airfoil vibrations. In the solution of the complete
coupled fluid-structure interaction problem we apply the following algorithm:

1) Assume that the approximate solution Þ.#«&8" î � * î ) of the flow problem (3.8) at time
levels ��Ã R�S and �	Ã is known and the force � and torsional moment

�
are computed from

(2.8) and (2.9).
2) Extrapolate � and

�
on the time interval

� �	Ã � ��Ã ��S 
 .
3) Compute the displacement 9 and angle 6 at time �HÃ ��S as the solution of system (2.7).
4) Determine the position of the airfoil at time �	Ã ��S , the domain � �8ÅiÆ   , the ALE mapping; �8ÅgÆ   and the domain velocity N Ã ��S .
5) Solve the discrete stabilized problem (3.8) at time ��Ã ��S .
6) Compute � and

�
from (2.8) and (2.9) at time � Ã ��S and interpolate � and

�
on� � Ã � � Ã ��S 
 .

7) Is a higher accuracy needed? YES: go to 3); NO: � < # � b � and go to 2).
The nonlinear flow problem (3.8) is solved with the aid of the Oseen iterationsÝ &JÞ ÿ À �î � Þ ÿ À ��S �î �³ß î ) b�� î &JÞ ÿ À �î � Þ ÿ À ��S �î �­ß î ) b�� î &JÞ ÿ À ��S �î �³ß î )(4.1) #¼U!& ß î ) b � î & ß î ) for all

ß î - Ò î å Û î �
where Þ ÿ > �î is defined on the basis of the approximate solution on the previous time level.

The ALE mapping is constructed in such a way that the reference domain � > is divided
in three subdomains by two ellipses with center at the elastic axis of the airfoil. In the interior
ellipse containing the airfoil the ALE mapping is defined as the rigid body motion, outside
of the exterior ellipse the ALE mapping is identity. In the domain between both ellipses the
ALE mapping is defined by interpolation.

The knowledge of the ALE mapping at time instants �HÃ R�S � ��Ã � ��Ã ��S allows us to approx-
imate the domain velocity with the aid of the second-order backward difference formulaN Ã ��S &('G)G# Ç '´hðÈ ; � Å & ; R�S� ÅgÆ   &('G)	) b ; � ÅÌË   & ; R�S� ÅiÆ   &('G)	)¬ Â � ':-´� �8ÅiÆ   I(4.2)

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5 3

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

FIG. 5.1. Anisotropically adapted mesh.

5. Numerical solution. The described method was applied to the simulation of flow
induced vibrations of a profile (shown in Figure 5.1) inserted into a channel (wind tun-
nel) in the case of the following data: j¨#ô� I � d � � R�� m � 2 s, x{yXy #ô� �Ú�z� I � N/m

� x}|{| #È I!� Nm/rad
� x{y7| # �0I � N/rad

� x}|zy # ��I � N
� � # ��I �#"{¬ � kg

� ��| #Fh ��I �{�z� � Ç kgm
� �i| #�0I �z�{�z��$%�

kgm� ,
] yXy # �0I �

Ns/m
� ] |}| # ��I �{� Ç Nms/rad

� ] y7| # ��I � Ns/rad
� ] |{y #�0I �

Ns/m
� ��# ��I �#" m

�'& # length of the profile chord # �0I � ¬ m.
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FIG. 5.2. (�)
*,+ and -.)
*,+ for the inlet velocity of the air /10�243�5 .
The computation was carried out for several values of the inlet velocity 6 . We define the

corresponding Reynolds number by ���¶# 6 &j I(5.1)

The triangulation of the domain is realized by the method and software ANGENER [4],
[5], which can be used for the construction of an initial isotropic triangulation and also for an
anisotropic adaptive mesh refinement; see Figure 5.1.

By the numerical solution of the complete problem we obtain the velocity and pressure
fields and also the time development of the displacement 9 and the rotation angle 6 . From
this information we derive frequency characteristics obtained with the aid of the Fourier trans-
form 7 &,8!Ã�)G#.��9>;: &8�	)<� R �>= �@? Å �BA �(5.2)

with : # 9 or : # 6 and 8!Ã
# � lC8Ð- � �0�D�z�Ì
°� lC8K# �0I � Hz, approximated by the
rectangle formula 7 &�8�ÃO)G# ÂFE R�S�À � > : &8�	ÀÌ)<� R �>= �@? ÅÌ�,G I(5.3)

Here ¦ is the imaginary unit and H is the number of time steps in the interval
� ���	� ) with

length Â .
The main vibrational frequencies U S and U � are defined in our computations as maximum

points of the function µ 7 µ corresponding to : #¼9 and : #W6 , respectively.
The numerical simulation started by the computation of the flow velocity and pressure

fields for a fixed profile in the disequilibrium position 6 > # ¬�I and 9 > # Ç I � mm. After a
short time the airfoil was released, i.e., the motion of the airfoil starts to behave according to
system (2.7) with initial conditions formed by the above data 6!> � 9½> , 6 S # � , and 9 S # � ;
cf., (2.15).

In what follows we present the dynamic response 67&8�	) � 9:&,�	) of the fluid-structure system
in time domain for different inlet flow velocities.

Inlet velocity
� ��J R�S hK���V# � . For 6 and 9 we obtained the signals shown in Fig-

ure 5.2. The frequency analysis gives main frequencies of the signals � $0I!� Hz and
Ç "0I � Hz.
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Inlet velocity È � ��J R�S hK���a# Ç ¬ �{�z�{� . We obtained the results shown in Figure 5.3.
The frequency analysis gives us main frequencies of the signals � $0I $ Hz and

Ç�� I È Hz.
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FIG. 5.3. (�)
*,+ and -L)@*,+ for the inlet velocity of the air MN/O0�2>3P5 .
Inlet velocity

� � ��J R�S hK�Q�Ï#%È "z�{�z�z� . We obtained the signals shown in Figure 5.4.
The frequency analysis gives us main frequencies of the signals � $0I " Hz a

Ç#� I©¬
Hz.
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FIG. 5.4. (�)
*,+ and -L)@*,+ for the inlet velocity of the air RS/O0�2>3P5 .
Inlet velocity

"{� ��J R�S h����m# � È �z�{�z� . The signals 6 and 9 are shown in Figure 5.5.
The frequency analysis gives us only one main frequency of the signals

Ç ��I È Hz. The second
one is very hard to detect.

In all cases studied the vibration amplitudes decrease in time and the system is stable.
Figure 5.6 shows the comparison of the computed main frequencies with wind tunnel exper-
iments described in [8] and [9].

6. Conclusion. In this article we derived a procedure for obtaining the numerical solu-
tion of the interaction of a moving airfoil inserted in a channel with a running fluid. We used
this approach for solving a particular problem, which was studied experimentally in a wind
tunnel [8], [9]. The computational results show that the presented method is sufficiently ro-
bust and useful for a given type of problem. The computed and experimentally obtained main
frequencies of the flow induced vibrations of the profile for several values of the inlet flow
velocity are in good agreement; see Figure 5.6. A further goal will be the implementation of a
turbulence model to the description of the flow and the validation of the method in situations
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FIG. 5.5. (�)@*,+ and -L)@*,+ for the inlet velocity of the air TS/O0�2 3P5 .
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FIG. 5.6. Main frequencies in dependence on the inlet flow velocity.

with large displacements of the airfoil and a higher inlet flow velocity, when the system may
loose aeroelastic stability.
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