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SIMPLE SQUARE SMOOTHING REGULARIZATION OPERATORS *

LOTHAR REICHEL' AND QIANG YE?

Dedicated to @rard Meurant on the occasion of his 60th birthday

Abstract. Tikhonov regularization of linear discrete ill-posed pihs often is applied with a finite differ-
ence regularization operator that approximates a lowroddevative. These operators generally are represented
by a banded rectangular matrix with fewer rows than coluniriey therefore cannot be applied in iterative meth-
ods that are based on the Arnoldi process, which requiresethgarization operator to be represented by a square
matrix. This paper discusses two approaches to circumbenttfficulty: zero-padding the rectangular matrices
to make them square and extending the rectangular matrixstpuare circulant. We also describe how to com-
bine these operators by weighted averaging and with ortedgarojection. Applications to Arnoldi and Lanczos
bidiagonalization-based Tikhonov regularization, aslaslto truncated iteration with a range-restricted minimal
residual method, are presented.
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1. Introduction. This paper is concerned with the computation of an approbdrse-
lution of linear systems of equations of the form

Az =b, AcR™"  z becR" (1.1)

with a matrix A of ill-determined rank. In particulad is severely ill-conditioned and may
be singular. These kinds of linear systems of equations @iite referred to as linear discrete
ill-posed problems. They stem, e.g., from the discretiwatf ill-posed problems, such as
Fredholm integral equations of the first kind with a smootmké The system1(1) is not
required to be consistent.

Linear discrete ill-posed problems arise when one seek&termiine the cause of an
observed effect. The latter is represented by the righttsaiedb, which in applications often
is contaminated by an unknown measurement errerR™, i.e.,

b=b+e, (1.2)

whereb denotes the unknown error-free right-hand side vectorciatsal withb. We will
refer to the erroe as “noise.”

The present paper discusses methods for the solutioh. Hfthat are applicable when
the norm of the noise,

e :=|le, (1.3)

or an accurate approximation thereof, is available. Howere regularization operators
considered in this paper also can be applied in methods thadtdrequire knowledge of the
error norm (.3). Throughout this papef- || denotes the Euclidean vector norm.

Introduce the linear system of equations

Az =b (1.4)
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associated with1(.1) with the unknown error-free right-hand side. The systérd)(is as-
sumed to be consistent and its solution of minimal Euclidearm is denoted by:. We
would like to determine an approximation s#fand seek to achieve this by computing an
approximate solution of the available linear discret@dked problemi(.1). Note that due to
the severe ill-conditioning afl and the erroe in the right-hand sidé, the least-squares solu-
tion of minimal Euclidean norm ofl( 1) typically is not a meaningful approximation sf In
order to be able to obtain an accurate approximatici, die systemX.1) has to be replaced
by a nearby system, whose solution is less sensitive tonbations inb. This replacement
is known as regularization.

One of the most popular regularization methods, known akdrikv regularization, re-
places the linear systerii.(l) by the minimization problem

min {|| Az — b + pl| Lz ||*}, (1.5)
TzeR™
where the matrix, € RF*", k < n, is referred to as the regularization operator and the
scalary, > 0 as the regularization parameter; see, e.g., Engl etld].and Hansen19] for
discussions on Tikhonov regularization.

Let V(M) andR(M) denote the null space and range of the maidix respectively.
We assume throughout this paper that the mattitasd L satisfy

N(A)NN(L) = {0}. (1.6)
Then the Tikhonov minimization probler.6) has the unique solution
x, = (ATA+ul"L)"'ATh (1.7)

foranyu > 0.

Our computational task is to determine a suitable positalaerof the regularization pa-
rametery, and the associated solutian, of (1.5. We will determinen with the aid of the
discrepancy principle, which requires that the norm of thise (L.3), or a fairly accurate es-
timate thereof, be available. This approach of determipiggnerally calls for the evaluation
of the norm of the residual error

r,:=b— Az, (1.8)

for several values of;; see SectioR for details.
Common choices of regularization operators for problemsnia space dimension are
the identity matrix and scaled finite difference approxiioag of a derivative, such as

1 -1 0
1 -1
Lyi=1 o € R-Dxn, (1.9)

-1 2 1 0]
12 -1

Ly := e R("=2xn (1.10)

B~ =
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and
1 3 -3 1 0
1 -1 3 -3 1
Ly := - , e R(P=3)xn, (1.11)
0 -1 3 -3 1

When the matrices! and L are of small to moderate size, the solution dfy and
the norm of the residual errof @ conveniently can be determined for several values of
the regularization parameter with the aid of the generdlgiagular value decomposition
(GSVD) of the matrix pai{ A, L}. However, for large-scale problems, the computation of
the GSVD is too expensive to be attractive. This paper is eored with iterative solution
methods that can be applied to the solution of large-scalel@ms.

Large-scale problems typically are transformed to stashflanm before solution. Let
Lt € R™** denote the Moore-Penrose pseudoinverse of the regularizaperatorL in
(1.5. The A-weighted pseudoinverse bfis defined by

LY = (I - (A(I - LTL))TA) LT € R™F; (1.12)

see, e.g., EldérlB] or Hansen 19, Section 2.3]. Introduce the matrix

A= AL}, (1.13)

and the vectors
2© = (A(T - LTL) b, (1.14)
b:=b-— Az, (1.15)

Letx := Lx. Then the Tikhonov minimization problem.§) can be expressed in standard
form,

min {||AZ — b]|* + l|z||*}. (1.16)
zERE

The solutionz,, of (1.5, given by (L.7), can be recovered from the solutian, of (1.19
according to

x, = Lz, + 2, (1.17)

see, e.g., 13 or [19, Section 2.3] for details. We note for future reference that is any
vector inR* andz := L,z + z(©), then the associated residual vecters= b — Az and
r:= b — Ax satisfy

7] = {l=]- (1.18)

If L is a square nonsingular matrix, thef) = 0, and the above transformation amounts to
Z:= LxandA := AL~

When the regularization operatbrapproximates a derivative, its pseudoinverse approx-
imates an integral operator and therefore is a low-pass filtes filter is applied to the com-
puted solutionz,, of (1.16 when evaluating the associated solutignof (1.5); cf. (1.17).
The smoothing achieved by filtering is beneficial when thérddsolutionz is smooth. Reg-
ularization operators of the form (9)-(1.11) often are referred to as smoothing operators.
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We remark that despite the complexity of the A-weighted pe@werse {.12), matrix-
vector products with the matrice[§A andALjf4 can be evaluated quite inexpensively when
is a banded matrix with small bandwidth, a circulant, or ah@gonal projection; see Section
2 or [13], [19, Section 2.3], andZ4] for further details. Commonly used iterative methods
for the solution of Tikhonov minimization problems in stand form (L.16 are based on
partial Lanczos bidiagonalization of the matrix13; see, e.g.,3, 4, 7, 8, 15, 17, 22]. How-
ever, recent numerical results reporteddf][show that Tikhonov regularization based on the
range-restricted Arnoldi (RR-Arnoldi) process can be cetitipe with Tikhonov regulariza-
tion based on Lanczos bidiagonalization. The RR-Arnoldicess is used to reduckto a
small upper Hessenberg matrix; see Sec8#odvantages of RR-Arnoldi-based Tikhonov
regularization, compared with Lanczos bidiagonalizatiased Tikhonov regularization, in-
clude:

i) Many problems require a smaller number of matrix-vectaduct evaluations. When
the matrix A is large, these evaluations constitute the dominant coatipugl work;
see P3| for a comparison.

ii) The methods do not require the evaluation of matrix-segroducts withA”. They
therefore are attractive to use for problems for which matector products withA”
are difficult to evaluate. This situation arises, e.g., whelving large nonlinear prob-
lems by Krylov subspace methods; séé][for a discussion. It also arises when matrix-
vector products are evaluated by multipole methods.

iii) The methods deliver more accurate approximations efdasired solutiot: for some
problems; seeZd for a few illustrations.

A difficulty with solution methods based on the RR-Arnoldopess is that they require
the regularization operatdr to be represented by a square matrix. In particular, the-oper
ators (L.9-(1.11) cannot be applied. Several approaches to circumvent iffisutty have
been discussed in the literature. Calvetti et &, 9] propose to append or prepend rows
to the regularization operato¥s; to yield square and nonsingular regularization operators
L; the nonsingularity simplifies the computations. For sil@zextensions of the operators
(1.9-(1.19) this approach yields high accuracy. However, to achieegentlost accurate ap-
proximations oft, the choice of extension often should depend on the behafibe solution
near the boundary. If this behavior is not knoavpriori, one can first solve the problem with
L := I to determine the boundary behavior of the solution, and #gain with a suitably
chosen square regularization operatdo achieve higher accuracy.

An alternative to solving the transformed Tikhonov miniation problem (.16 is to
apply an iterative method to the linear system of equations

Az =b. (1.19)

Regularization is achieved by terminating the iteratioogesss sufficiently early. Denote the
kth iterate generated by the iterative methodayy with z, = 0, and define the associated
residual vector

TE = b— A:ik (120)

The iteration numbet;, can be thought of as a regularization parameter. Appdinaif the
discrepancy principle to determine when to terminate thr@fions requires that the norm of
the residual vector;, be available; see Sectidh In this paper, we discuss application of
the range-restricted GMRES (RR-GMRES) iterative methoth#osolution of {.19. RR-
GMRES is based on the RR-Arnoldi process; its use and cosgawith standard GMRES
are illustrated inj]. RR-GMRES is better suited than standard GMRES for the cdatjpn
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of an approximate solution of a linear discrete ill-posealylem whose desired solutianis
smooth.

Hansen and Jensef(] recently described how nonsquare regularization opesatan
be used in conjunction with RR-GMRES by augmenting the lirsgatem {.1) and multi-
plying the augmented system from the left-hand side by airatrich contains(LL)T asa
submatrix. This approach is interesting, but it is not waitedd for use with the discrepancy
principle, because the norm of residual vectoP() is not explicitly available.

Morigi et al. [24] proposed to use orthogonal projections as regularizaimerators.
These operators perform well for many linear discreteridiglems, but they are not smooth-
ing. They are well suited for problems for which the desireldson  is not smooth. The ap-
plication of regularization operators without any part&structure is considered by Kilmer
etal. 21].

The present paper discusses several approaches to deteysgnare regularization op-
erators from regularization operators of the fortn9-(1.11). We consider appending zero
rows to obtain square regularization operators. Numeexamples illustrate the feasibility
of this approach. Problems with a periodic solution may fiefrem the use of circulant
regularization operators obtained by augmenting suitadWe to regularization operators of
the form (L.9)-(1.11). The spectral decomposition of circulant matrices islgasimputable,
and numerical examples illustrate that it may be benefioiakt certain eigenvalues to zero.
The latter observation is believed to be new. Finally, wewals how these regularization
operators can be combined by weighted averaging or with gnmogonal projection to deal
with problems with non-periodic solutions.

This paper is organized as follows. Sectdiscusses some properties of square zero-
padded and circulant regularization operators obtainenhbgifying operators of the form
(1.9-(1.17). Aweighted average of the two is proposed in order to cinoeimithe restrictions
of each approach. We also describe how orthogonal projeogigularization operators can
be combined with other regularization operators. The RRefdi process, the discrepancy
principle, and RR-GMRES are reviewed in Sect®bnComputed examples are presented in
Section4, and Sectiorb contains concluding remarks.

2. Regularization operators. We first discuss general properties of regularization oper-
atorsL € R¥*" Lk < n, with a nontrivial null space and then consider square agation
operators related to operators of the fortn-(1.11). This is followed by a discussion of
properties of orthogonal projection regularization opei®and how they can be combined
with square smoothing regularization operators.

Many regularization operators of interest have a nontrividl space. Let

ny=[1,1,...,1,1]7,
ny:=[1,2,...,n—1,n]T, (2.1)
ng:=[1,2%,..., (n— 1) n%T.

Then
N(Ly) = spaqmn, },
N(Lz) = spar{ni, n2}, (2.2)
N(L3) = spafni,ny, n3}.

Let the columns of the matri&( € R™** form an orthonormal basis of (L). Generally,
the dimension/, of the null spaces of regularization operators of inteiesirly small; for
the operators1(.9-(1.11), we have dimV(L;) = j. Introduce the QR-factorization

AU = QR, (2.3)
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where@Q € R™*¢ satisfies)” @ = I andR € R*** is upper triangular.

PROPOSITION2.1. Let the columns dff € R™** form an orthonormal basis of the null
space of the regularization operatérc R**™, k < n. Thus/ > n — k. Let the matrices)
and R be determined by2(3). Then

Lly=-UR'QTAL, (2.4)
ALY, = (I — QQT)ALT, (2.5)
b= (I-QQ"b. (2.6)

Proof. The relation 2.4) follows by substituting — LT L. = UU” and the QR-factorization
(2.3 into (1.12. Multiplication of (2.4) by A yields 2.5). Finally, relation £.6) is a con-
sequence ofA(A(I — LTL))t = QQT. For further details, seelB] or [19, Section 2.3].
d

It is clear from (L.5) that the component of the solutiar), in A/(L) is not affected by
the value of the regularization parameter The following result is a consequence of this
observation.

PROPOSITION2.2. ([24)) Let the orthonormal columns of the matiix € R™*¢ span
the null space of the regularization operatér ¢ R**™ and assume thatl(6) holds. Let
> 0 and letx,, be the unique solutioril(7) of the Tikhonov minimization probleri.().
Consider the discrete ill-posed problem with modified rigahd side

Az =V, b :=b+ AUy,
for somey € R’. Then the unique solution of the associated Tikhonov mizaitioin problem

min {|| Az — b'||* + pl| Lz ||*}
xeR”

is given byx, =z, + Uy.

The above proposition suggests that the regularizationatdgel, should be chosen so
that known features of the desired solutibrean be represented by vectorsNA(L). For
instance, whet: is known to be monotonically increasing and smodth= L; or L := Lg
may be suitable regularization operators since their mdices contain discretizations of
linearly and quadratically increasing function; c2.%).

2.1. Square regularization operators by zero-padding.We discuss the use of square
regularization operators obtained by zero-padding medribat represent scaled finite differ-
ence operators, such @s9-(1.11). Let L, o denote the: x n matrix obtained by appending
a zero row-vector to the operatbi defined by (.9). Then

L}, =L}, 0] e R™*". (2.7)

SubstitutingL := L1 g and LT := Li,o into (1.12 yields a squarel-weighted pseudoinverse
Lj[,. The matrixALf4 also is square and can be reduced to an upper Hessenberglogatre
RR-Arnoldi process. Note that for any vectore R™, LLOv can be evaluated efficiently by
first computing the QR-factorization df{o with the aid of Givens rotations, and then solv-
ing a least-squares problem. The least-squares solutionimynal-norm can be determined
easily, becaus8/(L; o) is explicitly known; see3], [19, Section 2.3] for details.

The RR-Arnoldi process may break down when applied to a &ngoatrix. The matrix
(2.5 with LT defined by 2.7) is singular; we haveLj;,en = 0. Here and elsewhere in this
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papere; = [0,...,0,1,0,...,0] denotes thgth axis vector of appropriate dimension. The
matrix (2.5) also can be singular becaudenay be singular. A variant of the Arnoldi process
that avoids breakdown when applied to a singular matrix &deed in R7] and should be
used in black-box software. However, in our experiences are to encounter breakdown
or near-breakdown of the RR-Arnoldi process before the agatpns are terminated by
the discrepancy principle. Indeed, we have not encounteead-breakdown in any of our
numerical experiments.

The regularization operator$.(0Q and (L.11) can be extended to square regularization
operators in a similar manner &s; the square operatdr; o is defined by appendingzero
row-vectors taol;.

2.2. Square regularization operators by circulant extengin. Circulant regulariza-
tion operators are well suited for use in problems with aqaici solution. We consider the
following circulant extensions of the matrices 9 and (.10,

1 -1 0

1 -1
1 -1
—1 1

and

2 -1 -1

-1 2 -1

1 . .
Cy = 1 -1 . - € R, (2.8)

-1
-1 -1 2

Circulants have advantages of being normal matrices withoavk spectral decomposi-
tion. Introduce the unitary “FFT-matrix” with the columnsdered according to increasing
frequency,

W = [’UJQ, Wy, W—1,W2,...,W1)» Ln/QJ] € (Cnxn’

L [17 e—27rik/n

NG

wherei := /—1 and|«a| denotes the integer partaf> 0. The columns satisfw;, = w_,
where the bar denotes complex conjugation. Each colummepresents rotations, with the
frequency increasing withk|. Thew,, are eigenvectors of all circulants; see, e.§2][ In
particular, the circulant§’; have the spectral decompositions

wy = 76—47rik/n’ e—ﬁTri}’c/n7 o e—27ri(n—1)k/n]T c Cn7

Cy=WAW*, Ay =diagA§’ AP AN AT L) (29)

where the superscripgt denotes transposition and complex conjugation. The eajaes
satisfy

A AT AL A o) [T = VAW G
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and therefore can be computed efficiently by the fast Fotna@asform method.
PROPOSITION2.3. The spectral decompositioB.Q) expresses a circulant as the sum of
n Hermitian rank-one circulants,

¢ =Y A wiwy, (2.10)
k

where summation is over the index §et1, —1,2,..., (—1)"|n/2]} with n components.
Proof. Straightforward computations show that the rank-one icetiw,w;, are circu-
lants.O
The eigenvalues af';, are distributed equidistantly on a circle of radius and eeht2,

with )\(()1) = 0. All, or all but one, depending on the parity of of the remaining eigenvalues

appear in complex conjugate pairs; we ha\%@ = 5\9,1 The magnitude of the eigenvalues
increases with increasing magnitude of their index. Thé spéce is given bW (Cy) =
sparf{n, }, wheren, is defined by 2.1).

L L L L L L L L L L L L L L L L
10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 60 70 80 90 100

@) (b)

FIGURE 2.1. (a) Magnitude of the eigenvalues of the circulait € R199%100 (red %) and eigenvalues
of the circulantCy € R100%100 (hlack 0). The eigenvalues are ordered according to indreasnagnitude. (b)

Logarithmic scale with the eigenvaluaéj) =0,j = 1,2, omitted.

The matrixCs is the symmetric part af’;. Its eigenvalues are the real part of the eigen-
values ofC. They live in the interval0, 1] with /\82) = 0. All, or all but one, depending
on the parity ofn, of the remaining eigenvalues appear pairwise; we I:}é%)e: /\(f,)c The
eigenvalues increase with increasing magnitude of thdminMoreover\ (Cs) = N(Cy).
Figure 2.1(a) displays the magnitude of the eigenvalues of circulahtsand C; of order
n = 100.

Since then x n matrix Cs is real and symmetric, it has a real orthonormal eigenvector
basis, such as

{woa %(Uﬁl +w-_1), %(Uﬁl —w-_1), %(’U& +w_a),... } :

Forn > 2, real linear combinations of these basis-vectors do ndd wieeal circulant eigen-
vector matrix.
The Moore-Penrose pseudoinvers&bfis given by

cl=walw=, Al =diad\)!, W), YD 0T,
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where

(O { YA, END o,
0, if A7) = 0.

The smoothing effect of the circulant regularization opensC’; stems from the fact that
the seminorm|C;z|| weighs high-frequency components of the veatpwhen expanded in
terms of the eigenvectors,, more than low-frequency components. Recall that the fre-
quency as well as the magnitude of the eigenvalues increiis¢he magnitude of the eigen-
vector index. Figur@.1(a) shows tha€’; weighs low-frequency components@imore than
Cs.

Figure2.1(b) differs from Figure2.1(a) in the scaling of the vertical axis and in that the
zero eigenvalues are not displayed. The figure providestetsolution for eigenvalues of
small magnitude. In particular, Figugel(b) shows that while both circulants; and Cs
weigh high frequency components the most, they also prosédee weighting of low fre-
guencies. The latter may not be beneficial in situations whemlesired solution is periodic
with low frequency. We may want to modify the circularts by setting one or more of its
eigenvalues to zero and thereby avoid damping of the ageddi@quencies; cf. Proposition
2.2. The benefit of this is illustrated in Secti@gn Here we show that the modified matrix
obtained is a real circulant.

COROLLARY 2.4. Let the matrixC;, be obtained by setting thepairs of eigenvalues
{/\52), /\(,2{}, {/\22), /\(f% ). ..,{)\15,2), )\(_21)7} in the decomposition?(10 of C> to zero, where
p < n/2. The matrixC,; so obtained is a real circulant, and so is its Moore-Penroselp
doinverseC.

Proof. Let1l < k < p. Then)\(_Q,)C = /\Ef). Setting)\(_Q,)C and)\,(f) tozeroforl <k <p
yields the matrix

p P
Co=Cr— > ()\,(f)wsz + A?;w,kwtk) =0y = YA (wiw), + wyw}).
k=1 k=1

The right-hand side shows th@ is real. It is easy to verify thaw,wj is a circulant and so
IS wwy,. Therefore(; is a circulant. It follows thaﬁ;r also is a real circulantl

We have discussed two circulant regularization opera@tiser circulants can be inves-
tigated similarly and applied as regularization operatdren appropriate.

2.3. Weighted average of circulant and zero-padded reguléation operators. The
null space of the regularization operafoy, defined by .10, contains the discretization of
linear functions; however, the circulant extensioh, does not. While the circuladt,, and
its modificationC, described in Corollar.4, are well suited for the solution of problems
with a periodic solution, they damp non-periodic solutie@mponents, such as linear growth.
We are interested in deriving regularization operators tiegther damp slowly oscillatory
solution components nor linear growth. Namely, the nulcgpaf the regularization operator
should contain discretizations of both linear and slowlgilketory functions, or at least the
complements of the orthogonal projections of these funstiato the null space should be
small. This section describes how regularization opesatdth this property can be defined.

First, consider the regularization operafor= D;C5, where

Ds = diagé, 1,...,1,4], (2.11)

andd > 0is small. Thus,L is the product of the the circulant operatds and the zero-
padded operator that is obtained by prepending and appadiero row tol,. Discrete
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linear functions, represented byx, + Sn. for a, 5 € R, are approximately in the null space
of L, in the sense that they are hardly damped.by the context of Tikhonov regularization.
Unfortunately, this operatal is computationally difficult to use in large-scale problemsa
formula for LT that is inexpensive to evaluate is not obvious; see alsad®eei4 for further
comments. HoweveGQTDg1 may be considered a rough approximatior.of This leads us
to consider the regularization operator

L= (C%'Dgl)T,

which differs fromD;sC5, but has some similar desirable properties as we shallskdzeiow.

More generally, as in Sectidh2, we can set some small eigenvalue€gfto zero, and
thereby avoid the damping of low frequency solution compsieRecall that, is obtained
from C5 by setting thep pairs of eigenvalue@\f), AQ}, {/\52), /\(,2% ,...,{)\1(72), )\(,22,} in
the decomposition.10 to zero, wheré < p < n/2 (with the convention that’, = C, if
p = 0). We will use the regularization operator defined implictly

L= (C‘%Dgl)T . (2.12)

Note that onlyLt = C“QTDgl is needed in computations and is readily availablétself is
not directly used. We show that the opera®n@) inherits the low-pass property 6%, and
hardly damps discrete linear functiong; + Gns, o, 5 € R.

THEOREM 2.5. Let L be defined bya.12 with Ds given by 2.17). Then, for any
v e R,

ILol < | DsCav].
In particular, Lwy, = 0 for 0 < |k| < p. Thus,n; € N(L). Moreover,

L 0
[ Lo <% 1)\

[EX VT

Proof. Letu := Lv. ThenL'Lv = Ltu = C} D; 'u. Therefore,
CoL'Lv = CoCY D5 'u = Dy 'u — (I — CoCY) Dy .
Hence,
DsCo L' Lv = u — Ds(I — CoC) D5 L.

SinceR (L") = R( A;f) = span{ Wy 1, W_(p41), Wpt2, W_(p42),- - -}, WE have
r
I - L'L = wow}, + Z (wrwj + w_pw* ) .
k=1
It follows from this equation and’yw;, = 0 for 0 < |k| < p that DsCoLIL = DsCs.

Writing o := D;(I — CoC3)D; 'u, we have

u— ug = DsChv.
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Now, Liug = CI(I — C,C3)D5'u = 0, i.e.,up € N(L). Thereforemy L u € R(L),
and it follows that

[ul| < llu—wuo| = [|DsCav|.

This inequality and 5w, = 0 show thatLw;, = 0 for 0 < |k| < p. Furthermore, since
|Cy — Co| < /\fﬁl andCony = 2[-1,0,...,0,1]", we have

V2n

| Lnzl| < [DsCona| < [|DsCamal + N2 [Ina]| < =6+ N7, [Ina].

p+1

The bound forf| Lns|| /||n2|| now follows from||ns|| = \/n(n+1)(2n+1)/6 > |/n3/3.
O

2.4. Orthogonal projection regularization operators. Let the matrixUU € R™*¢,
¢ < n, have orthonormal columns. Then the regularization operat

L:=I-UU" (2.13)

is an orthogonal projector on®* (U). Application of orthogonal projection regularization
operators is discussed i4]. This section describes how to combine regularization by o
thogonal projection and smoothing operators. This kinceglitarization yields the smooth-
ing properties of the latter and allows the choice of a swfitliy large null space to represent
important features of the desired solutidn

While the regularization operator introduced in Secttodhas some of these properties,
its null space only approximately contains discretizagionlinear functions and it requires
n to be large. In addition, there are situations where it mightlesirable to include other
solution components, such as a quadratic or exponentiaftgrfoinctions, in the null space.
This can be achieved by combining an orthogonal projecgularization operator with a
circulant smoothing regularization operator.

We first review relevant properties of orthogonal projettiegularization operators and
discuss the equivalence of these operators to a deconguosigthod described ir2]. The
latter provides a convenient way of implementing regukian with two regularization op-
erators for large-scale problems.

PROPOSITION2.6. Let the regularization operatol € R"*™ be defined byA.13 and
let the matricex) and R be determined by2(3). Then

Ly =1-UR™'Q"A4, (2.14)
ALY = (I - QQT)A. (2.15)

Proof. A proof follows from Propositior2.1 and straightforward computations. Details
and related results can be found #]. O

For small to medium-sized problems, for which the GSVD carmapplied, we may
choose regularization operators of the fofth, whereS is a smoothing regularization op-
erator andL is an orthogonal projectoR(13 with a suitably chosen null space. However,
products of regularization operators are difficult to hanidl large-scale problems that are
transformed to standard forrh.(L§). The reason for this is that one of the factoriéfis the
pseudoinverse of the regularization operator, 2f4)( and for most pairg.S, L} of regular-
ization operators of interest, the pseudoinveise) is difficult to evaluate efficiently; see,
e.g., [L0, Section 1.4] and€] for discussions on the pseudoinverse of a product of nestric
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We therefore propose to apply pairs of regularization dpesssequentially. This can be car-
ried out in a conceptually simple manner by partitioninglthear system of equations.()
as follows. Introduce the orthogonal projectors

Py =UUT,  PH=1-UUT,  Po=QQT, Py:=1-QQ",

and partition the vectar = Pyx + P and the linear system of equatioris1) according
to

PoAPyz + PoAPgx = Pgb, (2.16)
Py APyx + Py APgra = Pgb. (2.17)
Application of partitioning to the solution of linear digte ill-posed problems is discussed
in[2].
THEOREM 2.7. Let L be defined bya.13 and let@ be given by Z.3). Then equation

(2.16 is equivalent to 1.17), and equationZ.17) is equivalent to 1.19.
Proof. We first establish the equivalence @f17) and (L.19. Note that

Py APy = 0. (2.18)
It follows from (2.15 and @.6) that
A 1 1 L 1

This shows the equivalence.
We turn to ¢.16. Denote the computed approximate solution1{) by z. In view of
(2.18, the system of equation&.(L6-(2.17) is block upper triangular an8y; x satisfies

PoAPyx = Pob — Po APz,
which can be written as

RUTz =QTb— (QT Az — RUTZ),

Ul(x —z) = R7'Q" (b — AZ).
We may choose
x:=z+UR Q" (b - Az). (2.19)

Note that (.14 can be expressed as?) = UR~'Q"b. Substituting this expression and
(2.19 intox = L', & + 2(©), which is analogous tal(17), yields

x=(I-UR'Q"A)z+UR Q™.

This expression is equivalent td.(9, which shows the theorer.

Theorem2.7 shows that partitioning is equivalent to the applicatioraoforthogonal
projection regularization operator, and that the parigidsystem7.16-(2.17) is block upper
triangular. We propose to apply an initial partitioning ituations when the null space of
an otherwise suitable smoothing regularization operatoret large enough to be able to
represent pertinent features of the desired solutioiHaving chosen a suitable orthogonal
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projection regularization operata?.(L3, and therefore the matrik, we solve .17 using
a smoothing regularization operator. Note that in view 2fl§ and Py APy = Pg A,
equation 2.17 simplifies to

Py Az = Pyb. (2.20)

For example, ifz has a linear growth function component, then the matfixhat
defines the orthogonal projection regularization operétot3 should be chosen so that
R(U) = spafni,n2}. We then may select the circulant

ég = Cy — /\52)(’11]1’(1):{ + ’lj]l’ljff),

whose null space contains slowly oscillating discrete fioms, as a smoothing regularization
operator. Computations with this combination of regulatitn operators are presented in
Example4.5of Sectioné.
The following result shows that in order to determine theédweal error norm associated
with (1.1), it suffices to compute the norm of the residual error of #rauced systen?(20).
COROLLARY 2.8.Letx € R™ and define the residual vector

7:=Pyb— Py Az.

Letx be the associated approximate solutionloflf defined byZ2.19 in the proof of Theorem
2.7, and let

r:=b— Ax.

Then(jr|| = |[7].

Proof. The result follows from1.18 by using the equivalence of partitioning and regu-
larization by an orthogonal projection operator. The darglalso can be shown directly by
using the partitioningd.16-(2.17); see P] for details on the latter approadh.

We remark that instead of partitioning.() and regularizingZ.20, we can carry out
repeated transformations of the Tikhonov minimizationgbean (L.5) to standard form. The
latter approach is more general. However, since we are pbbigrg this generality, we will
not pursue this approach further in the present paper. Matete regularization technique
of this section also can be used with nonsquare smoothindenézation operators.

3. Krylov subspace methods and the discrepancy principleApplication of & < n
steps of the range-restricted Arnoldi process to the maltrexR"™*™ in (1.16) or (1.19 with
initial vectorb determines the decomposition

AV = VierHi1 i, (3.1)

where the orthonormal columns of the matbix, ; € R™*(k+1) form a basis of the Krylov
subspace

Kri1(A,b) := spar{ Ab, A%b, ..., A* b} (3.2)

and the matrixfy,, ; ., € R¥ 1>k js of upper Hessenberg form. The matkix consists of
the firstk columns ofV ;.

The decompositior3(1) is the basis for the Arnoldi-Tikhonov method for the sabutof
(1.16, as well as for the RR-GMRES iterative method for the solutf the linear systems
of equations1.19. We first outline the latter scheme.
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The kth iterate,z;, determined by RR-GMRES when applied to the solutionlof 9
satisfies

|Azy —b| = min _|[Az—b|, @i € Ki(A, Ab), (3.3)

and is computed by first finding the solutign of the minimization problem
;Telg}e | Hiy1,07 — ‘713;15”
and then setting;, := V},y,. The associated approximate solution bflf is given by
Ty = Li@k + z(;
cf. (1.17). The residual error;, := b — Ax), associated with;, can be expressed as
rr=b— Az = Vigr (Hir1,09, — Vi1 0) — (I = Vi Vi 1)b,
and it follows that
I7£1% = (€f11Qh11 Vi1 D) + [1b = Vi Vi1 B,

whereQy1 € RF+Dx(E+1) is the orthogonal matrix in a QR-factorization B, ;. The
squared residual error norjim, ||? can be evaluated inexpensively by updatimg_ ||>.

Letn be a constant strictly larger than one. The itetatas said to satisfy the discrep-
ancy principle if

[7ell < me, (3.4)

wheres is the norm of the noisel(3) or an estimate thereof. If the available estimate is known
to be accurate, then we choagelose to unity. It follows from §.3) andC,_; (A, Ab) C
Kr(A, Ab) that |71 || < ||rg| fork =1,2,3,..., wherery := b — Az(®). We terminate

the iterations as soon as an iteratg has been determined that satisfies the discrepancy
principle. Thus,r; is the first residual vector, such th&.4) holds. An analysis of this
stopping rule for standard GMRES is provided @, [the analysis there carries over to RR-
GMRES. The evaluation af;, requiresk + ¢ + 1 matrix-vector product evaluations with
the matrix A, ¢ of which are required to compute the QR factorizati@3(. For large-
scale problems, the matrix-vector product evaluationsidata the computational work. We
therefore tabulate this number in the computed examplesdid4.

We turn to Tikhonov regularization. Létbe defined as above. Inthe numerical examples
of Section4, we carry outk Arnoldi steps, wheré := k or k := k + 1. Substituting the
decomposition3.1) into (1.1 yields a minimization problem of fairly small size, whose
solution,zy, ,,, we compute. Leky, , := Lj;,i:k,,t + 2(©. We choose: so that, analogously
to (3.4), the associated residual ernay,, := b — Axy, , satisfies|r .|| = ne; see R3] for
further detalils.

4. Computed examples.We illustrate the performance of the regularization opmsat
discussed with some numerical examples. The noise vediass in all examples normally
distributed pseudorandom entries with mean zero, and malared to correspond to a cho-
sen noise level

y o= Lol
15
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Hereb denotes the noise-free right-hand-side vectofiid)( We lets := 1.01 in (3.4) in all
examples. The computations are carried out in MATLAB witloatol 6 significant decimal
digits. We reorthogonalize the columns of the matfix ; in the decomposition31). Since
typically the dimensiork + 1 of the Krylov subspaces3(2) used is fairly small, reorthogo-
nalization is inexpensive. Reorthogonalization may redihe size of the Krylov subspace
required for determining an approximate solution thats§as the discrepancy principle; see
[26, Example 4.1] for an illustration with a symmetric matrix.

regularization operator  # iteratioks # mat.-vec. prod. ||z — z||/||Z||

1 3 4 1.6-1073
Ll,O 2 4 22.107%
L270 1 4 2.0-104
Lso 0 3 1.7-1074

TABLE 4.1

Example4.1: Relative error in approximate solutions, determined by truncated iteration with RR-GMRES.

(@) (b)

FIGURE4.1.Example4.1: Computed approximate solutioas, determined by RR-GMRES using the discrep-
ancy principle. The dashed curves show the vegtdhe continuous curves display in (a) the iteratg determined
without regularization operatorf := I), and in (b) the iteratexy determined with the regularization operator
L := L3p.

120 140 160 180 200

ExamMPLE 4.1. The Fredholm integral equation of the first kind,
/2
/ k(o,T)x(o)do = b(r), 0<7<m, (4.2)
0

with (o, 7) := exp(o cos(r)), b(T) := 2sinh(7)/7, and solutionz(7) := sin(r) is dis-
cussed by Baartl]. We use the MATLAB codébaart from [18] to discretize 4.1) by a
Galerkin method witt200 orthonormal box functions as test and trial functions. Thdec
produces the matrixl € R200%200 and a scaled discrete approximationagf). Adding
50m, to the latter yields the vectat € R2°° with which we compute the noise-free right-
hand sideh := Az.

Let the entries of the error vecterc R2°° be normally distributed with zero mean, and
be normalized to yield the noise level= 5 - 10~°. This corresponds to an absolute error of
le|l = 9.8 - 10~2. The right-hand sidé in the system1.1) is obtained from1.2).

Table4.1displays results obtained with RR-GMRES for several reggaéion operators
and Figuret.1shows two computed solutions. The continuous curve in Eigui{a) displays
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the computed solution obtained without explicit use of autagzation operatorff := I);

the continuous curve in Figur.1(b) depicts the corresponding solution determined with
L := Lso. The iterations are terminated by the discrepancy priec{pl4). The dashed
curves in Figured.1(a) and (b) show the solutiah of the noise-free probleni(4).

This example shows RR-GMRES without explicit use of a regzddéion operator to
perform poorly. The reason for this is that the desired smius a small relative perturbation
of the vector50n,. We note that this vector lives iN'(L, o), 1 < j < 3, and therefore does
not affect the Krylov subspaces fdrwhen one of the regularization operatdrs, is applied.
WhenL := Ls, the norm of the initial residualy := b — Ax(9) satisfies the discrepancy
principle 3.4) and no iterations are carried out.

method #iterations # mat.-vec. prod. |z — ||

Arnoldi-Tikhonov 9 10 1.5-1072

Arnoldi-Tikhonov +1 10 11 1.2-1072

LBD-Tikhonov 11 22 1.2-1072
TABLE 4.2

Example4.2 Errors in approximate solutions of a modification @f.2) determined by several Tikhonov regu-
larization methods with regularization operatér:= 1.

method #iterations # mat.-vec. prod. |z — ||

Arnoldi-Tikhonov 6 8 5.7-1073

Arnoldi-Tikhonov +1 7 9 2.9.1073

LBD-Tikhonov 7 15 3.6-1073
TABLE 4.3

Example4.2 Errors in approximate solutions of a modification @f.%) determined by several Tikhonov regu-
larization methods with regularization operatér .

L L L L L L L L L L L L L L L L L L
0 20 a0 60 80 100 120 140 160 180 200 0 20 40 60 80 100 120 140 160 180 200

(@ b

FIGURE 4.2. Example4.2 Approximate solutionsey, , computed by the Arnoldi-Tikhonov method with the
regularization parametey. determined by the discrepancy principle. The dashed cwskiess the vecto; the
continuous curves display in (a) the approximate solutian,,, determined with regularization operatdr := I
and in (b) the approximate solutiany ,, determined withl := L o.

EXAMPLE 4.2. Consider the Fredholm integral equation of the firstikin

6
/45 k(T,0)x(0)do = g(1), —6 <71 <6, (4.2)



ETNA
Kent State University
http://etna.math.kent.edu

SIMPLE SQUARE SMOOTHING REGULARIZATION OPERATORS 79

with kernel and solution given by

k(r,0) :=x(T — 0),

_ | 1+cos(50), if|o| <3,
z(0) _{ 0, otherwise

The right-hand sideg(7) is defined by 4.2). This integral equation is discussed by Phillips
[25]. The MATLAB codephillips in [18] determines a discretization by a Galerkin method
with orthonormal box functions. A discretization of a schkolution also is provided. Let
the matrix4 € R209%200 determined byphillips represent the discretized integral operator,
and letz be the sum of the scaled discrete solution providegHuilips and the vectof;.
The noise-free right-hand side is given by= A&. A noise vectore similar to the one in
Example4.1 and scaled to correspond to a noise level ofi0~3 is added tdb to yield the
right-hand side of the linear systemi(1).

Tables4.2 and 4.3 report the performance of several Tikhonov regularizati@thods
with the regularization operatofs := I and L := L o, respectively. The latter regular-
ization operator gives more accurate results for the ptgs@blem. For many ill-posed
problems the Arnoldi-Tikhonov method yields higher aceyrlhy applying one more step
of the Arnoldi process than thie steps necessary to satisfy the discrepancy principle; see
the last paragraph of Secti@n This approach is denoted by Arnoldi-Tikhonov +1 in the ta-
bles. LBD-Tikhonov is the Lanczos bidiagonalization-tth$ihonov regularization method
described in T]. Lanczos bidiagonalization is implemented with reortboglization. We
remark that the operatofs o andL; are equivalent when applied in LBD-Tikhonov. Figure
4.2 displays the most accurate computed solutions in the Tabkesnd4.3for L := I and
L= Ll_’().

The tables show the Arnoldi-Tikhonov method to yield abbetsame accuracy as LBD-
Tikhonov and to require fewer matrix-vector product evéitugs. We therefore omit graphs
for the approximate solutions determined by LBD-Tikhonov.

regularization operator # iteratioks # mat.-vec. prod. ||z — z||/||Z||
I 2 3 1.3-1071
L3 0 3 5.0-1072
TABLE 4.4
Example4.3 Relative error in approximate solutions,, determined by truncated iteration with RR-GMRES.

ExXAMPLE 4.3. RR-GMRES would in Example 1be able to determine a quite accurate
approximation ofe without the use of the regularization operafary, if before iterative so-
lution 50An; is subtracted from the right-hand sileand after iterative solution the vector
50n; is added to the approximate solution determined by RR-GMRE®/ever, it is not al-
ways obvious how a problem can be modified in order for RR-GI8R&be able to achieve
high accuracy without applying a regularization operafinis is illustrated by the present
example, for which subtracting a multiple df:; before iterative solution with RR-GMRES,
and adding the same multiple of, after iterative solution, does not yield an accurate ap-
proximation ofz.

Consider

w/4
/ k(o,T)z(o)do = b(T), 0<7< g,
0

where the kernel and the right-hand side are the same dslin (We discretize in a similar
fashion as in Examplé.1to obtain the matrixdA € R>°0%590 and the noise-free right-hand
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L L L L
300 350 400 450 500

(a) (b)

FIGURE 4.3.Example4.3 Computed approximate solutions. determined by RR-GMRES using the discrep-
ancy principle. The dashed curves show the vegtdhe continuous curves display in (a) the iteratg determined
without regularization operator{ := I), and in (b) the iteratexy determined with the regularization operator
L := L3p.

sideb € R, Adding a noise vectoe to b yields the right-hand side ofi.(1). The vector

e is scaled to correspond to the noise level= 2 - 1073. We solve the systenil(l) by
RR-GMRES. Tablet.4 reports results for the cases when no regularization opeisatised
(L := I) and when the regularization operator:= Ls is applied. Figuret.3 displays
the computed solutions. The operafoy is seen to improve the quality of the computed
solution.

regularization operator  # iteratioks # mat.-vec. prod. ||z, — &||

- 5 6 5.7-10 2
L270 5 8 2.4-1072
Cs 3 5 5.7-1073
Cs 1 5 2.4-1073

TABLE 4.5

Example4.4: Errors in approximate solutions of computed by RR-GMREBout and with several regular-
ization operators. The operatdtz g is defined by zero-padding the operatar)0), C2 by (2.8), andC by setting
the two smallest nonvanishing eigenvalue€’sfto zero.

ExaMPLE 4.4. We modify the integral equation of Examgl@in two ways: the integral
equation is discretized with finer resolution to obtain thegnim A € R1000%1000 and instead
of adding a discretization of the functidnto the scaled discrete solution determined by the
MATLAB code phillips, we add a discretization of the functi@ros(7(1+ §)). This defines

#. The noise-free right-hand side is given by:= A&. A noise vectore with normally
distributed entries with mean zero, and scaled to correspoithe noise level - 1072, is
added tob to yield the right-hand sida of the linear systemi(2).

Table4.5 reports the performance of RR-GMRES without and with sévegulariza-
tion operators. The table shows that the regularizatiomaipeCs, obtained from 2.8) by
setting the two smallest nonvanishing eigenvalué@, and)\(fi, to zero yields the best ap-

proximation of the desired solutiah. In particular, the regularization operatos yields
higher accuracy thah, (. Table4.5also displays the number of iterations and the number
of matrix-vector product evaluations required. Figdré showsz (dashed curves) and the
computed approximate solutions determined with the regualton operatord., , and Co
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FIGURE 4.4. Example4.4: Computed approximate solutioas, by RR-GMRES using the simplified discrep-
ancy principle. The dashed curves depict the veg{dhe continuous curves display in (a) the iterate determined
with the regularization operatol. := L3 o, and in (b) the iterater; computed with the regularization operator
L := (5 defined by setting the two smallest nonvanishing eigensaifi, to zero.

(continuous curves). The latter curves differ primarilytegir endpoints.

regularization operator  # iteratioks # mat.-vec. prod. ||z, — Z||

R 3 9 6.0-10 2
Lo 5 8 1.8-1072
Co 7 9 1.1-1071
Cy 3 7 1.1-107!
(CIDyhHt 2 6 5.6-1073
OP andC, 3 7 4.3-1073
oP 4 7 1.0-1072
TABLE 4.6

Exampled.5: Errors in approximate solutions computed by RR-GMRESawitnd with several regularization
operators. The operatofs ¢ is defined by zero-padding the operatdri0), C> by (2.8), and (s by setting the
two smallest nonvanishing eigenvalues(f to zero. The diagonal matri¥0s hass = 1 - 10~8. OP stands for
orthogonal projection onto a subspace not containing diszed linear functions, i.eR(U) = span{ni, na} in

2.13.

EXAMPLE 4.5. The matrix in this example is the same as in Exampleand we add
a discretization of the linear functiofio) := 1 + ¢/6 to the vectorz. The noise-free and
noise-contaminated right-hand sides are determinedasimids in Examplel.4; the noise
level is1-10~2.

Table4.6 reports the performance of RR-GMRES without and with sedwegulariza-
tion operators. Because of the oscillatory behavior of tesirédd solutionz, the regular-
ization operatorLs o does not perform well, and due to the linear termzinneither do
the operatorg’, andC,. The latter operator is the same as in Examble We therefore
consider the approaches of Sectid® and 2.4, which yield clearly better results. For the
weighted average regularization operakoin (2.12, the matrixDy is given by @.11) with
§ := 1-1078%. In the method of SectioB.4, we first carry out an orthogonal projection
onto the complement of discrete linear functions. Hencelew®& ¢ R'999%2 in (2.13 be
such thatR(U) = spaqni,n2}. This projection is in Tablé.6 referred to as “OP”. RR-
GMRES is applied to the projected equatioB2() with the regularization operato€s, or
without further regularization. Results for the latter egah are displayed in the last line
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- L L L L L L L L L - L L L L L L L L L
0 100 200 300 400 500 600 700 800 900 1000 0 100 200 300 400 500 600 700 800 900 1000

FIGURE 4.5. Example4.5. Approximate solutions:;,, computed by RR-GMRES using the simplified discrep-
ancy principle. The dashed curves depict the vegidhe continuous curves display in (a) the iterate determined
with regularization operatot. := L2 o, and in (b) the iteratecz determined by initial orthogonal projection onto
the complement of the discretized linear functions, and t@ving the projected problem by RR-GMRES with
regularization operatoiC's.

of the table. Tablel.6 shows orthogonal projection followed by regularizatiorthn@’; to
give the best approximation af. The computed solution is shown in Figuté(b). Also the
regularization operatc(CQTDgl)T is seen to determine an accurate approximatiai. dfur-
thermore, Tablé.6illustrates that the smoothing regularization operdtgg yields a better
approximation than the orthogonal projection regulaiaradperator (OP) with the same null
space. This depends on that the desired soluti®smooth and; ( is smoothing, but the
orthogonal projector is not. Figuke5(a) displays the solution determined with . This
computed solution differs fron the most at the endpoints.

5. Conclusion. We have presented several square extensions of some staagalar-
ization operators based on finite difference discretinadicderivatives. The numerical exam-
ples illustrate that the square regularization operats@idsed here can improve the quality
of the computed approximate solution determined by ArablBed Tikhonov regularization
and minimal residual methods. Moreover, they are quite Ergoimplement.
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