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SIMPLE SQUARE SMOOTHING REGULARIZATION OPERATORS ∗
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Dedicated to Ǵerard Meurant on the occasion of his 60th birthday
Abstract. Tikhonov regularization of linear discrete ill-posed problems often is applied with a finite differ-

ence regularization operator that approximates a low-order derivative. These operators generally are represented
by a banded rectangular matrix with fewer rows than columns.They therefore cannot be applied in iterative meth-
ods that are based on the Arnoldi process, which requires theregularization operator to be represented by a square
matrix. This paper discusses two approaches to circumvent this difficulty: zero-padding the rectangular matrices
to make them square and extending the rectangular matrix to asquare circulant. We also describe how to com-
bine these operators by weighted averaging and with orthogonal projection. Applications to Arnoldi and Lanczos
bidiagonalization-based Tikhonov regularization, as well as to truncated iteration with a range-restricted minimal
residual method, are presented.
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1. Introduction. This paper is concerned with the computation of an approximate so-
lution of linear systems of equations of the form

Ax = b, A ∈ R
n×n, x, b ∈ R

n, (1.1)

with a matrixA of ill-determined rank. In particular,A is severely ill-conditioned and may
be singular. These kinds of linear systems of equations often are referred to as linear discrete
ill-posed problems. They stem, e.g., from the discretization of ill-posed problems, such as
Fredholm integral equations of the first kind with a smooth kernel. The system (1.1) is not
required to be consistent.

Linear discrete ill-posed problems arise when one seeks to determine the cause of an
observed effect. The latter is represented by the right-hand sideb, which in applications often
is contaminated by an unknown measurement errore ∈ Rn, i.e.,

b = b̂ + e, (1.2)

whereb̂ denotes the unknown error-free right-hand side vector associated withb. We will
refer to the errore as “noise.”

The present paper discusses methods for the solution of (1.1) that are applicable when
the norm of the noise,

ε := ‖e‖, (1.3)

or an accurate approximation thereof, is available. However, the regularization operators
considered in this paper also can be applied in methods that do not require knowledge of the
error norm (1.3). Throughout this paper‖ · ‖ denotes the Euclidean vector norm.

Introduce the linear system of equations

Ax = b̂ (1.4)
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associated with (1.1) with the unknown error-free right-hand side. The system (1.4) is as-
sumed to be consistent and its solution of minimal Euclideannorm is denoted bŷx. We
would like to determine an approximation ofx̂ and seek to achieve this by computing an
approximate solution of the available linear discrete ill-posed problem (1.1). Note that due to
the severe ill-conditioning ofA and the errore in the right-hand sideb, the least-squares solu-
tion of minimal Euclidean norm of (1.1) typically is not a meaningful approximation ofx̂. In
order to be able to obtain an accurate approximation ofx̂, the system (1.1) has to be replaced
by a nearby system, whose solution is less sensitive to perturbations inb. This replacement
is known as regularization.

One of the most popular regularization methods, known as Tikhonov regularization, re-
places the linear system (1.1) by the minimization problem

min
x∈Rn

{‖Ax− b‖2 + µ‖Lx‖2}, (1.5)

where the matrixL ∈ Rk×n, k ≤ n, is referred to as the regularization operator and the
scalarµ ≥ 0 as the regularization parameter; see, e.g., Engl et al. [14] and Hansen [19] for
discussions on Tikhonov regularization.

Let N (M) andR(M) denote the null space and range of the matrixM , respectively.
We assume throughout this paper that the matricesA andL satisfy

N (A) ∩ N (L) = {0}. (1.6)

Then the Tikhonov minimization problem (1.5) has the unique solution

xµ := (AT A + µLT L)−1AT b (1.7)

for anyµ > 0.
Our computational task is to determine a suitable positive value of the regularization pa-

rameterµ and the associated solutionxµ of (1.5). We will determineµ with the aid of the
discrepancy principle, which requires that the norm of the noise (1.3), or a fairly accurate es-
timate thereof, be available. This approach of determiningµ generally calls for the evaluation
of the norm of the residual error

rµ := b − Axµ (1.8)

for several values ofµ; see Section3 for details.
Common choices of regularization operators for problems inone space dimension are

the identity matrix and scaled finite difference approximations of a derivative, such as

L1 :=
1

2




1 −1 0
1 −1

. . .
. . .

0 1 −1


 ∈ R

(n−1)×n, (1.9)

L2 :=
1

4




−1 2 −1 0
−1 2 −1

. . .
. . .

. . .

0 −1 2 −1


 ∈ R

(n−2)×n, (1.10)
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and

L3 :=
1

8




−1 3 −3 1 0
−1 3 −3 1

. . .
. . .

. . .
. . .

0 −1 3 −3 1


 ∈ R

(n−3)×n. (1.11)

When the matricesA and L are of small to moderate size, the solution of (1.5) and
the norm of the residual error (1.8) conveniently can be determined for several values of
the regularization parameter with the aid of the generalized singular value decomposition
(GSVD) of the matrix pair{A, L}. However, for large-scale problems, the computation of
the GSVD is too expensive to be attractive. This paper is concerned with iterative solution
methods that can be applied to the solution of large-scale problems.

Large-scale problems typically are transformed to standard form before solution. Let
L† ∈ Rn×k denote the Moore-Penrose pseudoinverse of the regularization operatorL in
(1.5). The A-weighted pseudoinverse ofL is defined by

L†
A :=

(
I − (A(I − L†L))†A

)
L† ∈ R

n×k; (1.12)

see, e.g., Eldén [13] or Hansen [19, Section 2.3]. Introduce the matrix

Ā := AL†
A (1.13)

and the vectors

x(0) :=
(
A(I − L†L)

)†
b, (1.14)

b̄ := b − Ax(0). (1.15)

Let x̄ := Lx. Then the Tikhonov minimization problem (1.5) can be expressed in standard
form,

min
x̄∈Rk

{‖Āx̄ − b̄‖2 + µ‖x̄‖2}. (1.16)

The solutionxµ of (1.5), given by (1.7), can be recovered from the solution̄xµ of (1.16)
according to

xµ = L†
Ax̄µ + x(0); (1.17)

see, e.g., [13] or [19, Section 2.3] for details. We note for future reference thatif x̄ is any
vector inRk andx := L†

Ax̄ + x(0), then the associated residual vectorsr̄ := b̄ − Āx̄ and
r := b − Ax satisfy

‖r̄‖ = ‖r‖. (1.18)

If L is a square nonsingular matrix, thenx(0) = 0, and the above transformation amounts to
x̄ := Lx andĀ := AL−1.

When the regularization operatorL approximates a derivative, its pseudoinverse approx-
imates an integral operator and therefore is a low-pass filter. This filter is applied to the com-
puted solution̄xµ of (1.16) when evaluating the associated solutionxµ of (1.5); cf. (1.17).
The smoothing achieved by filtering is beneficial when the desired solutionx̂ is smooth. Reg-
ularization operators of the form (1.9)-(1.11) often are referred to as smoothing operators.



ETNA
Kent State University 

http://etna.math.kent.edu

66 L. REICHEL AND Q. YE

We remark that despite the complexity of the A-weighted pseudoinverse (1.12), matrix-
vector products with the matricesL†

A andAL†
A can be evaluated quite inexpensively whenL

is a banded matrix with small bandwidth, a circulant, or an orthogonal projection; see Section
2 or [13], [19, Section 2.3], and [24] for further details. Commonly used iterative methods
for the solution of Tikhonov minimization problems in standard form (1.16) are based on
partial Lanczos bidiagonalization of the matrix (1.13); see, e.g., [3, 4, 7, 8, 15, 17, 22]. How-
ever, recent numerical results reported in [23] show that Tikhonov regularization based on the
range-restricted Arnoldi (RR-Arnoldi) process can be competitive with Tikhonov regulariza-
tion based on Lanczos bidiagonalization. The RR-Arnoldi process is used to reducēA to a
small upper Hessenberg matrix; see Section3. Advantages of RR-Arnoldi-based Tikhonov
regularization, compared with Lanczos bidiagonalization-based Tikhonov regularization, in-
clude:

i) Many problems require a smaller number of matrix-vector product evaluations. When
the matrixA is large, these evaluations constitute the dominant computational work;
see [23] for a comparison.

ii) The methods do not require the evaluation of matrix-vector products withAT . They
therefore are attractive to use for problems for which matrix-vector products withAT

are difficult to evaluate. This situation arises, e.g., whensolving large nonlinear prob-
lems by Krylov subspace methods; see [11] for a discussion. It also arises when matrix-
vector products are evaluated by multipole methods.

iii) The methods deliver more accurate approximations of the desired solution̂x for some
problems; see [23] for a few illustrations.

A difficulty with solution methods based on the RR-Arnoldi process is that they require
the regularization operatorL to be represented by a square matrix. In particular, the oper-
ators (1.9)-(1.11) cannot be applied. Several approaches to circumvent this difficulty have
been discussed in the literature. Calvetti et al. [8, 9] propose to append or prepend rows
to the regularization operatorsLj to yield square and nonsingular regularization operators
L; the nonsingularity simplifies the computations. For suitable extensions of the operators
(1.9)-(1.11) this approach yields high accuracy. However, to achieve the most accurate ap-
proximations of̂x, the choice of extension often should depend on the behaviorof the solution
near the boundary. If this behavior is not knowna priori, one can first solve the problem with
L := I to determine the boundary behavior of the solution, and thenagain with a suitably
chosen square regularization operatorL to achieve higher accuracy.

An alternative to solving the transformed Tikhonov minimization problem (1.16) is to
apply an iterative method to the linear system of equations

Āx̄ = b̄. (1.19)

Regularization is achieved by terminating the iteration process sufficiently early. Denote the
kth iterate generated by the iterative method byx̄k, with x̄0 = 0, and define the associated
residual vector

r̄k := b̄ − Āx̄k. (1.20)

The iteration number,k, can be thought of as a regularization parameter. Application of the
discrepancy principle to determine when to terminate the iterations requires that the norm of
the residual vector̄rk be available; see Section3. In this paper, we discuss application of
the range-restricted GMRES (RR-GMRES) iterative method tothe solution of (1.19). RR-
GMRES is based on the RR-Arnoldi process; its use and comparison with standard GMRES
are illustrated in [5]. RR-GMRES is better suited than standard GMRES for the computation
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of an approximate solution of a linear discrete ill-posed problem whose desired solution̂x is
smooth.

Hansen and Jensen [20] recently described how nonsquare regularization operators can
be used in conjunction with RR-GMRES by augmenting the linear system (1.1) and multi-
plying the augmented system from the left-hand side by a matrix which contains(L†

A)T as a
submatrix. This approach is interesting, but it is not well suited for use with the discrepancy
principle, because the norm of residual vector (1.20) is not explicitly available.

Morigi et al. [24] proposed to use orthogonal projections as regularizationoperators.
These operators perform well for many linear discrete ill-problems, but they are not smooth-
ing. They are well suited for problems for which the desired solutionx̂ is not smooth. The ap-
plication of regularization operators without any particular structure is considered by Kilmer
et al. [21].

The present paper discusses several approaches to determining square regularization op-
erators from regularization operators of the form (1.9)-(1.11). We consider appending zero
rows to obtain square regularization operators. Numericalexamples illustrate the feasibility
of this approach. Problems with a periodic solution may benefit from the use of circulant
regularization operators obtained by augmenting suitablerows to regularization operators of
the form (1.9)-(1.11). The spectral decomposition of circulant matrices is easily computable,
and numerical examples illustrate that it may be beneficial to set certain eigenvalues to zero.
The latter observation is believed to be new. Finally, we discuss how these regularization
operators can be combined by weighted averaging or with an orthogonal projection to deal
with problems with non-periodic solutions.

This paper is organized as follows. Section2 discusses some properties of square zero-
padded and circulant regularization operators obtained bymodifying operators of the form
(1.9)-(1.11). A weighted average of the two is proposed in order to circumvent the restrictions
of each approach. We also describe how orthogonal projection regularization operators can
be combined with other regularization operators. The RR-Arnoldi process, the discrepancy
principle, and RR-GMRES are reviewed in Section3. Computed examples are presented in
Section4, and Section5 contains concluding remarks.

2. Regularization operators. We first discuss general properties of regularization oper-
atorsL ∈ Rk×n, k ≤ n, with a nontrivial null space and then consider square regularization
operators related to operators of the form (1.9)-(1.11). This is followed by a discussion of
properties of orthogonal projection regularization operators and how they can be combined
with square smoothing regularization operators.

Many regularization operators of interest have a nontrivial null space. Let

n1 := [1, 1, . . . , 1, 1]T ,

n2 := [1, 2, . . . , n − 1, n]T , (2.1)

n3 := [1, 22, . . . , (n − 1)2, n2]T .

Then

N (L1) = span{n1},
N (L2) = span{n1, n2}, (2.2)

N (L3) = span{n1, n2, n3}.
Let the columns of the matrixU ∈ Rn×ℓ form an orthonormal basis ofN (L). Generally,

the dimension,ℓ, of the null spaces of regularization operators of interestis fairly small; for
the operators (1.9)-(1.11), we have dimN (Lj) = j. Introduce the QR-factorization

AU = QR, (2.3)
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whereQ ∈ Rn×ℓ satisfiesQT Q = I andR ∈ Rℓ×ℓ is upper triangular.
PROPOSITION2.1. Let the columns ofU ∈ Rn×ℓ form an orthonormal basis of the null

space of the regularization operatorL ∈ Rk×n, k ≤ n. Thus,ℓ ≥ n − k. Let the matricesQ
andR be determined by (2.3). Then

L†
A = (I − UR−1QT A)L†, (2.4)

AL†
A = (I − QQT )AL†, (2.5)

b̄ = (I − QQT )b. (2.6)

Proof. The relation (2.4) follows by substitutingI−L†L = UUT and the QR-factorization
(2.3) into (1.12). Multiplication of (2.4) by A yields (2.5). Finally, relation (2.6) is a con-
sequence ofA(A(I − L†L))† = QQT . For further details, see [13] or [19, Section 2.3].

It is clear from (1.5) that the component of the solutionxµ in N (L) is not affected by
the value of the regularization parameterµ. The following result is a consequence of this
observation.

PROPOSITION2.2. ([24]) Let the orthonormal columns of the matrixU ∈ Rn×ℓ span
the null space of the regularization operatorL ∈ Rk×n and assume that (1.6) holds. Let
µ > 0 and letxµ be the unique solution (1.7) of the Tikhonov minimization problem (1.5).
Consider the discrete ill-posed problem with modified right-hand side

Ax = b
′, b

′ := b + AUy,

for somey ∈ Rℓ. Then the unique solution of the associated Tikhonov minimization problem

min
x∈Rn

{‖Ax− b′‖2 + µ‖Lx‖2}

is given byx′
µ := xµ + Uy.

The above proposition suggests that the regularization operatorL should be chosen so
that known features of the desired solutionx̂ can be represented by vectors inN (L). For
instance, when̂x is known to be monotonically increasing and smooth,L := L2 or L := L3

may be suitable regularization operators since their null spaces contain discretizations of
linearly and quadratically increasing function; cf. (2.2).

2.1. Square regularization operators by zero-padding.We discuss the use of square
regularization operators obtained by zero-padding matrices that represent scaled finite differ-
ence operators, such as (1.9)-(1.11). LetL1,0 denote then×n matrix obtained by appending
a zero row-vector to the operatorL1 defined by (1.9). Then

L†
1,0 = [L†

1,0] ∈ R
n×n. (2.7)

SubstitutingL := L1,0 andL† := L†
1,0 into (1.12) yields a squareA-weighted pseudoinverse

L†
A. The matrixAL†

A also is square and can be reduced to an upper Hessenberg matrix by the
RR-Arnoldi process. Note that for any vectorv ∈ Rn, L†

1,0v can be evaluated efficiently by
first computing the QR-factorization ofLT

1,0 with the aid of Givens rotations, and then solv-
ing a least-squares problem. The least-squares solution ofminimal-norm can be determined
easily, becauseN (L1,0) is explicitly known; see [13], [19, Section 2.3] for details.

The RR-Arnoldi process may break down when applied to a singular matrix. The matrix
(2.5) with L† defined by (2.7) is singular; we haveL†

Aen = 0. Here and elsewhere in this
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paper,ej = [0, . . . , 0, 1, 0, . . . , 0]T denotes thejth axis vector of appropriate dimension. The
matrix (2.5) also can be singular becauseA may be singular. A variant of the Arnoldi process
that avoids breakdown when applied to a singular matrix is described in [27] and should be
used in black-box software. However, in our experience, it is rare to encounter breakdown
or near-breakdown of the RR-Arnoldi process before the computations are terminated by
the discrepancy principle. Indeed, we have not encounterednear-breakdown in any of our
numerical experiments.

The regularization operators (1.10) and (1.11) can be extended to square regularization
operators in a similar manner asL1; the square operatorLj,0 is defined by appendingj zero
row-vectors toLj .

2.2. Square regularization operators by circulant extension. Circulant regulariza-
tion operators are well suited for use in problems with a periodic solution. We consider the
following circulant extensions of the matrices (1.9) and (1.10),

C1 :=
1

2




1 −1 0
1 −1

. . .
. . .
1 −1

−1 1



∈ R

n×n

and

C2 :=
1

4




2 −1 −1
−1 2 −1

−1
. ..

. . .
. .. −1

−1 −1 2



∈ R

n×n. (2.8)

Circulants have advantages of being normal matrices with a known spectral decomposi-
tion. Introduce the unitary “FFT-matrix” with the columns ordered according to increasing
frequency,

W = [w0, w1, w−1, w2, . . . , w(−1)n⌊n/2⌋] ∈ C
n×n,

wk :=
1√
n

[1, e−2πik/n, e−4πik/n, e−6πik/n, . . . , e−2πi(n−1)k/n]T ∈ C
n,

wherei :=
√
−1 and⌊α⌋ denotes the integer part ofα ≥ 0. The columns satisfywk = w̄−k,

where the bar denotes complex conjugation. Each columnwk represents rotations, with the
frequency increasing with|k|. Thewk are eigenvectors of all circulants; see, e.g., [12]. In
particular, the circulantsCj have the spectral decompositions

Cj = WΛjW
∗, Λj = diag[λ(j)

0 , λ
(j)
1 , λ

(j)
−1, λ

(j)
2 , . . . , λ

(j)
(−1)n⌊n/2⌋], (2.9)

where the superscript∗ denotes transposition and complex conjugation. The eigenvalues
satisfy

[λ
(j)
0 , λ

(j)
1 , λ

(j)
−1, λ

(j)
2 , . . . , λ

(j)
(−1)n⌊n/2⌋]

T =
√

nW ∗Cje1
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and therefore can be computed efficiently by the fast Fouriertransform method.
PROPOSITION2.3. The spectral decomposition (2.9) expresses a circulant as the sum of

n Hermitian rank-one circulants,

Cj =
∑

k

λ
(j)
k wkw∗

k, (2.10)

where summation is over the index set{0, 1,−1, 2, . . . , (−1)n⌊n/2⌋} with n components.
Proof. Straightforward computations show that the rank-one matriceswkw∗

k are circu-
lants.

The eigenvalues ofC1 are distributed equidistantly on a circle of radius and center 1/2,

with λ
(1)
0 = 0. All, or all but one, depending on the parity ofn, of the remaining eigenvalues

appear in complex conjugate pairs; we haveλ
(1)
k = λ̄

(1)
−k. The magnitude of the eigenvalues

increases with increasing magnitude of their index. The null space is given byN (C1) =
span{n1}, wheren1 is defined by (2.1).

10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50 60 70 80 90 100
10

−4

10
−3

10
−2

10
−1

10
0

(a) (b)

FIGURE 2.1. (a) Magnitude of the eigenvalues of the circulantC1 ∈ R
100×100 (red ∗) and eigenvalues

of the circulantC2 ∈ R
100×100 (black o). The eigenvalues are ordered according to increasing magnitude. (b)

Logarithmic scale with the eigenvaluesλ
(j)
0 = 0, j = 1, 2, omitted.

The matrixC2 is the symmetric part ofC1. Its eigenvalues are the real part of the eigen-
values ofC1. They live in the interval[0, 1] with λ

(2)
0 = 0. All, or all but one, depending

on the parity ofn, of the remaining eigenvalues appear pairwise; we haveλ
(2)
k = λ

(2)
−k. The

eigenvalues increase with increasing magnitude of their index. Moreover,N (C2) = N (C1).
Figure 2.1(a) displays the magnitude of the eigenvalues of circulantsC1 andC2 of order
n = 100.

Since then × n matrix C2 is real and symmetric, it has a real orthonormal eigenvector
basis, such as

{
w0,

1√
2
(w1 + w−1),

i√
2
(w1 − w−1),

1√
2
(w2 + w−2), . . .

}
.

Forn > 2, real linear combinations of these basis-vectors do not yield a real circulant eigen-
vector matrix.

The Moore-Penrose pseudoinverse ofCj is given by

C†
j = WΛ†

jW
∗, Λ†

j = diag[(λ(j)
0 )†, (λ

(j)
1 )†, (λ

(j)
−1)

†, . . . , (λ
(j)
(−1)n⌊n/2⌋)

†],
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where

(λ
(j)
k )† :=

{
1/λ

(j)
k , if λ

(j)
k 6= 0,

0, if λ
(j)
k = 0.

The smoothing effect of the circulant regularization operatorsCj stems from the fact that
the seminorm‖Cjx‖ weighs high-frequency components of the vectorx, when expanded in
terms of the eigenvectorswk, more than low-frequency components. Recall that the fre-
quency as well as the magnitude of the eigenvalues increase with the magnitude of the eigen-
vector index. Figure2.1(a) shows thatC1 weighs low-frequency components ofx more than
C2.

Figure2.1(b) differs from Figure2.1(a) in the scaling of the vertical axis and in that the
zero eigenvalues are not displayed. The figure provides better resolution for eigenvalues of
small magnitude. In particular, Figure2.1(b) shows that while both circulantsC1 andC2

weigh high frequency components the most, they also providesome weighting of low fre-
quencies. The latter may not be beneficial in situations whenthe desired solution is periodic
with low frequency. We may want to modify the circulantsCj by setting one or more of its
eigenvalues to zero and thereby avoid damping of the associated frequencies; cf. Proposition
2.2. The benefit of this is illustrated in Section4. Here we show that the modified matrix
obtained is a real circulant.

COROLLARY 2.4. Let the matrixĈ2 be obtained by setting thep pairs of eigenvalues
{λ(2)

1 , λ
(2)
−1}, {λ

(2)
2 , λ

(2)
−2}, . . . , {λ

(2)
p , λ

(2)
−p} in the decomposition (2.10) of C2 to zero, where

p < n/2. The matrixĈ2 so obtained is a real circulant, and so is its Moore-Penrose pseu-
doinverseĈ†

2 .

Proof. Let 1 ≤ k ≤ p. Thenλ
(2)
−k = λ

(2)
k . Settingλ

(2)
−k andλ

(2)
k to zero for1 ≤ k ≤ p

yields the matrix

Ĉ2 := C2 −
p∑

k=1

(
λ

(2)
k wkw∗

k + λ
(2)
−kw−kw∗

−k

)
= C2 −

p∑

k=1

λ
(2)
k (wkw∗

k + w̄kw̄∗
k) .

The right-hand side shows thatĈ2 is real. It is easy to verify thatwkw∗
k is a circulant and so

is w̄kw̄∗
k. ThereforeĈ2 is a circulant. It follows that̂C†

2 also is a real circulant.
We have discussed two circulant regularization operators.Other circulants can be inves-

tigated similarly and applied as regularization operatorswhen appropriate.

2.3. Weighted average of circulant and zero-padded regularization operators. The
null space of the regularization operatorL2, defined by (1.10), contains the discretization of
linear functions; however, the circulant extension,C2, does not. While the circulantC2, and
its modificationĈ2 described in Corollary2.4, are well suited for the solution of problems
with a periodic solution, they damp non-periodic solution components, such as linear growth.
We are interested in deriving regularization operators that neither damp slowly oscillatory
solution components nor linear growth. Namely, the null space of the regularization operator
should contain discretizations of both linear and slowly oscillatory functions, or at least the
complements of the orthogonal projections of these functions into the null space should be
small. This section describes how regularization operators with this property can be defined.

First, consider the regularization operatorL := DδC2, where

Dδ := diag[δ, 1, . . . , 1, δ], (2.11)

andδ > 0 is small. Thus,L is the product of the the circulant operatorC2 and the zero-
padded operator that is obtained by prepending and appending a zero row toL2. Discrete
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linear functions, represented byαn1 +βn2 for α, β ∈ R, are approximately in the null space
of L, in the sense that they are hardly damped byL in the context of Tikhonov regularization.
Unfortunately, this operatorL is computationally difficult to use in large-scale problems, as a
formula forL† that is inexpensive to evaluate is not obvious; see also Section 2.4 for further
comments. However,C†

2D−1
δ may be considered a rough approximation ofL†. This leads us

to consider the regularization operator

L :=
(
C†

2D−1
δ

)†

,

which differs fromDδC2, but has some similar desirable properties as we shall discuss below.
More generally, as in Section2.2, we can set some small eigenvalues ofC2 to zero, and

thereby avoid the damping of low frequency solution components. Recall that̂C2 is obtained
from C2 by setting thep pairs of eigenvalues{λ(2)

1 , λ
(2)
−1}, {λ

(2)
2 , λ

(2)
−2}, . . . , {λ

(2)
p , λ

(2)
−p} in

the decomposition (2.10) to zero, where0 ≤ p < n/2 (with the convention that̂C2 = C2 if
p = 0). We will use the regularization operator defined implicitly by

L :=
(
Ĉ†

2D−1
δ

)†

. (2.12)

Note that onlyL† = Ĉ†
2D−1

δ is needed in computations and is readily available;L itself is
not directly used. We show that the operator (2.12) inherits the low-pass property of̂C2 and
hardly damps discrete linear functionsαn1 + βn2, α, β ∈ R.

THEOREM 2.5. Let L be defined by (2.12) with Dδ given by (2.11). Then, for any
v ∈ Rn,

‖Lv‖ ≤ ‖DδĈ2v‖.

In particular,Lwk = 0 for 0 ≤ |k| ≤ p. Thus,n1 ∈ N (L). Moreover,

‖Ln2‖
‖n2‖

≤ δ√
n

+ λ
(2)
p+1.

Proof. Let u := Lv. ThenL†Lv = L†u = Ĉ†
2D−1

δ u. Therefore,

Ĉ2L
†Lv = Ĉ2Ĉ

†
2D−1

δ u = D−1
δ u − (I − Ĉ2Ĉ

†
2)D−1

δ u.

Hence,

DδĈ2L
†Lv = u − Dδ(I − Ĉ2Ĉ

†
2)D−1

δ u.

SinceR(L†) = R(Ĉ†
2) = span{wp+1, w−(p+1), wp+2, w−(p+2), . . .}, we have

I − L†L = w0w
∗
0 +

p∑

k=1

(
wkw∗

k + w−kw∗
−k

)
.

It follows from this equation and̂C2wk = 0 for 0 ≤ |k| ≤ p that DδĈ2L
†L = DδĈ2.

Writing u0 := Dδ(I − Ĉ2Ĉ
†
2)D−1

δ u, we have

u − u0 = DδĈ2v.
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Now, L†u0 = Ĉ†
2(I − Ĉ2Ĉ

†
2)D−1

δ u = 0, i.e.,u0 ∈ N (L†). Therefore,u0 ⊥ u ∈ R(L),
and it follows that

‖u‖ ≤ ‖u − u0‖ = ‖DδĈ2v‖.

This inequality andĈ2wk = 0 show thatLwk = 0 for 0 ≤ |k| ≤ p. Furthermore, since

‖Ĉ2 − C2‖ ≤ λ
(2)
p+1 andC2n2 = n

4 [−1, 0, . . . , 0, 1]T , we have

‖Ln2‖ ≤ ‖DδĈ2n2‖ ≤ ‖DδC2n2‖ + λ
(2)
p+1‖n2‖ ≤

√
2n

4
δ + λ

(2)
p+1‖n2‖.

The bound for‖Ln2‖/‖n2‖ now follows from‖n2‖ =
√

n(n + 1)(2n + 1)/6 ≥
√

n3/3.

2.4. Orthogonal projection regularization operators. Let the matrixU ∈ Rn×ℓ,
ℓ ≪ n, have orthonormal columns. Then the regularization operator

L := I − UUT (2.13)

is an orthogonal projector ontoR⊥(U). Application of orthogonal projection regularization
operators is discussed in [24]. This section describes how to combine regularization by or-
thogonal projection and smoothing operators. This kind of regularization yields the smooth-
ing properties of the latter and allows the choice of a sufficiently large null space to represent
important features of the desired solutionx̂.

While the regularization operator introduced in Section2.3has some of these properties,
its null space only approximately contains discretizations of linear functions and it requires
n to be large. In addition, there are situations where it mightbe desirable to include other
solution components, such as a quadratic or exponential growth functions, in the null space.
This can be achieved by combining an orthogonal projection regularization operator with a
circulant smoothing regularization operator.

We first review relevant properties of orthogonal projection regularization operators and
discuss the equivalence of these operators to a decomposition method described in [2]. The
latter provides a convenient way of implementing regularization with two regularization op-
erators for large-scale problems.

PROPOSITION2.6. Let the regularization operatorL ∈ Rn×n be defined by (2.13) and
let the matricesQ andR be determined by (2.3). Then

L†
A = I − UR−1QT A, (2.14)

AL†
A = (I − QQT )A. (2.15)

Proof. A proof follows from Proposition2.1and straightforward computations. Details
and related results can be found in [24].

For small to medium-sized problems, for which the GSVD can beapplied, we may
choose regularization operators of the formSL, whereS is a smoothing regularization op-
erator andL is an orthogonal projector (2.13) with a suitably chosen null space. However,
products of regularization operators are difficult to handle in large-scale problems that are
transformed to standard form (1.16). The reason for this is that one of the factors ofL†

A is the
pseudoinverse of the regularization operator, cf. (2.4), and for most pairs{S, L} of regular-
ization operators of interest, the pseudoinverse(SL)† is difficult to evaluate efficiently; see,
e.g., [10, Section 1.4] and [16] for discussions on the pseudoinverse of a product of matrices.
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We therefore propose to apply pairs of regularization operators sequentially. This can be car-
ried out in a conceptually simple manner by partitioning thelinear system of equations (1.1)
as follows. Introduce the orthogonal projectors

PU := UUT , P⊥
U := I − UUT , PQ := QQT , P⊥

Q := I − QQT ,

and partition the vectorx = PUx + P⊥
U x and the linear system of equations (1.1) according

to

PQAPUx + PQAP⊥
U x = PQb, (2.16)

P⊥
Q APUx + P⊥

Q AP⊥
U x = P⊥

Q b. (2.17)

Application of partitioning to the solution of linear discrete ill-posed problems is discussed
in [2].

THEOREM 2.7. Let L be defined by (2.13) and letQ be given by (2.3). Then equation
(2.16) is equivalent to (1.17), and equation (2.17) is equivalent to (1.19).

Proof. We first establish the equivalence of (2.17) and (1.19). Note that

P⊥
Q APU = 0. (2.18)

It follows from (2.15) and (2.6) that

Ā = P⊥
Q A = P⊥

Q AP⊥
U , P⊥

Q b = b̄.

This shows the equivalence.
We turn to (2.16). Denote the computed approximate solution of (2.17) by x̃. In view of

(2.18), the system of equations (2.16)-(2.17) is block upper triangular andPUx satisfies

PQAPUx = PQb − PQAP⊥
U x̃,

which can be written as

RUT x = QT b − (QT Ax̃ − RUT x̃),

i.e.,

UT (x − x̃) = R−1QT (b − Ax̃).

We may choose

x := x̄ + UR−1QT (b − Ax̄). (2.19)

Note that (1.14) can be expressed asx(0) = UR−1QT b. Substituting this expression and
(2.14) into x = L†

Ax̃ + x(0), which is analogous to (1.17), yields

x = (I − UR−1QT A)x̃ + UR−1QT b.

This expression is equivalent to (2.19), which shows the theorem.
Theorem2.7 shows that partitioning is equivalent to the application ofan orthogonal

projection regularization operator, and that the partitioned system (2.16)-(2.17) is block upper
triangular. We propose to apply an initial partitioning in situations when the null space of
an otherwise suitable smoothing regularization operatorsis not large enough to be able to
represent pertinent features of the desired solutionx̂. Having chosen a suitable orthogonal
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projection regularization operator (2.13), and therefore the matrixU , we solve (2.17) using
a smoothing regularization operator. Note that in view of (2.18) and P⊥

Q AP⊥
U = P⊥

Q A,
equation (2.17) simplifies to

P⊥
Q Ax = P⊥

Q b. (2.20)

For example, ifx̂ has a linear growth function component, then the matrixU that
defines the orthogonal projection regularization operator(2.13) should be chosen so that
R(U) = span{n1, n2}. We then may select the circulant

Ĉ2 := C2 − λ
(2)
1 (w1w

∗
1 + w̄1w̄

∗
1),

whose null space contains slowly oscillating discrete functions, as a smoothing regularization
operator. Computations with this combination of regularization operators are presented in
Example4.5of Section4.

The following result shows that in order to determine the residual error norm associated
with (1.1), it suffices to compute the norm of the residual error of the reduced system (2.20).

COROLLARY 2.8. Let x̃ ∈ Rn and define the residual vector

r̃ := P⊥
Q b − P⊥

Q Ax̃.

Letx be the associated approximate solution of (1.1) defined by (2.19) in the proof of Theorem
2.7, and let

r := b − Ax.

Then‖r‖ = ‖r̃‖.
Proof. The result follows from (1.18) by using the equivalence of partitioning and regu-

larization by an orthogonal projection operator. The corollary also can be shown directly by
using the partitioning (2.16)-(2.17); see [2] for details on the latter approach.

We remark that instead of partitioning (1.1) and regularizing (2.20), we can carry out
repeated transformations of the Tikhonov minimization problem (1.5) to standard form. The
latter approach is more general. However, since we are not exploiting this generality, we will
not pursue this approach further in the present paper. Note that the regularization technique
of this section also can be used with nonsquare smoothing regularization operators.

3. Krylov subspace methods and the discrepancy principle.Application ofk < n
steps of the range-restricted Arnoldi process to the matrixĀ ∈ Rn×n in (1.16) or (1.19) with
initial vectorb̄ determines the decomposition

ĀV̄k = V̄k+1H̄k+1,k, (3.1)

where the orthonormal columns of the matrixV̄k+1 ∈ R
n×(k+1) form a basis of the Krylov

subspace

Kk+1(Ā, b̄) := span{Āb̄, Ā2b̄, . . . , Āk+1b̄} (3.2)

and the matrixH̄k+1,k ∈ R(k+1)×k is of upper Hessenberg form. The matrixV̄k consists of
the firstk columns ofV̄k+1.

The decomposition (3.1) is the basis for the Arnoldi-Tikhonov method for the solution of
(1.16), as well as for the RR-GMRES iterative method for the solution of the linear systems
of equations (1.19). We first outline the latter scheme.
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Thekth iterate,x̄k, determined by RR-GMRES when applied to the solution of (1.19)
satisfies

‖Āx̄k − b̄‖ = min
x̄∈Kk(Ā,Āb̄)

‖Āx̄ − b̄‖, x̄k ∈ Kk(Ā, Āb̄), (3.3)

and is computed by first finding the solutionȳk of the minimization problem

min
ȳ∈Rk

‖H̄k+1,kȳ − V̄ T
k+1b̄‖

and then settinḡxk := V̄kȳk. The associated approximate solution of (1.1) is given by

xk := L†
Ax̄k + x(0);

cf. (1.17). The residual errorrk := b − Axk associated withxk can be expressed as

rk = b̄ − Āx̄k = V̄k+1(H̄k+1,kȳk − V̄ T
k+1b̄) − (I − V̄k+1V̄

T
k+1)b̄,

and it follows that

‖rk‖2 = (eT
k+1Q̄

T
k+1V̄

T
k+1b̄)2 + ‖b̄ − V̄k+1V̄

T
k+1b̄‖2,

whereQ̄k+1 ∈ R(k+1)×(k+1) is the orthogonal matrix in a QR-factorization of̄Hk+1. The
squared residual error norm‖rk‖2 can be evaluated inexpensively by updating‖rk−1‖2.

Let η be a constant strictly larger than one. The iteratexk is said to satisfy the discrep-
ancy principle if

‖rk‖ ≤ ηε, (3.4)

whereε is the norm of the noise (1.3) or an estimate thereof. If the available estimate is known
to be accurate, then we chooseη close to unity. It follows from (3.3) andKk−1(Ā, Āb̄) ⊂
Kk(Ā, Āb̄) that‖rk−1‖ ≤ ‖rk‖ for k = 1, 2, 3, . . . , wherer0 := b − Ax(0). We terminate
the iterations as soon as an iteratexk̂ has been determined that satisfies the discrepancy
principle. Thus,rk̂ is the first residual vector, such that (3.4) holds. An analysis of this
stopping rule for standard GMRES is provided in [6]; the analysis there carries over to RR-
GMRES. The evaluation ofxk̂ requiresk̂ + ℓ + 1 matrix-vector product evaluations with
the matrixA, ℓ of which are required to compute the QR factorization (2.3). For large-
scale problems, the matrix-vector product evaluations dominate the computational work. We
therefore tabulate this number in the computed examples of Section4.

We turn to Tikhonov regularization. Letk̂ be defined as above. In the numerical examples
of Section4, we carry outk Arnoldi steps, wherek := k̂ or k := k̂ + 1. Substituting the
decomposition (3.1) into (1.16) yields a minimization problem of fairly small size, whose
solution,x̄k,µ, we compute. Letxk,µ := L†

Ax̄k,µ + x(0). We chooseµ so that, analogously
to (3.4), the associated residual errorrk,µ := b − Axk,µ satisfies‖rk,µ‖ = ηε; see [23] for
further details.

4. Computed examples.We illustrate the performance of the regularization operators
discussed with some numerical examples. The noise vectore has in all examples normally
distributed pseudorandom entries with mean zero, and is normalized to correspond to a cho-
sen noise level

ν :=
‖e‖
‖b̂‖

.
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Hereb̂ denotes the noise-free right-hand-side vector in (1.4). We letη := 1.01 in (3.4) in all
examples. The computations are carried out in MATLAB with about 16 significant decimal
digits. We reorthogonalize the columns of the matrixV̄k+1 in the decomposition (3.1). Since
typically the dimensionk + 1 of the Krylov subspaces (3.2) used is fairly small, reorthogo-
nalization is inexpensive. Reorthogonalization may reduce the size of the Krylov subspace
required for determining an approximate solution that satisfies the discrepancy principle; see
[26, Example 4.1] for an illustration with a symmetric matrix.

regularization operator # iterationsk # mat.-vec. prod. ‖xk − x̂‖/‖x̂‖
I 3 4 1.6 · 10−3

L1,0 2 4 2.2 · 10−4

L2,0 1 4 2.0 · 10−4

L3,0 0 3 1.7 · 10−4

TABLE 4.1
Example4.1: Relative error in approximate solutionsxk determined by truncated iteration with RR-GMRES.
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FIGURE 4.1.Example4.1: Computed approximate solutionsxk determined by RR-GMRES using the discrep-
ancy principle. The dashed curves show the vectorx̂; the continuous curves display in (a) the iteratex3 determined
without regularization operator (L := I), and in (b) the iteratex0 determined with the regularization operator
L := L3,0.

EXAMPLE 4.1. The Fredholm integral equation of the first kind,

∫ π/2

0

κ(σ, τ)x(σ)dσ = b(τ), 0 ≤ τ ≤ π, (4.1)

with κ(σ, τ) := exp(σ cos(τ)), b(τ) := 2 sinh(τ)/τ , and solutionx(τ) := sin(τ) is dis-
cussed by Baart [1]. We use the MATLAB codebaart from [18] to discretize (4.1) by a
Galerkin method with200 orthonormal box functions as test and trial functions. The code
produces the matrixA ∈ R200×200 and a scaled discrete approximation ofx(τ). Adding
50n1 to the latter yields the vector̂x ∈ R200 with which we compute the noise-free right-
hand sidêb := Ax̂.

Let the entries of the error vectore ∈ R
200 be normally distributed with zero mean, and

be normalized to yield the noise levelν = 5 · 10−5. This corresponds to an absolute error of
‖e‖ = 9.8 · 10−2. The right-hand sideb in the system (1.1) is obtained from (1.2).

Table4.1displays results obtained with RR-GMRES for several regularization operators
and Figure4.1shows two computed solutions. The continuous curve in Figure4.1(a) displays
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the computed solution obtained without explicit use of a regularization operator (L := I);
the continuous curve in Figure4.1(b) depicts the corresponding solution determined with
L := L3,0. The iterations are terminated by the discrepancy principle (3.4). The dashed
curves in Figures4.1(a) and (b) show the solution̂x of the noise-free problem (1.4).

This example shows RR-GMRES without explicit use of a regularization operator to
perform poorly. The reason for this is that the desired solution is a small relative perturbation
of the vector50n1. We note that this vector lives inN (Lj,0), 1 ≤ j ≤ 3, and therefore does
not affect the Krylov subspaces for̄A when one of the regularization operatorsLj,0 is applied.
WhenL := L3,0, the norm of the initial residualr0 := b − Ax(0) satisfies the discrepancy
principle (3.4) and no iterations are carried out.

method # iterationsk # mat.-vec. prod. ‖xk − x̂‖
Arnoldi-Tikhonov 9 10 1.5 · 10−2

Arnoldi-Tikhonov +1 10 11 1.2 · 10−2

LBD-Tikhonov 11 22 1.2 · 10−2

TABLE 4.2
Example4.2: Errors in approximate solutions of a modification of (4.2) determined by several Tikhonov regu-

larization methods with regularization operatorL := I.

method # iterationsk # mat.-vec. prod. ‖xk − x̂‖
Arnoldi-Tikhonov 6 8 5.7 · 10−3

Arnoldi-Tikhonov +1 7 9 2.9 · 10−3

LBD-Tikhonov 7 15 3.6 · 10−3

TABLE 4.3
Example4.2: Errors in approximate solutions of a modification of (4.2) determined by several Tikhonov regu-

larization methods with regularization operatorL1,0.
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FIGURE 4.2. Example4.2: Approximate solutionsxk,µ computed by the Arnoldi-Tikhonov method with the
regularization parameterµ determined by the discrepancy principle. The dashed curvesshow the vector̂x; the
continuous curves display in (a) the approximate solutionx10,µ determined with regularization operatorL := I

and in (b) the approximate solutionx7,µ determined withL := L1,0.

EXAMPLE 4.2. Consider the Fredholm integral equation of the first kind
∫ 6

−6

κ(τ, σ)x(σ)dσ = g(τ), −6 ≤ τ ≤ 6, (4.2)
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with kernel and solution given by

κ(τ, σ) := x(τ − σ),

x(σ) :=

{
1 + cos(π

3 σ), if |σ| < 3,
0, otherwise.

The right-hand sideg(τ) is defined by (4.2). This integral equation is discussed by Phillips
[25]. The MATLAB codephillips in [18] determines a discretization by a Galerkin method
with orthonormal box functions. A discretization of a scaled solution also is provided. Let
the matrixA ∈ R

200×200 determined byphillips represent the discretized integral operator,
and letx̂ be the sum of the scaled discrete solution provided byphillips and the vectorn1.
The noise-free right-hand side is given byb̂ := Ax̂. A noise vectore similar to the one in
Example4.1 and scaled to correspond to a noise level of1 · 10−3 is added tôb to yield the
right-hand sideb of the linear system (1.1).

Tables4.2 and4.3 report the performance of several Tikhonov regularizationmethods
with the regularization operatorsL := I andL := L1,0, respectively. The latter regular-
ization operator gives more accurate results for the present problem. For many ill-posed
problems the Arnoldi-Tikhonov method yields higher accuracy by applying one more step
of the Arnoldi process than thêk steps necessary to satisfy the discrepancy principle; see
the last paragraph of Section3. This approach is denoted by Arnoldi-Tikhonov +1 in the ta-
bles. LBD-Tikhonov is the Lanczos bidiagonalization-based Tikhonov regularization method
described in [7]. Lanczos bidiagonalization is implemented with reorthogonalization. We
remark that the operatorsL1,0 andL1 are equivalent when applied in LBD-Tikhonov. Figure
4.2 displays the most accurate computed solutions in the Tables4.2 and4.3 for L := I and
L := L1,0.

The tables show the Arnoldi-Tikhonov method to yield about the same accuracy as LBD-
Tikhonov and to require fewer matrix-vector product evaluations. We therefore omit graphs
for the approximate solutions determined by LBD-Tikhonov.

regularization operator # iterationsk # mat.-vec. prod. ‖xk − x̂‖/‖x̂‖
I 2 3 1.3 · 10−1

L3,0 0 3 5.0 · 10−2

TABLE 4.4
Example4.3: Relative error in approximate solutionsxk determined by truncated iteration with RR-GMRES.

EXAMPLE 4.3. RR-GMRES would in Example4.1be able to determine a quite accurate
approximation of̂x without the use of the regularization operatorL1,0, if before iterative so-
lution 50An1 is subtracted from the right-hand sideb, and after iterative solution the vector
50n1 is added to the approximate solution determined by RR-GMRES. However, it is not al-
ways obvious how a problem can be modified in order for RR-GMRES to be able to achieve
high accuracy without applying a regularization operator.This is illustrated by the present
example, for which subtracting a multiple ofAn1 before iterative solution with RR-GMRES,
and adding the same multiple ofn1 after iterative solution, does not yield an accurate ap-
proximation ofx̂.

Consider
∫ π/4

0

κ(σ, τ)x(σ)dσ = b(τ), 0 ≤ τ ≤ π

2
,

where the kernel and the right-hand side are the same as in (4.1). We discretize in a similar
fashion as in Example4.1 to obtain the matrixA ∈ R500×500 and the noise-free right-hand
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FIGURE 4.3.Example4.3: Computed approximate solutionsxk determined by RR-GMRES using the discrep-
ancy principle. The dashed curves show the vectorx̂; the continuous curves display in (a) the iteratex2 determined
without regularization operator (L := I), and in (b) the iteratex0 determined with the regularization operator
L := L3,0.

sideb̂ ∈ R500. Adding a noise vectore to b̂ yields the right-hand side of (1.1). The vector
e is scaled to correspond to the noise levelν = 2 · 10−3. We solve the system (1.1) by
RR-GMRES. Table4.4 reports results for the cases when no regularization operator is used
(L := I) and when the regularization operatorL := L3,0 is applied. Figure4.3 displays
the computed solutions. The operatorL3,0 is seen to improve the quality of the computed
solution.

regularization operator # iterationsk # mat.-vec. prod. ‖xk − x̂‖
- 5 6 5.7 · 10−2

L2,0 5 8 2.4 · 10−2

C2 3 5 5.7 · 10−3

Ĉ2 1 5 2.4 · 10−3

TABLE 4.5
Example4.4: Errors in approximate solutions of computed by RR-GMRES without and with several regular-

ization operators. The operatorL2,0 is defined by zero-padding the operator (1.10), C2 by (2.8), andĈ2 by setting
the two smallest nonvanishing eigenvalues ofC2 to zero.

EXAMPLE 4.4. We modify the integral equation of Example4.2in two ways: the integral
equation is discretized with finer resolution to obtain the matrix A ∈ R1000×1000, and instead
of adding a discretization of the function1 to the scaled discrete solution determined by the
MATLAB code phillips, we add a discretization of the function2 cos(π(1+ σ

6 )). This defines

x̂. The noise-free right-hand side is given byb̂ := Ax̂. A noise vectore with normally
distributed entries with mean zero, and scaled to correspond to the noise level1 · 10−2, is
added tôb to yield the right-hand sideb of the linear system (1.1).

Table4.5 reports the performance of RR-GMRES without and with several regulariza-
tion operators. The table shows that the regularization operator Ĉ2 obtained from (2.8) by
setting the two smallest nonvanishing eigenvalues,λ

(2)
1 andλ

(2)
−1, to zero yields the best ap-

proximation of the desired solution̂x. In particular, the regularization operatorĈ2 yields
higher accuracy thanL2,0. Table4.5 also displays the number of iterations and the number
of matrix-vector product evaluations required. Figure4.4 showsx̂ (dashed curves) and the
computed approximate solutions determined with the regularization operatorsL2,0 andĈ2
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FIGURE 4.4. Example4.4: Computed approximate solutionsxk by RR-GMRES using the simplified discrep-
ancy principle. The dashed curves depict the vectorx̂; the continuous curves display in (a) the iteratex5 determined
with the regularization operatorL := L2,0, and in (b) the iteratex1 computed with the regularization operator
L := Ĉ2 defined by setting the two smallest nonvanishing eigenvalues ofC2 to zero.

(continuous curves). The latter curves differ primarily attheir endpoints.

regularization operator # iterationsk # mat.-vec. prod. ‖xk − x̂‖
- 8 9 6.0 · 10−2

L2,0 5 8 1.8 · 10−2

C2 7 9 1.1 · 10−1

Ĉ2 3 7 1.1 · 10−1

(Ĉ†
2D−1

δ )† 2 6 5.6 · 10−3

OP andC2 3 7 4.3 · 10−3

OP 4 7 1.0 · 10−2

TABLE 4.6
Example4.5: Errors in approximate solutions computed by RR-GMRES without and with several regularization

operators. The operatorL2,0 is defined by zero-padding the operator (1.10), C2 by (2.8), and Ĉ2 by setting the
two smallest nonvanishing eigenvalues ofC2 to zero. The diagonal matrixDδ hasδ = 1 · 10−8. OP stands for
orthogonal projection onto a subspace not containing discretized linear functions, i.e.,R(U) = span{n1, n2} in
(2.13).

EXAMPLE 4.5. The matrix in this example is the same as in Example4.4, and we add
a discretization of the linear functionℓ(σ) := 1 + σ/6 to the vector̂x. The noise-free and
noise-contaminated right-hand sides are determined similarly as in Example4.4; the noise
level is1 · 10−2.

Table4.6 reports the performance of RR-GMRES without and with several regulariza-
tion operators. Because of the oscillatory behavior of the desired solution̂x, the regular-
ization operatorL2,0 does not perform well, and due to the linear term inx̂, neither do
the operatorsC2 andĈ2. The latter operator is the same as in Example4.4. We therefore
consider the approaches of Section2.3 and2.4, which yield clearly better results. For the
weighted average regularization operatorL in (2.12), the matrixDδ is given by (2.11) with
δ := 1 · 10−8. In the method of Section2.4, we first carry out an orthogonal projection
onto the complement of discrete linear functions. Hence, welet U ∈ R1000×2 in (2.13) be
such thatR(U) = span{n1, n2}. This projection is in Table4.6 referred to as “OP”. RR-
GMRES is applied to the projected equations (2.20) with the regularization operatorsC2 or
without further regularization. Results for the latter approach are displayed in the last line
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FIGURE 4.5. Example4.5: Approximate solutionsxk computed by RR-GMRES using the simplified discrep-
ancy principle. The dashed curves depict the vectorx̂; the continuous curves display in (a) the iteratex5 determined
with regularization operatorL := L2,0, and in (b) the iteratex3 determined by initial orthogonal projection onto
the complement of the discretized linear functions, and then solving the projected problem by RR-GMRES with
regularization operatorC2.

of the table. Table4.6 shows orthogonal projection followed by regularization with C2 to
give the best approximation of̂x. The computed solution is shown in Figure4.5(b). Also the
regularization operator(Ĉ†

2D−1
δ )† is seen to determine an accurate approximation ofx̂. Fur-

thermore, Table4.6 illustrates that the smoothing regularization operatorL2,0 yields a better
approximation than the orthogonal projection regularization operator (OP) with the same null
space. This depends on that the desired solutionx̂ is smooth andL2,0 is smoothing, but the
orthogonal projector is not. Figure4.5(a) displays the solution determined withL2,0. This
computed solution differs from̂x the most at the endpoints.

5. Conclusion. We have presented several square extensions of some standard regular-
ization operators based on finite difference discretization of derivatives. The numerical exam-
ples illustrate that the square regularization operators discussed here can improve the quality
of the computed approximate solution determined by Arnoldi-based Tikhonov regularization
and minimal residual methods. Moreover, they are quite simple to implement.
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