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In wireless sensor networks (WSNs), clustering-based algorithms have been proved to be effective 
techniques to save energy and improve fault tolerance. In this paper, a scale-free evolving model for 
clustering-based WSNs with exponential growth behavior is presented, in which the nodes arrive as a 
Poisson process with rate λ. This model takes into account four types of evolving events: selection of 
cluster-head nodes, preferential attachment of non cluster-head nodes, failure of non cluster-head 
nodes, transition of non cluster-head nodes. By using continuum theory, the theoretical computing and 
simulated results show that the size distribution of cluster in this model follows a power law. The scale-
free properties revealed in this model display a tempting application foreground. 
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INTRODUCTION 
 
Recent development in wireless communication networks 
has enabled the large-scale deployment of low cost, 
energy efficient and multi-purpose wireless sensor 
networks. A lot of real world applications have been 
already deployed and many of them will be based on 
wireless sensor networks. These applications include 
geographical monitoring, medical care, manufacturing, 
transportation, military and surveillance systems. Due to 
the constrained energy and unreliable topology in wireless 
sensor networks, many researchers have witnessed 
clustering based algorithms, to maintain network connec- 
tivity, prolong network lifetime and optimize the overall 
network performance. A wide range of algorithms aimed 
at clustering have been proposed, such as Leach 
(Heinzelman, 2002), Heed (Younis and Fahmy, 2004), 
Pegasis (Lindsey and Raghavendra, 2002), Teen 
(Manjeshwar and Agrawal, 2001), etc. Clustering is 
particularly useful for application that requires scalability 
to large-scale wireless sensor networks and clustering 
can be effective in routing protocol and broadcast 
communications (Younis and Fahmy, 2004). In general, 
clustering can be divided into two phases: cluster 
formation and steady data transmission, and cluster 
formation can be divided into four phases: selection of 
cluster-head nodes, broadcasting of cluster-head nodes, 
attachment of ordinary  nodes  and  creation  of  schedule  

mechanism. 
The remainder of this paper is organized as follows. 

Subsequently, we basically describe the study’s background 
and our contribution, followed by the exponential growth 
model, after which the design of the study’s model is then 
discussed in details. Following the study’s design, theore- 
tical analysis was done using continuum theory, as well 
as the simulation, before the conclusion was finally given. 
 
 
Background and our contribution 
 
In the past few years, various natural networks, such as 
Internet (Faloutsos et al., 1999; Guanrong et al., 2005), 
the World Wide Web (WWW) (Albert et al., 1999), traffic 
networks (Barrat et al., 2004), food webs (Drossel and 
McKane, 2003), Quantum Neural Network (Rigui and 
Quilin, 2008; RiguiZhou, 2010) etc., have been found that 
they generally exhibit universal properties of complex 
networks, including small world characteristic (Watts  et 
al., 1998) and scale-free characteristic (Barabási and 
Albert, 1999) and more and more physicists devote their 
enthusiastic energy to explore and model the evolving 
mechanisms by using statistical approach. Scale-free 
networks are robust against random nodes failure or 
attack; they always exhibit low path length and high  



5236          nt. J. Phys. Sci. 
 
 
 
clustering, and they have been proved to be efficient in 
routing or topology control of Wireless Sensor Networks 
(Garbinato et al., 2007; Wang et al., 2007). 

A serious of evolving models are presented, such as 
BA model (Barabási and Albert, 1999), Local-World 
model (Li and Chen, 2003), Fitness model (Bianconi and 
Barabasi, 2001), BBV model (Barrat et al., 2004) etc. But 
these prominent models have two shortcomings. Firstly, 
they always supposed that the time interval of nodes 
arrival is equivalent. That is to say, at time t, the number 
of nodes N (t) is proportional to t. Actually, in natural 
networks, N (t) is not always linear growth process, such 
as the consumers in barber shop and the packets 
appeared in switches and routers, they are stochastic 
Poisson process. Secondly, they did not consider the exit 
of nodes. Fox example, in WSNs, the nodes probably exit 
from the network due to exhaustibility of power or 
intended attack. Several recently proposed models have 
addressed these shortcomings. Shou-we and Xing-san 
(2005) proposed a modified BA model and in which the 
time interval followed exponential distribution. Guo and 
Wang (2007) proposes a Poisson network model with 
node batch arrival, which was based on the batch arrival 
concept in the queue theory. Sarshar and Roychowdhury, 
(2004) first showed that only relying on the classical BA 
model can not produces heavy-tailed degree distribution 
in complex ad hoc networks and P2P networks. The SR 
evolving model introduced the mechanisms of nodes 
deletion and links compensatory rewiring. 

Whether WSNs have the same mechanisms like the 
evolving model which we have mentioned? How to model 
the dynamics of clustering-based WSNs? Jin and 
Papavassiliou (2002) modeled mobile wireless sensor 
networks, which described the dynamics of the network 
and facilitated the understanding of the effect of the 
various events, this is the originate work, to the best of 
our knowledge. Iyer et al. (2003) showed the dynamics of 
self-organizing ad hoc networks, and the presented 
evolving model could well illuminate clustering 
phenomena; Helmy et al. (2003) investigated the small-
world effects in wireless ad hoc or sensor networks by 
randomly link re-wiring and link addition; Ishizuka and 
Aida (2004) probed the scale-free properties of wireless 
sensor networks by using probability density function. Hui 
and Chaintreau (2005) measured human mobility at 
academic working environments and the Infocom (2005) 
conference, and found that the time between pair wise 
node contacts followed power law distribution. Chen et al. 
(2007) presented an evolving WSNs model with 
equivalent growth of the nodes, which was based on BA 
evolving model (Barabási and Albert, 1999) and Local-
World evolving model (Li and Chen, 2003), and this 
model can improve the uniformity of the degree 
distribution. 

In this paper, our contributions include; an evolving 
model for clustering-based wireless sensor networks is 
proposed, which is based on (Iyer et al., 2003); and four 
types  of  evolving  events  are  introduced  into  it,  which  

 
 
 
 
separately are: (1) Selection of cluster-head nodes, (2) 
Local preferential attachment of non  cluster-head  nodes, 
(3) Failure of non cluster-head nodes and (4) Transition 
of non cluster-head nodes. We restrict our attention to the 
events of nodes failure/deletion, and the time interval of 
nodes arrival follows exponential distribution in particular. 
With the exponential growth behavior of nodes and using 
the continuum theory, we get the size distribution of 
clusters; the numerical simulation is conducted con-
sequently. 
 
 

EXPONENTIAL GROWTH MODEL (SHOU-WE and Xing-San, 
2005; GUO and WANG, 2007) 
 

The evolving process of exponential growth model includes two 
ingredients as follows: exponential growth of the nodes and degree 
preferential attachment. The exponential growth implies that the 
dimension of entire network grows exponentially, is different from 
the small-world network and random network where the number of 
nodes is static; degree preferential attachment means new adding 

nodes incline to be attached with high-degree clusters. Based on 
two aspects which have been mentioned, the evolving exponential 
model is carried out as follows: 
 
 

Exponential growth 
 

Starting with m0 nodes, at every time interval tn, we add a new node 
with m links that connect the new node to m different nodes already 
present in the network (m< m0); the time interval tn follows 

exponential growth: 
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Preferential attachment 
 

The probability that a new node will be connected to node i 

depends on the degree ki of that node, so that

/i ji
j

k k 
. 

After time t, the model leads to a random network with t  vertices 

and m t edges, then

2j

j

k m t
. 

We use continuum theory to analyze the degree distribution of 
the BA model (Barabási and Albert, 1999). The rate at which a node 

acquires links is: / /i i j

j

k t mk k     and 2j

j

k m t , so 

we can get
/ / 2i ik t k t  

, it gives, ( ) ( / )i ik t m t t  , 

1/ 2 
. The probability that a node i has a degree smaller than 

k
1/ 1/( ( ) ) /i iP k t k P t m t k      . Assuming that we add 

the nodes to the network at time intervals with the probability 

( ) it

i iP t e
 


, so 

1/ 1/ 2[ / ] exp[ ( / ) ]iP t m t k t m k      

We get the degree distribution: 
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and  
 

2 2 2 4exp[ ( / ) ] 1 ( / ) (1/ 2!) ( / ) ...t m k t m k t m k          

 

With the condition of k m , we can get 
 

2 2 (2 1)( ) 2P k m k t    , 

 

And the exponent of degree distribution  
 

2 1   . 

 

 

Clustering evolving model in wireless sensor network 
 

We will start with a definition of network model in a quite general 
form. This will later enable us to introduce our model. 
 

 
Definition 1  
 

The entire sensor network is formalized as a undirected graph: 

( ), ( )G V G E G  , where 1 2 3( ) { , , , }V G v v v is the 

set of nodes and ( )E G the set of wireless links; 
ivrange is the 

max transmission range of sensor node iv
. If the distance between 

iv
 and vj is less than

ivrange , ( , )i jlink v v will exist. Thus E(G) 

can be expressed as:  
 

 ( ) ( , ) : ( , ) , , ( )
ji j i j v i jE G v v d v v range v v V G   , here we 

assume |V (G)|=n, |E(G)|=m. 
 
 

Definition 2 
 

At time t, the number of arrival sensor nodes is N (t), and N (t) 

follows Poisson distribution, the arrival rate is  . Then we can get: 

(1) 0t  ， 
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     (1) 

 

(2) 1 20 t t   ， 1 2( , )N t t  is the increment of N(t), it follows 

Poisson distribution, and  
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                                                                      (2) 
 

(3) We assume nt  is the arrival time of node n ，Then 

( , )nt n  ,  

1( )
0

( ) ( 1)!
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                    (3) 
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(4) We assume
1n n nt t   , that is to say, 

n is the time interval 

of nodes n  and 1n , then 
n  follows exponential distribution, 

 

0
( )

0 0n

te t
f t

t





  
 


                    (4) 

 

The initial network has c0 initial clusters and e0 edges with the same 
condition of BA model. Nodes will be placed in L×L square area and 
the coordinate of nodes will be decided by probability density 
function (p.d.f.). At time interval t, we add a new node into the 

network and denote ( , )c i t  is the size of cluster i at time t. Then 

we perform the following four phases at random: 
 

1. Selection of cluster-head nodes: With probability p, the new node 
forms a new cluster at a random location. With this evolving rule, 

the dynamic equations of ( , )c i t  is: 

 

( , )
0

c i t

t

 
 

 (Ⅰ)      (5) 
 

2. Local preferential attachment of non cluster-head nodes: With 

probability1 p , the new node randomly selects M  clusters 

from the existing clusters, which are referred to “Local-World” of the 
new node. Then it joins one of the “Local-World” clusters with 
preferential attachment probability. 
 

( , ) / ( , )Local j local
c i t c j t


  

   (6) 
 

We can get the dynamic equations of 
( , )c i t

 
 

( , ) ( , )
(1 )

( ) ( , )
j local

c i t M c i t
p

t C t c j t


 
  

  (Ⅱ)
 (7) 

 

3. Failure of non cluster-head nodes. With probability
q

, the event 
of one ordinary node failure will happen. We can get the dynamic 

equations of. 
( , )c i t

 
 

( , ) ( , )
-

( )

c i t c i t
q

t C t

 
 

 (Ⅲ)     (8) 
 

4. Transition of non cluster-head nodes. With probability r , a 
randomly selected node from a cluster moves from its existing 
cluster to a new cluster, the target cluster is chosen preferentially. 
Different from Iyer et al. (2003), the evolving rule 4 shows the 
equilibrium of clusters, which can avoid the excess energy 

consumption in some clusters. We can get the dynamic equations 

of ( , )c i t  

( , ) 1 ( , )
- +

( ) ( ) 1 ( , )
j local

c i t M c i t
r r

t C t C t c j t


 
 

   (Ⅳ)

         (9) 

 
 

Dynamical analysis 
 

The cumulative cluster size of the Local-World (Li and Chen, 2003) 
is introduced into our analysis, which is showed as follows: 
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( , ) ( )
j local

c j t M c t

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                                         (10) 

 

Where  
( )c t 

 is the average cluster size. It can be expressed 

as: 
 

( ) ( , ) / ( )
j

c t c j t C t 
                                         (11) 

 

Where 
( , )

j
c j t

the total is number of nodes in all the 

clusters of the networks and 
( )C t

 is the total number of clusters 
(Iyer et al., 2003). With the stochastic process theory, we can get: 
 

 
 
 
 

( , ) [ ]
j
c j t t qt 

              (12) 
 

( )C t pt
      (13) 

 

And we can easily prove that 0 1   (Shou-we and Xing-San, 
2005). By combining Equation 6 and 9, the total dynamic equations 

of 
( , )c i t

 is as follows: 
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Substituting Equation 12 and 13 into 14 leads to, 
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Let, 
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With the initial condition
( , ) 1ic i t 

, we can get the solution of 
(16): 
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Since it follows 
( , )n 

distribution： 

 

11

0

( )
1 0

( ) !

0 0

i

nn
t

jt i

t
e t

F t P t t j

t

  





 

   
 



       
                                                       (18) 

 

Thus the probability that a cluster has a size 
( , )c i t

smaller than 

c
 ( , )P c i t c

can be written as: 
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Then we can get the moment size distribution of cluster i :



Jiang          5239 
 
 

 

 

 

1/ ( , , , )

1 1/ ( , , , )

1/ ( , , , )
1 ( , , , )/ ( , , , )

( , , , )/ ( , , , )

1 ( , , , ) / (

[ ( , ) ]
( , )

1 ( , , , ) / ( , , , )

( , , , ) ( , , , ) / ( , , , )

A p q r

A p q r

A p q r
A p q r B p q r

t
c A p q r B p q r

A p q r B
t

P c i t c
P c i t c

c

t A p q r B p q r

A p q r c A p q r B p q r

e






 


 




  

  


 
 
 
 








 
 








 

 

1/ ( , , , )

1/ ( , , , )

1

0

1 ( , , , )/ ( , , , )
( , , , )/ ( , , , )

, , , )

( , , , ) / ( , , , )

!

1 ( , , , ) / ( , , , )

1

( , , , ) ( , , , ) / ( , , , )

j
A p q r

A p q r

i

j

A p q r B p q r
t

c A p q r B p q r

p q r

c A p q r B p q r

j

A p q r B p q r
t

A p q r c A p q r B p q r

j

e




 


 



 

 


  

 
 
 
 














  
  

  

 






 

 

1/ ( , , , )

1/ ( , , , )

1 1/ ( , , , )

2

0

1 ( , , , )/ ( , , , )
( , , , )/ ( , , , )

( , , , ) / ( , , , )

!

1 ( , , , ) / ( , , , )

( , , , ) ( , , , ) / ( , , , )

j
A p q r

A p q r

A p q r

i

j

A p q r B p q r
t

c A p q r B p q r

c A p q r B p q r

j

t A p q r B p q r

A p q r c A p q r B p q r

e







 


 

 

  

  


 















  
  

  










 

1
1/ ( , , , )

1/ ( , , , )

1/ ( ,
1 ( , , , )/ ( , , , )

( , , , )/ ( , , , )

1 ( , , , ) / ( , , , )

( , , , ) / ( , , , )

( 1)!

1

( , , , ) ( , , , ) / ( , , , )

i
A p q r

A p q r

A
A p q r B p q r

t
c A p q r B p q r

A p q r B p q r
t

c A p q r B p q r

i

A p q r c A p q r B p q r
e






 


 

 


 

  







 
 
 
 






  
     



 


1
1/ ( , , , )

1/ ( , , , )

1

1

, , )

2

0

1 ( , , , ) / ( , , , )

( , , , ) / ( , , , )

!
(

1 ( , , , ) / ( , , , )

( , , , ) / ( , , , )

!

1 ( , , , ) / (

)

j
A p q r

j
A p q r

i

j

p q r

i

j

A p q r B p q r
t

c A p q r B p q r

j

A p q r B p q r
j t

c A p q r B p q r

j

t A p q r B





 


 

 


 

  















  
  

  

  
     








 

 

1/ ( , , , )

1 1/ ( , , , )

1/ ( , , , )

1/ ( ,

1 ( , , , )/ ( , , , )
( , , , )/ ( , , , )

, , , )

( , , , ) ( , , , ) / ( , , , )

1 ( , , , ) / ( , , , )

( , , , ) / ( , , , )

A p q r

A p q r

A p q r

A p

A p q r B p q r
t

c A p q r B p q r

p q r

A p q r c A p q r B p q r

A p q r B p q r
t

c A p q r B p q r
e









 


 

  

 


 



 
 
 
 








 
 
 

 





1
, , )

( 1)!

i
q r

i


 
 
 
 



                      (20)                  



5240          Int. J. Phys. Sci. 
 
 
 

 
 

 
 

 

 
 

Figure 1. The cluster size distribution. 
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Figure 1. The cluster size distribution. 

 
 
 
By using the similar method in (Guo and Wang 2007), we can get 

the stationary mean size distribution:  
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                                                                        (21)  

Equation (21) exhibits scale-free properties of our model, and the 

exponent of size distribution 


 is: 
 

1
1 1/ ( , , , ) 1 /( )

1

p r q
A p q r

q p
  

 
    


  (22)                                         

 
 
SIMULATION RESULTS 
 
We develop a MATLAB simulation toolbox for verifying 
the validity of this model. Randomly distributed nodes are 
used for two-dimensional network space which is set to 
1000 × 1000 m. The arrival rate is respectively set to 0.1 
to 0.9. We start our simulations under four different 
scenarios: 
 
a. M=5, p=0.1, q=0.1, r=0.9; b.M=5,p=0.2,q=0.1,r=0.9; 
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Figure 2. The size distribution with different scenarios. 

 
 
 
c.M=10,p=0.1,q=0.05,r=0.95:  
d. M=10,p=0.2,q=0.05,r=0.95. 
  
Figure 1 shows the size distribution of our model (log to 
log plot), which exhibits a power law. It can satisfy the 
Equation (21). Figure 2 shows the exponent of size 
distribution with different scenarios under arrival rate of 
0.1 t0 0.9, which verify Equation (22). Note that the size 
exponent of simulation is a little different than the predict 
value, that is caused by randomly nodes failure and local 
attachment rules. From Figures 1 and 2, we come to 
know that the probability of nodes failure can affect the 
network topology. However, this model is robust with 
randomly nodes failure and links failure. Overall, based 
on Figures 1 and 2, it has been seen that the simulation 
results are agreement with the theoretical analysis. On 
the evidence of computational results, the dynamic 
evolving model, described in section 4, provides better 
compensation for modeling real sensor networks. 
 
 
Conclusions 
 
In this paper, the dynamic evolving topology of clustering-
based wireless sensor networks has been modeled. The 
following evolving events are introduced into the evolving 
model: selection of cluster-head nodes, preferential 

attachment of non cluster-head nodes, failure of non 
cluster-head nodes, and transition of non cluster-head 
nodes. We assume that the time interval of adding new 
nodes follows exponential distribution and the number of 
arrival nodes follows Poisson distribution. We use 
continuum theory to predict theoretically the exponent of 
cluster size distribution and the analysis results shows 
that our model exhibits scale-free properties. In the situation 
of randomly nodes failure and links failure, this model has 
higher robustness, which provides a reference for con-
structing reliable topology of Wireless Sensor Networks. 
In future work, we will focus on improve robustness and 
introduce weighted networks to further enrich this model. 
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