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Providing efficient transform-based representations of images is an important problem in the area of 
image compression. In this paper, the geometrical flow of an image is analyzed by using the Bandelet 
transform and a new Bandelet based image coding scheme is proposed. First, the bandelet transform of 
the image is computed. The motivation behind the usage of the bandelet transform is that the geometry 
of the image is summarized with local clustering of similar geometric vectors, the homogeneous areas 
being taken from the quad tree structure. This will allow us to search for areas in the image that are 
geometrically similar to each other. Then the spatial and geometric interpixel redundancies present in 
the bandelet transformed coefficients are removed. The psycho-visual redundancies are removed using 
simple vector quantization (VQ) process. Finally, the consequential coefficients are encoded using 
Huffman encoder. Our experiments demonstrate that the proposed scheme achieves near-optimal rate-
distortion performance for natural images. It is reported that a gain in the bit-rate of about 0.83 bpp over 
the wavelet based algorithms is achieved yielding similar quality factor. 
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INTRODUCTION 
 
Natural images possess edges, textured regions and 
geometric properties. The 2-D discrete wavelet transform 
(DWT) is the most important image compression 
technique of the last decade (Le Pennec and Mallat, 
2003; Falzon and Mallat, 1998) because it provides a 
sparse multi-resolution representation of natural images 
due to the presence of vanishing moments(�) in the High 
Pass (HP) filters (enforced by imposing zeros at � = 0) 
(Mallat, 1997). This method is conceptually simple and 
has a low computational complexity because of the simple 
separable one-dimensional (1-D) filtering and sub-
sampling operations. For these reasons, the 2-D WT has 
been adopted in the image compression standard JPEG-
2000. However, the performance of the 2-D WT is limited 
by the spatial isotropy of the basis functions and the 
construction only along the horizontal and vertical 
directions, which does not provide enough directionality.  
 
 
 
* Corresponding author. E-mail:  motamenih@yahoo.com. 

Therefore, the standard 2-D WT fails to provide a sparse 
representation of oriented 1-D discontinuities (edges or 
contours) in images (Vetterli and  Kovacevic, 1995). 
These features are characterized by a geometrical 
coherence that is not properly captured by the isotropic 
wavelet basis functions. In the case of an edge, however, 
where a singularity extends along a contour, the number 
of 2-d wavelet basis functions overlapping the singularity 
grows exponentially at finer scales; many wavelet 
coefficients are required to reconstruct even a simple 
straight edge (Dahmen and Schneider, 2000). The 
abundance of significant coefficients describing geometry 
is not an immediate barrier to effective wavelet-domain 
image compression. There is, in fact, a strong coherency 
among the coefficients which is imposed by the structure 
of the geometry. 

Several recently proposed directional approaches use 
the lifting scheme in image compression algorithms. This 
scheme has been exploited by Gerek and Cetin (2006) 
where transform directions are adapted pixel-wise 
throughout images. A similar adaptation is used by Chang  



 
 
 
 
and Girod (2006) but with eleven directions. However, 
even though these methods are computationally efficient 
and provide good compression results, they show a 
weaker performance when combined with zero-tree based 
compression algorithms. To enhance wavelets represen-
tations, Ding et al. (2007) have proposed to approximate 
the wavelet coefficients using adaptive vector quantization 
techniques. Following the work of Sweldens (Sweldens, 
1996; Pennec and Mallat, 2000) on adaptive lifting 
schemes, new lifting algorithms have also been proposed 
to predict wavelet coefficients from their neighbors. These 
works are mostly algorithmic and do not provide 
mathematical bounds. They use the fact that wavelet 
coefficients inherit some regularity from the image 
geometric regularity. 

Filter bank techniques uses windowing of the sub-band 
coefficients. It may lead to blocking effects. To overcome 
this problem, Do and Vetterli (2001) proposed the 
Pyramidal Directional Filter Bank (PDFB). This approach 
overcomes the block based approach of the curvelet by 
using a directional filter bank (Bamberger and Smith, 
1992). Many adaptive geometric representations have 
also been proposed recently with good results in image 
processing. Instead of decomposing an image in a fixed a 
priori basis, an adaptive algorithm shall be used to modify 
the image representation. Adaptive techniques are 
techniques where the directional component of an image 
is adaptively estimated and as such, the transform is 
steered based on the estimate. For example the Bandelet 
transform of Pennec and Mallat (2000) links the significant 
wavelet coefficients along a discontinuity and represents it 
as a smooth 1-D curve geometry computed from the 
image. 

In this work, the problem of image compression is 
addressed from a new angle. Instead of using the 
multiresolution theory, it is projected as a problem of a 
geometrical similarity optimization. This work introduces a 
new class of bases, called bandelet bases, which 
decompose the image along multi-scale vectors that are 
elongated in the direction of a geometric flow. This 
geometric flow indicates the direction in which the image 
grey levels have regular variations. The image decom-
position in a bandelet basis is implemented with a fast 
sub-band filtering algorithm. Bandelet bases lead to 
optimal approximation rates for geometrically regular 
images. Comparisons are made for image compression 
with wavelet bases. 
 
 
BANDELET BASICS  
 
The Bandelet transform (Mallat and Peyre, 2007) exploits geometric 
regularity that is found in images by constructing orthogonal vectors 
that are elongated in the direction where the function has a 
maximum of regularity. Bandelet bases, which decompose the 
image along multi-scale vectors that are elongated in the direction 
of a geometric flow. This geometric flow indicates directions in 
which the image grey levels have regular variations. Bandelets in a 
region � are  computed  by  applying  a  bandeletization  to  warped  
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wavelets, which are separable along a fixed direction (horizontal or 
vertical) and along the flow lines. The geometric flow in a region �i 

is a vector field ],[ nmV i

→

defined over the image sampling grid G. If 

the flow is parallel vertically then ])[,1(][],[ ' mCmVnmV iii ==
→→

 where 
][' mC i  measures an average relative displacement of the image 

gray levels �i in along the line m with respect to the line n �1. If the 
geometric flow is parallel horizontally in� �i��, then�

)1],[(],[ ' mCnmV ii =
→

. Given the original image sample values ],[ nmf , 

at each grid point ],[ 21 kkGi  the re-sampling computes an 

interpolated image value that is written ],[ 21 kkVi . For a flow parallel 

vertically, the grid points ii kCkk Ω∈+ ])[,( 121 are obtained with one-
dimensional translations along the y direction of the integer 

sampling grid inm Ω∈),( . If the flow is parallel horizontally then 
the one-dimensional translation is along the x direction. For image 
compression and noise removal applications, the geometric flow is 
optimized with fast algorithms, so that the resulting bandelet basis 

produces a minimum distortion with ))((log( 2
2

2 nnO operations for an 
image of n2 pixels, because the geometry is structured by 
aggregating nearly independent building blocks. This optimization 
requires establishing the link between the image geometry and the 
distortion-rate of the image coder. A full detailed description of the 
bandelet basics is discussed by some studies (Le Pennec and 
Mallat, 2005; Peyre and Mallat, 2005). 
 
 
THE BANDELET TRANSFORM 
 
The input image is decomposed using the Warped Haar transform 
based on an orthogonal basis formed by the translation and dilation 
of three mother wavelets for the horizontal, vertical and diagonal 
directions. Once the transform is applied, the quad-tree is 
computed by dividing the image into dyadic squares. For each 
square in the quad-tree the optimal geometrical direction is 
computed by the minimization of a Lagrangian. The Lagrangian 
approach proposed by Ramachandran and Vetterli (1993) is used 
which finds the best basis that minimizes dR �λR, where λ �is a 
Lagrange multiplier, d is the distortion and R is the number of bits. If 
dR is convex, which is usually the case; by letting � vary dR shall be 
minimized. If dR is not convex, then this strategy leads to a dR that 
is at most a factor 2 larger than the minimum. Even in squares with 
no geometric features (on which the function is constant), the 
algorithm chooses some arbitrary orientation. This is because in 
these squares the function does not have zero mean, so a bandelet 
transform (with any direction) is better than leaving the data 
untransformed. This situation does not appear in the wavelet-
bandelet algorithm, since in flat areas, a wavelet transform has zero 
mean. Then a projection of the transform coefficients along the 
optimal direction is performed. Finally a 1D haar transform is carried 
on the projected coefficients. Particularly, the size and the optimal 
geometrical direction of each square will be used as criteria to study 
the similarity. The inverse discrete bandelet transform computes the 
image values on the original integer sampling grid �m,n��from the 

sample values ],[ 21 kkVi along the flow lines in each �i where 
2

21 ),( zkk ∈ . 
 
 

THE PROPOSED CODING SCHEME  
 
To concentrate on the properties of the bandelet transform itself, a 
relatively simple transform coder with a quantization and entropy 
coding of all coefficients is used in this paper. The input image is 
decomposed  into  the  bandelet  basis  associated to the optimized  
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Figure 1. The proposed BVQC scheme. 

 
 
 

 
 
Figure 2. Original image and respective reconstructed images obtained using the proposed 
NSVQ, existing WVQC, WPVQC and WPLBGC methods.  a. 256 x 256 Original Image  b: 
Reconstructed image using the proposed BVQC. c. Reconstructed Image using WVQC. d. 
Reconstructed Image using WVQC e. Reconstructed Image using WPLBGC(PSNR: 24.21db). 

 
 
 
partition and its geometric flow. This process of Bandeletization of 
an image results in psycho-visual and inter-pixel redundancies. 
Therefore to reduce the inter-pixel redundancy the bandeletized 
coefficients are subject to Zero Vector Pruning (ZVP) process. ZVP 
identifies all non-zero vectors along with their row indices thereby 
eliminating redundant zero vectors. Then the psycho-visual 
redundancy is reduced using a simple vector quantization process. 
The quantizer identifies the correlation among either along the row 
or the column vector. The correlation coefficient r is given in 
Equation 1. 
 

                           (1) 
 
Where A,B are the row vectors in the transformed input matrix; 

−−
BA ,  are the respective mean values of the row vectors A, B.  For 

all test images used in this work the correlation among the row 
vectors is high. Hence, the near similar row vectors are clustered 
together and code book consisting of a representative code vector 
for each cluster is generated. The quantized coefficients are coded 
with Huffman encoder. The compressed image is decompressed 
using Huffman decoder, vector reassignment procedure followed by 
the reverse Bandelet transform to reconstruct the image. The flow 
of the proposed work is depicted in Figure 1. 
 
 
EXPERIMENTAL RESULTS 
  
To evaluate the performance of this bandelet based 
compression algorithm a comparison is made with the 
same coder applied to a wavelet and wavelet packet-
based compression. Figure 2a shows  256 x 256 Barbara 
input image. Figure 2b shows the respective recon-
structed image of the Barbara image in Figure 2a using 
the proposed Bandelet based VQ Coder [BVQC] while 
Figures  2c,  d  and  e  depict   the   same   using   wavelet 
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Table 1. Performance of the proposed work at various window sizes for thecameraman image. 
 

S/No. window Size (w) MSE PSNR (db) Ratio Space (%) Rate(bpp) Computation time (sec) 
1 4 252.12 24.11 11.16 91.04 1.43 8.79 
2 8 183.56 25.49 11.14 91.02 1.44 33.23 

 
 
 

 
 
Figure 3. Threshold selection for Lagrangian computation. 

 
 
 
based VQ Coder [WVQC], Wavelet-Packet based VQ 
Coder [WPVQC] and the Wavelet based Linde - Buzo - 
Gray Coder [WPLBGC] respectively. 

It is observed from the figure (Figure 2) that WVQC 
(Figure 2c) suffers from more pronounced blocking 
artifacts. And WPVQC (Figure 2d) eliminates blocking 
artifacts but detail information is not preserved 
substantially. Though the effect of blocking artifacts is 
reduced using WPLBGC (Figure 2e), it is observed that 
this method suffers from smoothening effect and hence 
ignoring the detail information. The proposed BVQC 
(Figure 2b) because of its geometry preserving nature 
preserves details and reduces blocking artifacts seen in 
the reconstructed image thereby improving the subjective 
psycho-visual quality remarkably. Barbara image is 
purposely chosen as the test image since it contains more 
detail information which helps in the measure of the 
subjective evaluation of the quality of the reconstructed 
images using the proposed and other existing methods, 
quality of reconstructed image using WPLBGC is low, we 
increase quality of compressing Image is shown in Figure 
2.  

The implementation stage of the proposed work 
includes fixing the minimum window size for the dyadic 
squares, the threshold selection for Lagrangian 
computation and a scale factor for Bandeletization. The 
initialization process is as follows: 

a) Window size (w) selection: The proposed work is tested 
with the two possible window sizes, w=4 and w=8. The 
results are recorded in Table 1. it is observed from this 
table that though the computation time increases with an 
increase in window size, the reconstructed image quality 
is improved significantly with a negligible change in the bit 
rate. Hence the window size w=8 is used in this work. 
b)Threshold (T) selection: The graph shown in depicts the 
impact of the Threshold (T) value for Lagrangian 
computation. It is obvious from the graph that PSNR 
increases as T increases to a certain limit (0 to 0.4) and 
start decreasing with further increase in T.It is seen in 
Figure 3. That the gain in PSNR is maximum with T=0.4. 
c) Scale factor: Selecting an optimal value for the scale 
factor is influenced by parameters like compression ratio 
and the computation time is shown in Figure 4. The 
impact of scale factor on the gain in quality (PSNR) and 
the compression ratio is shown in Figure 4a. It is evident 
that the quality of the reconstructed image is not affected 
radically. But the compression ratio varies from 1: 11.54 to 
1: 3.79 as the scale factor is varied logarithmically as 
shown for the cameraman image. Also it shall be noted 
from Figure 4b. 
 
That computation time increases as the scale factor 
increases logarithmically. The performance of the 
proposed work is analyzed with w = 8; T = 0.4 and a scale  
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Figure 4. The impact of Scale factor on various performance parameters. (A).  Scale factor Vs PSNR and ratio. (B). 
scale factor Vs computation time 

 
 
 
factor log21. The results are tabulated for various images 
in Table 2. Compression ratio is the ratio of the input 
image size to the compressed image size. Space saving 
gives the amount of memory space saved due to 
compression. It is given in Equation 2. 
 

 
 

where, CR is the compression ratio. 

It is perceived from this Table 2 that on an average the  
proposed work gives 1:10 compression ratio leading to 
1.5 bits per pixel representation for the compressed file 
with 90% space saving. Also it maintains the PSNR value 
to about 28 dB. Table 3 illustrates the result of comparison 
of the proposed work with the existing methods for the 
Barbara image. It is inferred that as compared with the 
other existing methods the proposed work gives a high 
compression  ratio  of  1: 9.67  resulting in a gain in the bit  
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Table 2. Performance analysis of the proposed BVQC for various images. 
 

S/No. Image MSE PSNR (db) Ratio Space (%) Rate (bpp) 
1 Pepper 96.27 28.30 11.55 91.34 1.39 
2 Baboon 78.50 29.18 10.25 90.24 1.56 
3 Cameraman 183.56 25.49 11.14 91.02 1.44 
4 Rice 70.27 29.66 10.76 90.70 1.49 
5 Bird 56.07 30.64 10.14 90.14 1.58 
6 Barbara 246.48 24.21 9.67 89.66 1.65 
7 Zelta 82.59 28.96 9.78 89.78 1.64 
8 Keyboard 56.55 30.61 9.92 89.92 1.61 

 
 
 

Table 3. Performance comparison of the proposed BVQC with existing methods for the Barbara image for a 
quality factor of 24.21db. 
 

S/No. Algorithm  Ratio Space (%) Rate (bits/pixel) 
1 Proposed  9.67 89.66 1.65 
2 Wavelet Packet-Kmean  7.28 86.26 2.20 
3 Wavelet-Kmean  7.70 87.01 2.08 
4 Wavelet Packet-LBG  5.64 82.27 2.84 

 
 
 
rate of 0.83 bpp with 24.21 db quality factor. 
 
 
Conclusion 
 
A novel anisotropic transform for images that use 
separable filtering in many directions (not only horizontally 
and vertically) is proposed in this work. The associated 
basis functions, called Bandelets, have geometric flow in 
the direction where the function has a maximum of 
regularity. These transforms retain critical sampling and 
the simplicity of the filter design from the standard wavelet 
transform (WT). Still, multi-directionality and anisotropy 
overcome the weakness of the standard WT in presence 
of edges or contours, that is, they allow for sparser 
representations of these directional anisotropic features. 
Because of the critical sampling and geometrical regularity 
bandelets are applied in the approximation and 
compression methods based on Lagrangian optimization. 
The new transform provides a convenient orthogonal 
basis with the functions spanning different scales 
analogously to those of the digital wavelet transform but 
aligned anisotropically along the dominant geometrical 
regularity. This new transform is reversible and introduces 
redundancies. At the same time, the compression 
algorithm obtained as a combination of Bandelets, 
quantization and coding outperforms the state-of-the-art 
methods in terms of both the numerical criterion and the 
subjective visual quality increase 7.5% 
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