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Abstract
In this paper, we introduce and analyze a multistep Mann-type extragradient iterative
algorithm by combining Korpelevich’s extragradient method, viscosity approximation
method, hybrid steepest-descent method, Mann’s iteration method, and the
projection method. It is proven that under appropriate assumptions, the proposed
algorithm converges strongly to a common element of the fixed point set of infinitely
many nonexpansive mappings and a strict pseudocontraction, the solution set of
finitely many generalized mixed equilibrium problems (GMEPs), the solution set of
finitely many variational inclusions and the solution set of a variational inequality
problem (VIP), which is just a unique solution of a system of hierarchical variational
inequalities (SHVI) in a real Hilbert space. The results obtained in this paper improve
and extend the corresponding results announced by many others.
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1 Introduction
Let C be a nonempty closed convex subset of a real Hilbert space H and PC be the metric
projection of H onto C. Let S : C →H be a nonlinear mapping on C. We denote by Fix(S)
the set of fixed points of S and byR the set of all real numbers. LetA : C →H be a nonlinear
mapping on C. We consider the following variational inequality problem (VIP): find a
point x ∈ C such that

〈Ax, y – x〉 ≥ , ∀y ∈ C. (.)

The solution set of VIP (.) is denoted by VI(C,A).
The VIP (.) was first discussed by Lions []. There are many applications of VIP (.)

in various fields; see, e.g., [–]. It is well known that, if A is a strongly monotone and
Lipschitz-continuous mapping on C, then VIP (.) has a unique solution. In , Kor-
pelevich [] proposed an iterative algorithm for solving theVIP (.) in Euclidean spaceRn:{

yn = PC(xn – τAxn),
xn+ = PC(xn – τAyn), ∀n≥ ,
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with τ >  a given number, which is known as the extragradient method. The literature on
the VIP is vast and Korpelevich’s extragradient method has received great attention given
by many authors, who improved it in various ways; see, e.g., [–] and references therein,
to name but a few.
Let ϕ : C → R be a real-valued function, A : H → H be a nonlinear mapping and Θ :

C ×C → R be a bifunction. In , Peng and Yao [] introduced the generalized mixed
equilibrium problem (GMEP) of finding x ∈ C such that

Θ(x, y) + ϕ(y) – ϕ(x) + 〈Ax, y – x〉 ≥ , ∀y ∈ C. (.)

We denote the set of solutions of GMEP (.) by GMEP(Θ ,ϕ,A). The GMEP (.) is very
general in the sense that it includes, as special cases, optimization problems, variational in-
equalities, minimax problems, Nash equilibrium problems in noncooperative games and
others. The GMEP is further considered and studied; see, e.g., [, , , –]. In par-
ticular, if ϕ = , then GMEP (.) reduces to the generalized equilibrium problem (GEP)
which is to find x ∈ C such that

Θ(x, y) + 〈Ax, y – x〉 ≥ , ∀y ∈ C.

It was introduced and studied by Takahashi and Takahashi []. The set of solutions of
GEP is denoted by GEP(Θ ,A).
If A = , then GMEP (.) reduces to the mixed equilibrium problem (MEP) which is to

find x ∈ C such that

Θ(x, y) + ϕ(y) – ϕ(x) ≥ , ∀y ∈ C.

It was considered and studied in []. The set of solutions ofMEP is denoted byMEP(Θ ,ϕ).
If ϕ = , A = , then GMEP (.) reduces to the equilibrium problem (EP) which is to

find x ∈ C such that

Θ(x, y) ≥ , ∀y ∈ C.

It was considered and studied in [–]. The set of solutions of EP is denoted by EP(Θ).
On the other hand, let B be a single-valued mapping of C intoH and R be a multivalued

mapping with D(R) = C. Consider the following variational inclusion: find a point x ∈ C
such that

 ∈ Bx + Rx. (.)

We denote by I(B,R) the solution set of the variational inclusion (.). In particular, if
B = R = , then I(B,R) = C. If B = , then problem (.) becomes the inclusion problem
introduced by Rockafellar []. It is well known that problem (.) provides a convenient
framework for the unified study of optimal solutions in many optimization related areas
including mathematical programming, complementarity problems, variational inequali-
ties, optimal control, mathematical economics, equilibria and game theory, etc. Let a set-
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valued mapping R : D(R) ⊂ H → H be maximal monotone. We define the resolvent op-
erator JR,λ :H → D(R) associated with R and λ as follows:

JR,λ = (I + λR)–, ∀x ∈H ,

where λ is a positive number.
In , Huang [] studied problem (.) in the case where R is maximalmonotone and

B is strongly monotone and Lipschitz continuous with D(R) = C =H . Subsequently, Zeng
et al. [] further studied problem (.) in the case which is more general than Huang’s
one []. Moreover, the authors [] obtained the same strong convergence conclusion as
in Huang’s result []. In addition, the authors also gave the geometric convergence rate
estimate for approximate solutions. Also, various types of iterative algorithms for solving
variational inclusions have been further studied and developed; for more details, refer to
[, , –] and the references therein.
Let S and T be two nonexpansive mappings. In , Yao et al. [] considered the

following hierarchical variational inequality problem (HVIP): find hierarchically a fixed
point of T , which is a solution to the VIP for monotone mapping I – S; namely, find x̃ ∈
Fix(T) such that

〈
(I – S)x̃,p – x̃

〉 ≥ , ∀p ∈ Fix(T). (.)

The solution set of the hierarchical VIP (.) is denoted by Λ. It is not hard to check that
solving the hierarchical VIP (.) is equivalent to the fixed point problem of the composite
mapping PFix(T)S, i.e., find x̃ ∈ C such that x̃ = PFix(T)Sx̃. The authors [] introduced and
analyzed the following iterative algorithm for solving the HVIP (.):{

yn = βnSxn + ( – βn)xn,
xn+ = αnVxn + ( – αn)Tyn, ∀n≥ .

(.)

It is proved [, Theorem .] that {xn} converges strongly to x̃ = PΛVx̃, which solves
the hierarchical VIP:

〈
(I – S)x̃,p – x̃

〉 ≤ , ∀p ∈ Fix(T).

Very recently, Kong et al. [] introduced and considered the following system of hierar-
chical variational inequalities (SHVI) (over the fixed point set of a strictly pseudocontrac-
tive mapping) with a variational inequality constraint:

to find x∗ ∈ Ξ such that{
〈(μF – γV )x∗,x – x∗〉 ≥ , ∀x ∈ Fix(T)∩VI(C,A),
〈(μF – γ S)x∗, y – x∗〉 ≥ , ∀y ∈ Fix(T)∩VI(C,A).

(.)

In particular, if T = T and A = I –T, where Ti : C → C is ξi-strictly pseudocontractive
for i = , , SHVI (.) reduces to the following:

to find x∗ ∈ Ω such that{
〈(μF – γV )x∗,x – x∗〉 ≥ , ∀x ∈ Fix(T)∩ Fix(T),
〈(μF – γ S)x∗, y – x∗〉 ≥ , ∀y ∈ Fix(T)∩ Fix(T).

(.)
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The authors in [] proposed the following algorithm for solving SHVI (.) and pre-
sented its convergence analysis:

⎧⎪⎪⎪⎨⎪⎪⎪⎩
x = x ∈ C chosen arbitrarily,
yn = PC(xn – νnAnxn),
zn = βnxn + γnPC(xn – νnAnyn) + σnTPC(xn – νnAnyn),
xn+ = PC[λnγ (δnVxn + ( – δn)Sxn) + (I – λnμF)zn], ∀n≥ ,

(.)

where An = αnI +A for all n≥ . In particular, if V ≡ , then (.) reduces to the following
iterative scheme:

⎧⎪⎪⎪⎨⎪⎪⎪⎩
x = x ∈ C chosen arbitrarily,
yn = PC(xn – νnAnxn),
zn = βnxn + γnPC(xn – νnAnyn) + σnTPC(xn – νnAnyn),
xn+ = PC[λn( – δn)γ Sxn + (I – λnμF)zn], ∀n≥ .

(.)

In this paper, we introduce and study the following system of hierarchical variational
inequalities (SHVI) (over the fixed point set of an infinite family of nonexpansive map-
pings and a strictly pseudocontractive mapping) with constraints of finitely many GMEPs,
finitely many variational inclusions and the VIP (.):
LetM, N be two positive integers. Assume that
(i) A : C →H is a monotone and L-Lipschitzian mapping and F : C →H is

κ-Lipschitzian and η-strongly monotone with positive constants κ ,η >  such that
 < γ ≤ τ and  < μ < η

κ
where τ =  –

√
 –μ(η –μκ);

(ii) Θk is a bifunction from C ×C to R satisfying (A)-(A) and ϕk : C → R∪ {+∞} is a
proper lower semicontinuous and convex function with restriction (B) or (B),
where k ∈ {, , . . . ,M};

(iii) Ri : C → H is a maximal monotone mapping, and Ak :H →H and Bi : C →H are
μk-inverse-strongly monotone and ηi-inverse strongly monotone, respectively,
where k ∈ {, , . . . ,M} and i ∈ {, , . . . ,N};

(iv) {Tn}∞n= is a sequence of nonexpansive self-mappings on C, T : C → C is a ξ -strict
pseudocontraction, S : C → C is a nonexpansive mapping and V : C →H is a
ρ-contraction with coefficient ρ ∈ [, );

(v) Ω :=
⋂∞

n= Fix(Tn)∩⋂M
k=GMEP(Θk ,ϕk ,Ak)∩⋂N

i= I(Bi,Ri)∩VI(C,A)∩Fix(T) �= ∅.
Then the objective is to find x∗ ∈ Ω such that

{
〈(μF – γV )x∗,x – x∗〉 ≥ , ∀x ∈ Ω ,
〈(μF – γ S)x∗, y – x∗〉 ≥ , ∀y ∈ Ω .

(.)

In particular, whenever V ≡ , the objective is to find x∗ ∈ Ω such that

{
〈Fx∗,x – x∗〉 ≥ , ∀x ∈ Ω ,
〈(μF – γ S)x∗, y – x∗〉 ≥ , ∀y ∈ Ω .

(.)

Motivated and inspired by the above facts, we introduce and analyze a multistep
Mann-type extragradient iterative algorithm by combining Korpelevich’s extragradient
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method, viscosity approximation method, hybrid steepest-descent method, Mann’s it-
eration method and projection method. It is proven that under mild conditions, the
proposed algorithm converges strongly to a common element x∗ ∈ Ω :=

⋂∞
n= Fix(Tn) ∩⋂M

k=GMEP(Θk ,ϕk ,Ak) ∩ ⋂N
i= I(Bi,Ri) ∩ VI(C,A) ∩ Fix(T) of the solution set of finitely

many GMEPs, the solution set of finitely many variational inclusions, the solution set of
VIP (.) and the fixed point set of an infinite family of nonexpansive mappings {Tn}∞n=
and a strict pseudocontraction T , which is just a unique solution of the SHVI (.). The
results obtained in this paper improve and extend the corresponding results announced
by many others. For recent related work, we refer to [] and the references therein.

2 Preliminaries
Throughout this paper, we assume that H is a real Hilbert space whose inner product and
norm are denoted by 〈·, ·〉 and ‖ · ‖, respectively.
Then we have the following inequality:

‖x + y‖ ≤ ‖x‖ + 〈y,x + y〉, ∀x, y ∈H .

We write xn ⇀ x to indicate that the sequence {xn} converges weakly to x and xn → x to
indicate that the sequence {xn} converges strongly to x. Moreover, we useωw(xn) to denote
the weak ω-limit set of the sequence {xn}, i.e.,

ωw(xn) :=
{
x ∈H : xni ⇀ x for some subsequence {xni} of {xn}

}
.

Lemma . Let H be a real Hilbert space. Then the following hold:
(a) ‖x – y‖ = ‖x‖ – ‖y‖ – 〈x – y, y〉 for all x, y ∈H ;
(b) ‖λx +μy‖ = λ‖x‖ +μ‖y‖ – λμ‖x – y‖ for all x, y ∈H and λ,μ ∈ [, ] with

λ +μ = ;
(c) If {xn} is a sequence in H such that xn ⇀ x, it follows that

lim sup
n→∞

‖xn – y‖ = lim sup
n→∞

‖xn – x‖ + ‖x – y‖, ∀y ∈H .

2.1 Nonexpansive type mappings
Let C be a nonempty closed convex subset of H . The metric (or nearest point) projection
from H onto C is the mapping PC :H → C which assigns to each point x ∈ H the unique
point PCx ∈ C satisfying the property

‖x – PCx‖ = inf
y∈C ‖x – y‖ =: d(x,C).

The following properties of projections are useful and pertinent to our purpose.

Proposition . Given any x ∈H and z ∈ C. Then we have the following:
(i) z = PCx ⇔ 〈x – z, y – z〉 ≤ , ∀y ∈ C;
(ii) z = PCx ⇔ ‖x – z‖ ≤ ‖x – y‖ – ‖y – z‖, ∀y ∈ C;
(iii) 〈PCx – PCy,x – y〉 ≥ ‖PCx – PCy‖, ∀y ∈H .

http://www.journalofinequalitiesandapplications.com/content/2014/1/460
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Definition . A mapping T :H →H is said to be
(a) nonexpansive if

‖Tx – Ty‖ ≤ ‖x – y‖, ∀x, y ∈H ;

(b) firmly nonexpansive if T – I is nonexpansive, or equivalently, if T is
-inverse-strongly monotone (-ism),

〈x – y,Tx – Ty〉 ≥ ‖Tx – Ty‖, ∀x, y ∈H .

Alternatively, T is firmly nonexpansive if and only if T can be expressed as T = 
 (I + S),

where S : H → H is nonexpansive and I is the identity mapping on H . Note projections
are firmly nonexpansive.

Definition . Amapping T :H →H is said to be an averaged mapping if it can be writ-
ten as the average of the identity I and a nonexpansive mapping, that is, T ≡ ( –α)I +αS,
where α ∈ (, ) and S :H →H is nonexpansive.

Proposition . ([]) Let T :H →H be a given mapping. Then:
(i) T is nonexpansive if and only if the complement I – T is 

 -ism.
(ii) If T is ν-ism, then for γ > , γT is ν

γ
-ism.

(iii) T is averaged if and only if the complement I – T is ν-ism for some ν > /. Indeed,
for α ∈ (, ), T is α-averaged if and only if I – T is 

α -ism.

Proposition . ([, ]) Let S,T ,V :H →H be given operators.
(i) If T = ( – α)S + αV for some α ∈ (, ) and if S is averaged and V is nonexpansive,

then T is averaged.
(ii) T is firmly nonexpansive if and only if the complement I – T is firmly nonexpansive.
(iii) If T = ( – α)S + αV for some α ∈ (, ) and if S is firmly nonexpansive and V is

nonexpansive, then T is averaged.
(iv) The composite of finitely many averaged mappings is averaged. That is, if each of the

mappings {Ti}Ni= is averaged, then so is the composite T · · ·TN . In particular, if T is
α-averaged and T is α-averaged, where α,α ∈ (, ), then the composite TT is
α-averaged, where α = α + α – αα.

(v) If the mappings {Ti}Ni= are averaged and have a common fixed point, then

N⋂
i=

Fix(Ti) = Fix(T · · ·TN ).

We need some facts and tools which are listed as lemmas below.

Lemma . ([, Demiclosedness principle]) Let C be a nonempty closed convex subset of
a real Hilbert space H . Let S be a nonexpansive self-mapping on C.Then I –S is demiclosed
at .

http://www.journalofinequalitiesandapplications.com/content/2014/1/460
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Let {Tn}∞n= be an infinite family of nonexpansive self-mappings on C and {λn}∞n= be a
sequence in [, ]. For any n≥ , define a mappingWn on C as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Un,n+ = I,
Un,n = λnTnUn,n+ + ( – λn)I,
Un,n– = λn–Tn–Un,n + ( – λn–)I,
. . . ,
Un,k = λkTkUn,k+ + ( – λk)I,
Un,k– = λk–Tk–Un,k + ( – λk–)I,
. . . ,
Un, = λTUn, + ( – λ)I,
Wn =Un, = λTUn, + ( – λ)I.

(.)

Such a mapping Wn is called the W -mapping generated by Tn,Tn–, . . . ,T and λn,λn–,
. . . ,λ.

Lemma . ([]) Let C be a nonempty closed convex subset of a real Hilbert space H . Let
{Tn}∞n= be a sequence of nonexpansive self-mappings on C such that

⋂∞
n= Fix(Tn) �= ∅ and

let {λn}∞n= be a sequence in (,b] for some b ∈ (, ). Then, for every x ∈ C and k ≥  the
limit limn→∞ Un,kx exists, where Un,k is defined as in (.).

Remark . ([, Remark .]) It can be known from Lemma . that if D is a nonempty
bounded subset of C, then for ε >  there exists n ≥ k such that supx∈D ‖Un,kx–Ukx‖ ≤ ε

for all n > n.

Remark . ([, Remark .]) Utilizing Lemma ., we define a mappingW : C → C as
follows:

Wx = lim
n→∞Wnx = lim

n→∞Un,x, ∀x ∈ C.

Such aW is called theW -mapping generated by T,T, . . . and λ,λ, . . . . SinceWn is non-
expansive, W : C → C is also nonexpansive. For a bounded sequence {xn} in C, we put
D = {xn : n ≥ }. Hence, it is clear from Remark . that for an arbitrary ε > , there exists
N ≥  such that for all n >N

‖Wnxn –Wxn‖ = ‖Un,xn –Uxn‖ ≤ sup
x∈D

‖Un,x –Ux‖ ≤ ε.

This implies that limn→∞ ‖Wnxn –Wxn‖ = .

Lemma . ([]) Let C be a nonempty closed convex subset of a real Hilbert space H . Let
{Tn}∞n= be a sequence of nonexpansive self-mappings on C such that

⋂∞
n= Fix(Tn) �= ∅, and

let {λn}∞n= be a sequence in (,b] for some b ∈ (, ). Then Fix(W ) =
⋂∞

n= Fix(Tn).

It is clear that, in a real Hilbert spaceH , T : C → C is ξ -strictly pseudocontractive if and
only if the following inequality holds:

〈Tx – Ty,x – y〉 ≤ ‖x – y‖ –  – ξ


∥∥(I – T)x – (I – T)y

∥∥, ∀x, y ∈ C.

http://www.journalofinequalitiesandapplications.com/content/2014/1/460
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This immediately implies that if T is a ξ -strictly pseudocontractive mapping, then I – T
is –ξ

 -inverse-strongly monotone; for further detail, we refer to [] and the references
therein. It is well known that the class of strict pseudocontractions strictly includes the
class of nonexpansive mappings and that the class of pseudocontractions strictly includes
the class of strict pseudocontractions. In addition, for the extension of strict pseudocon-
tractions, please the reader refer to [] and the references therein.

Proposition . ([, Proposition .]) Let C be a nonempty closed convex subset of a real
Hilbert space H and T : C → C be a mapping.

(i) If T is a ξ -strictly pseudocontractive mapping, then T satisfies the Lipschitzian
condition

‖Tx – Ty‖ ≤  + ξ

 – ξ
‖x – y‖, ∀x, y ∈ C.

(ii) If T is a ξ -strictly pseudocontractive mapping, then the mapping I – T is demiclosed
at , that is, if {xn} is a sequence in C such that xn ⇀ x̃ and (I – T)xn → , then
(I – T)x̃ = .

(iii) If T is ξ -(quasi-)strict pseudocontraction, then the fixed point set Fix(T) of T is
closed and convex so that the projection PFix(T) is well defined.

Proposition . ([]) Let C be a nonempty closed convex subset of a real Hilbert space H .
Let T : C → C be a ξ -strictly pseudocontractive mapping. Let γ and δ be two nonnegative
real numbers such that (γ + δ)ξ ≤ γ . Then

∥∥γ (x – y) + δ(Tx – Ty)
∥∥ ≤ (γ + δ)‖x – y‖, ∀x, y ∈ C.

2.2 Mixed equilibrium problems
We list some elementary conclusions for the MEP.
It was assumed in [] that Θ : C×C → R is a bifunction satisfying conditions (A)-(A)

and ϕ : C → R is a lower semicontinuous and convex function with restriction (B) or
(B), where
(A) Θ(x,x) =  for all x ∈ C;
(A) Θ is monotone, i.e., Θ(x, y) +Θ(y,x) ≤  for any x, y ∈ C;
(A) Θ is upper-hemicontinuous, i.e., for each x, y, z ∈ C,

lim sup
t→+

Θ
(
tz + ( – t)x, y

) ≤ Θ(x, y);

(A) Θ(x, ·) is convex and lower semicontinuous for each x ∈ C;
(B) for each x ∈H and r > , there exists a bounded subset Dx ⊂ C and yx ∈ C such

that for any z ∈ C \Dx,

Θ(z, yx) + ϕ(yx) – ϕ(z) +

r
〈yx – z, z – x〉 < ;

(B) C is a bounded set.

Proposition . ([]) Assume that Θ : C ×C → R satisfies (A)-(A) and let ϕ : C → R
be a proper lower semicontinuous and convex function. Assume that either (B) or (B)

http://www.journalofinequalitiesandapplications.com/content/2014/1/460
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holds. For r >  and x ∈H , define a mapping T (Θ ,ϕ)
r :H → C as follows:

T (Θ ,ϕ)
r (x) =

{
z ∈ C :Θ(z, y) + ϕ(y) – ϕ(z) +


r
〈y – z, z – x〉 ≥ ,∀y ∈ C

}
for all x ∈ H . Then the following hold:

(i) for each x ∈H , T (Θ ,ϕ)
r (x) is nonempty and single-valued;

(ii) T (Θ ,ϕ)
r is firmly nonexpansive, that is, for any x, y ∈ H ,

∥∥T (Θ ,ϕ)
r x – T (Θ ,ϕ)

r y
∥∥ ≤ 〈

T (Θ ,ϕ)
r x – T (Θ ,ϕ)

r y,x – y
〉
;

(iii) Fix(T (Θ ,ϕ)
r ) =MEP(Θ ,ϕ);

(iv) MEP(Θ ,ϕ) is closed and convex;
(v) ‖T (Θ ,ϕ)

s x – T (Θ ,ϕ)
t x‖ ≤ s–t

s 〈T (Θ ,ϕ)
s x – T (Θ ,ϕ)

t x,T (Θ ,ϕ)
s x – x〉 for all s, t >  and x ∈H .

2.3 Monotone operators
Definition . Let T be a nonlinear operator with the domain D(T) ⊆ H and the range
R(T)⊆H . Then T is said to be

(i) monotone if

〈Tx – Ty,x – y〉 ≥ , ∀x, y ∈D(T);

(ii) β-strongly monotone if there exists a constant β >  such that

〈Tx – Ty,x – y〉 ≥ η‖x – y‖, ∀x, y ∈D(T);

(iii) ν-inverse-strongly monotone if there exists a constant ν >  such that

〈Tx – Ty,x – y〉 ≥ ν‖Tx – Ty‖, ∀x, y ∈D(T).

It can easily be seen that ifT is nonexpansive, then I–T ismonotone. It is also easy to see
that the projection PC is -ism. Inverse stronglymonotone (also referred to as co-coercive)
operators have been applied widely in solving practical problems in various fields, for in-
stance, in traffic assignment problems; see [, ]. On the other hand, it is obvious that
if A is ζ -inverse-strongly monotone, then A is monotone and 

ζ
-Lipschitz continuous.

Moreover, we also have, for all u, v ∈ C and λ > ,

∥∥(I – λA)u – (I – λA)v
∥∥ =

∥∥(u – v) – λ(Au –Av)
∥∥

= ‖u – v‖ – λ〈Au –Av,u – v〉 + λ‖Au –Av‖

≤ ‖u – v‖ + λ(λ – ζ )‖Au –Av‖. (.)

So, if λ ≤ ζ , then I – λA is a nonexpansive mapping from C to H .
Let C be a nonempty closed convex subset of a real Hilbert spaceH . We introduce some

notations. Let λ be a number in (, ] and let μ > . Associated with a nonexpansive map-
ping T : C → C, we define the mapping Tλ : C →H by

Tλx := Tx – λμF(Tx), ∀x ∈ C,

http://www.journalofinequalitiesandapplications.com/content/2014/1/460
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where F : C → H is an operator such that, for some positive constants κ ,η > , F is
κ-Lipschitzian and η-strongly monotone on C; that is, F satisfies the conditions:

‖Fx – Fy‖ ≤ κ‖x – y‖ and 〈Fx – Fy,x – y〉 ≥ η‖x – y‖, ∀x, y ∈ C.

Lemma . (see [, Lemma .]) Tλ is a contraction provided  < μ < η
κ
; that is,

∥∥Tλx – Tλy
∥∥ ≤ ( – λτ )‖x – y‖, ∀x, y ∈ C,

where τ =  –
√
 –μ(η –μκ) ∈ (, ].

Remark . (i) Since F is κ-Lipschitzian and η-strongly monotone on C, we get  <
η ≤ κ . Hence, whenever  < μ < η

κ
, we have  <  –

√
 – μη +μκ ≤ . So, τ =  –√

 –μ(η –μκ) ∈ (, ].
(ii) In Lemma ., put F = 

 I and μ = . Then we know that κ = η = 
 ,  < μ =  < η

κ
= 

and

τ =  –
√
 –μ

(
η –μκ

)
=  –

√
 – 

(
× 


– ×

(



))
= .

Lemma. Let A : C →H be amonotonemapping.The characterization of the projection
(see Proposition .(i)) implies

u ∈VI(C,A) ⇔ u = PC(u – λAu), ∀λ > .

Finally, recall that a set-valued mapping T̃ :D(T̃)⊆H → H is called monotone if for all
x, y ∈D(T̃), f ∈ T̃x and g ∈ T̃y imply

〈f – g,x – y〉 ≥ .

A set-valuedmapping T̃ is calledmaximal monotone if T̃ is monotone and (I +λT̃)D(T̃) =
H for each λ > . We denote by G(T̃) the graph of T̃ . It is well known that a monotone
mapping T̃ is maximal if and only if, for (x, f ) ∈ H ×H , 〈f – g,x – y〉 ≥  for every (y, g) ∈
G(T̃) implies f ∈ T̃x. Next we provide an example to illustrate the concept of maximal
monotone mapping.
Let A : C → H be a monotone, k-Lipschitz-continuous mapping and let NCv be the

normal cone to C at v ∈ C, i.e.,

NC(v) =
{
u ∈H : 〈v – x,u〉 ≥ ,∀x ∈ C

}
.

Define

T̃v =

{
Av +NC(v), if v ∈ C,
∅, if v /∈ C.

Then T̃ is maximal monotone (see []) such that

 ∈ T̃v ⇔ v ∈VI(C,A). (.)
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Let R : D(R) ⊆ H → H be a maximal monotone mapping. Let λ,μ >  be two positive
numbers.

Lemma . (see []) We have the resolvent identity

JR,λx = JR,μ
(

μ

λ
x +

(
 –

μ

λ

)
JR,λx

)
, ∀x ∈H .

In terms of Huang [] (see also []), we have the following property for the resolvent
operator JR,λ :H → D(R).

Lemma . JR,λ is single-valued and firmly nonexpansive, i.e.,

〈JR,λx – JR,λy,x – y〉 ≥ ‖JR,λx – JR,λy‖, ∀x, y ∈H .

Consequently, JR,λ is nonexpansive and monotone.

Lemma . ([]) Let R be a maximal monotone mapping with D(R) = C. Then for any
given λ > , u ∈ C is a solution of problem (.) if and only if u ∈ C satisfies

u = JR,λ(u – λBu).

Lemma . ([]) Let R be amaximalmonotone mapping with D(R) = C and let B : C →
H be a strongly monotone, continuous and single-valuedmapping. Then for each z ∈H , the
equation z ∈ (B + λR)x has a unique solution xλ for λ > .

Lemma . ([]) Let R be a maximal monotone mapping with D(R) = C and B : C →H
be a monotone, continuous and single-valued mapping. Then (I + λ(R + B))C =H for each
λ > . In this case, R + B is maximal monotone.

2.4 Technical lemmas
The following lemma plays a key role in proving strong convergence of the sequences
generated by our algorithms.

Lemma. ([]) Let {an} be a sequence of nonnegative real numbers satisfying the prop-
erty:

an+ ≤ ( – sn)an + snbn + tn, ∀n≥ ,

where {sn} ⊂ (, ] and {bn} are such that
(i)

∑∞
n= sn =∞;

(ii) either lim supn→∞ bn ≤  or
∑∞

n= |snbn| < ∞;
(iii)

∑∞
n= tn <∞ where tn ≥ , for all n≥ .

Then limn→∞ an = .

Lemma . ([]) Let {αn} and {βn} be the sequences of nonnegative real numbers and a
sequence of real numbers, respectively, such that lim supn→∞ αn <∞ and lim supn→∞ βn ≤
. Then lim supn→∞ αnβn ≤ .

http://www.journalofinequalitiesandapplications.com/content/2014/1/460
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3 Main results
In this section, we will introduce and analyze a multistep Mann-type extragradient itera-
tive algorithm for finding a solution of SHVI (.) (over the fixed point set of an infinite
family of nonexpansive mappings and a strict pseudocontraction) with constraints of sev-
eral problems: finitely many GMEPs, finitely many variational inclusions and VIP (.) in
a real Hilbert space. This algorithm is based on Korpelevich’s extragradient method, vis-
cosity approximation method, hybrid steepest-descent method, Mann’s iteration method
and projection method. We prove the strong convergence of the proposed algorithm to a
unique solution of SHVI (.) under suitable conditions.
We are now in a position to state and prove the main result in this paper.

Theorem . Let C be a nonempty closed convex subset of a real Hilbert space H . Let
M, N be two positive integers. Let Θk be a bifunction from C × C to R satisfying (A)-
(A) and ϕk : C → R ∪ {+∞} be a proper lower semicontinuous and convex function with
restriction (B) or (B), where k ∈ {, , . . . ,M}. Let Ri : C → H be a maximal mono-
tone mapping and let Ak : H → H and Bi : C → H be μk-inverse-strongly monotone
and ηi-inverse-strongly monotone, respectively, where k ∈ {, , . . . ,M}, i ∈ {, , . . . ,N}. Let
{Tn}∞n= be a sequence of nonexpansive self-mappings on C and {λn}∞n= be a sequence
in (,b] for some b ∈ (, ). Let T : C → C be a ξ -strictly pseudocontractive mapping,
S : C → C be a nonexpansive mapping and V : C → H be a ρ-contraction with coeffi-
cient ρ ∈ [, ). Let A : C → H be a 

L -inverse-strongly monotone mapping, and F : C → H
be κ-Lipschitzian and η-strongly monotone with positive constants κ ,η >  such that
 < μ < η

κ
and  < γ ≤ τ where τ =  –

√
 –μ(η –μκ). Assume that SHVI (.)

over Ω :=
⋂∞

n= Fix(Tn) ∩ ⋂M
k=GMEP(Θk ,ϕk ,Ak) ∩ ⋂N

i= I(Bi,Ri) ∩ VI(C,A) ∩ Fix(T) has
a solution. Let {αn} ⊂ [,∞), {νn} ⊂ (, L ), {εn}, {δn}, {βn}, {γn}, {σn} ⊂ (, ), and {λi,n} ⊂
[ai,bi] ⊂ (, ηi), {rk,n} ⊂ [ck ,dk] ⊂ (, μk) where i ∈ {, , . . . ,N} and k ∈ {, , . . . ,M}. For
arbitrarily given x ∈ C, let {xn} be a sequence generated by⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

un = T (ΘM ,ϕM)
rM,n (I – rM,nAM)T (ΘM–,ϕM–)

rM–,n (I – rM–,nAM–) · · ·T (Θ,ϕ)
r,n (I – r,nA)xn,

vn = JRN ,λN ,n (I – λN ,nBN )JRN–,λN–,n (I – λN–,nBN–) · · · JR,λ,n (I – λ,nB)un,
yn = PC(vn – νnAnvn),
zn = βnWnxn + γnPC(vn – νnAnyn) + σnTPC(vn – νnAnyn),
xn+ = PC[εnγ (δnVxn + ( – δn)Sxn) + (I – εnμF)zn], ∀n≥ ,

(.)

where An = αnI +A for all n≥ . Suppose that
(C)

∑∞
n= αn < ∞;

(C)  < lim infn→∞ νn ≤ lim supn→∞ νn < 
L ;

(C) βn + γn + σn =  and (γn + σn)ξ ≤ γn for all n≥ ;
(C)  < lim infn→∞ βn ≤ lim supn→∞ βn <  and lim infn→∞ σn > ;
(C)  < lim infn→∞ δn ≤ lim supn→∞ δn < ;
(C) limn→∞ εn =  and

∑∞
n= εn =∞.

If {Sxn} is bounded, then {xn} converges strongly to a unique solution of SHVI (.) provided
limn→∞ ‖xn – xn+‖ = .

Proof For n≥ , put

Δk
n = T (Θk ,ϕk )

rk,n (I – rk,nAk)T (Θk–,ϕk–)
rk–,n (I – rk–,nAk–) · · ·T (Θ,ϕ)

r,n (I – r,nA)xn
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for all k ∈ {, , . . . ,M} and

Λi
n = JRi ,λi,n (I – λi,nBi)JRi–,λi–,n (I – λi–,nBi–) · · · JR,λ,n (I – λ,nB)

for all i ∈ {, , . . . ,N},Δ
n = I andΛ

n = I . Then we have un =ΔM
n xn and vn =ΛN

n un. In addi-
tion, in terms of conditions (C), (C), and (C), without loss of generality, wemay assume
that {βn} ⊂ [c,d] for some c,d ∈ (, ), {νn} ⊂ [â, b̂] for some â, b̂ ∈ (, L ), and νn(αn+L) ≤ 
for all n ≥ .
One can readily see that PC(I – νnAn) are nonexpansive for all n≥ ; see [] (also []).
Next, we divide the remainder of the proof into several steps.
Step . {xn} is bounded.
Take a fixed p ∈ Ω arbitrarily. Utilizing (.) and Proposition .(ii) we have

‖un – p‖ =
∥∥T (ΘM ,ϕM)

rM,n
(I – rM,nBM)ΔM–

n xn – T (ΘM ,ϕM)
rM,n

(I – rM,nBM)ΔM–
n p

∥∥
≤ ∥∥(I – rM,nBM)ΔM–

n xn – (I – rM,nBM)ΔM–
n p

∥∥
≤ ∥∥ΔM–

n xn –ΔM–
n p

∥∥
· · ·

≤ ∥∥Δ
nxn –Δ

np
∥∥

= ‖xn – p‖. (.)

Utilizing (.) and Lemma . we have

‖vn – p‖ =
∥∥JRN ,λN ,n (I – λN ,nAN )ΛN–

n un – JRN ,λN ,n (I – λN ,nAN )ΛN–
n p

∥∥
≤ ∥∥(I – λN ,nAN )ΛN–

n un – (I – λN ,nAN )ΛN–
n p

∥∥
≤ ∥∥ΛN–

n un –ΛN–
n p

∥∥
· · ·

≤ ∥∥Λ
nun –Λ

np
∥∥

= ‖un – p‖, (.)

which together with the last inequality, implies that

‖vn – p‖ ≤ ‖xn – p‖. (.)

Note that Wnp = p for all n ≥  and PC(I – νA)p = p for ν ∈ (, L ). Hence, from (.) and
(.), it follows that

‖yn – p‖ =
∥∥PC(I – νnAn)vn – PC(I – νnA)p

∥∥
≤ ∥∥PC(I – νnAn)vn – PC(I – νnAn)p

∥∥ +
∥∥PC(I – νnAn)p – PC(I – νnA)p

∥∥
≤ ‖vn – p‖ + ∥∥(I – νnAn)p – (I – νnA)p

∥∥
≤ ‖xn – p‖ + νnαn‖p‖. (.)
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Put tn = PC(vn – νnAnyn) for each n ≥ . Then, by Proposition .(ii), we have

‖tn – p‖ ≤ ‖vn – νnAnyn – p‖ – ‖vn – νnAnyn – tn‖

= ‖vn – p‖ – ‖vn – tn‖ + νn〈Anyn,p – tn〉
= ‖vn – p‖ – ‖vn – tn‖ + νn

(〈Anyn –Anp,p – yn〉
+ 〈Anp,p – yn〉 + 〈Anyn, yn – tn〉

)
≤ ‖vn – p‖ – ‖vn – tn‖ + νn

(〈Anp,p – yn〉 + 〈Anyn, yn – tn〉
)

= ‖vn – p‖ – ‖vn – tn‖ + νn
[〈
(αnI +A)p,p – yn

〉
+ 〈Anyn, yn – tn〉

]
≤ ‖vn – p‖ – ‖vn – tn‖ + νn

[
αn〈p,p – yn〉 + 〈Anyn, yn – tn〉

]
= ‖vn – p‖ – ‖vn – yn‖ – 〈vn – yn, yn – tn〉 – ‖yn – tn‖

+ νn
[
αn〈p,p – yn〉 + 〈Anyn, yn – tn〉

]
= ‖vn – p‖ – ‖vn – yn‖ – ‖yn – tn‖

+ 〈vn – νnAnyn – yn, tn – yn〉 + νnαn〈p,p – yn〉. (.)

Further, by Proposition .(i), we have

〈vn – νnAnyn – yn, tn – yn〉 = 〈vn – νnAnvn – yn, tn – yn〉 + 〈νnAnvn – νnAnyn, tn – yn〉
≤ 〈νnAnvn – νnAnyn, tn – yn〉
≤ νn‖Anvn –Anyn‖‖tn – yn‖
≤ νn(αn + L)‖vn – yn‖‖tn – yn‖. (.)

So, we obtain from (.)

‖tn – p‖ ≤ ‖vn – p‖ – ‖vn – yn‖ – ‖yn – tn‖ + 〈vn – νnAnyn – yn, tn – yn〉
+ νnαn〈p,p – yn〉

≤ ‖vn – p‖ – ‖vn – yn‖ – ‖yn – tn‖ + νn(αn + L)‖vn – yn‖‖tn – yn‖
+ νnαn‖p‖‖p – yn‖

≤ ‖vn – p‖ – ‖vn – yn‖ – ‖yn – tn‖ + ν
n(αn + L)‖vn – yn‖ + ‖tn – yn‖

+ νnαn‖p‖‖p – yn‖
= ‖vn – p‖ + νnαn‖p‖‖p – yn‖ +

(
ν
n(αn + L) – 

)‖vn – yn‖

≤ ‖xn – p‖ + νnαn‖p‖‖p – yn‖ +
(
ν
n(αn + L) – 

)‖vn – yn‖

≤ ‖xn – p‖ + νnαn‖p‖‖p – yn‖. (.)

Since (γn + σn)ξ ≤ γn for all n ≥ , utilizing Proposition . and Lemma .(b), from (.)
and (.), we conclude that

‖zn – p‖ = ‖βnWnxn + γntn + σnTtn – p‖

=
∥∥∥∥βn(Wnxn – p) + (γn + σn)


γn + σn

[
γn(tn – p) + σn(Ttn – p)

]∥∥∥∥
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= βn‖Wnxn – p‖ + (γn + σn)
∥∥∥∥ 
γn + σn

[
γn(tn – p) + σn(Ttn – p)

]∥∥∥∥

– βn(γn + σn)
∥∥∥∥ 
γn + σn

[
γn(tn –Wnxn) + σn(Ttn –Wnxn)

]∥∥∥∥

≤ βn‖xn – p‖ + ( – βn)‖tn – p‖ – βn

 – βn
‖zn –Wnxn‖

≤ βn‖xn – p‖ + ( – βn)
[‖xn – p‖ + νnαn‖p‖‖p – yn‖

+
(
ν
n(αn + L) – 

)‖vn – yn‖
]
–

βn

 – βn
‖zn –Wnxn‖

≤ ‖xn – p‖ + νnαn‖p‖‖p – yn‖ + ( – βn)
(
ν
n(αn + L) – 

)‖vn – yn‖

–
βn

 – βn
‖zn –Wnxn‖

≤ ‖xn – p‖ + νnαn‖p‖
(‖xn – p‖ + νnαn‖p‖

)
+ ( – βn)

(
ν
n(αn + L) – 

)‖vn – yn‖ – βn

 – βn
‖zn –Wnxn‖

≤ ‖xn – p‖ + ‖xn – p‖(√νnαn‖p‖
)
+

(√
νnαn‖p‖

)
+ ( – βn)

(
ν
n(αn + L) – 

)‖vn – yn‖ – βn

 – βn
‖zn –Wnxn‖

=
(‖xn – p‖ +√

νnαn‖p‖
) + ( – βn)

(
ν
n(αn + L) – 

)‖vn – yn‖

–
βn

 – βn
‖zn –Wnxn‖

≤ (‖xn – p‖ +√
νnαn‖p‖

). (.)

Noticing the boundedness of {Sxn}, we get supn≥ ‖γ Sxn – μFp‖ ≤ M̃ for some M̃ > .
Moreover, utilizing Lemma . we have from (.)

‖xn+ – p‖ =
∥∥PC

[
εnγ

(
δnVxn + ( – δn)Sxn

)
+ (I – εnμF)zn

]
– PCp

∥∥
≤ ∥∥εnγ

(
δnVxn + ( – δn)Sxn

)
+ (I – εnμF)zn – p

∥∥
=

∥∥εnγ
(
δnVxn + ( – δn)Sxn

)
– εnμFp + (I – εnμF)zn – (I – εnμF)p

∥∥
≤ ∥∥εnγ

(
δnVxn + ( – δn)Sxn

)
– εnμFp

∥∥ +
∥∥(I – εnμF)zn – (I – εnμF)p

∥∥
= εn

∥∥δn(γVxn –μFp) + ( – δn)(γ Sxn –μFp)
∥∥

+
∥∥(I – εnμF)zn – (I – εnμF)p

∥∥
≤ εn

[
δn‖γVxn –μFp‖ + ( – δn)‖γ Sxn –μFp‖] + ( – εnτ )‖zn – p‖

≤ εn
[
δn

(‖γVxn – γVp‖ + ‖γVp –μFp‖) + ( – δn)M̃
]
+ ( – εnτ )‖zn – p‖

≤ εn
[
δnγρ‖xn – p‖ + δn‖γVp –μFp‖ + ( – δn)M̃

]
+ ( – εnτ )

[‖xn – p‖ +√
νnαn‖p‖

]
≤ εn

[
δnγρ‖xn – p‖ +max

{
M̃,‖γVp –μFp‖}]

+ ( – εnτ )
[‖xn – p‖ +√

νnαn‖p‖
]

≤ εnγρ‖xn – p‖ + εnmax
{
M̃,‖γVp –μFp‖}
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+ ( – εnτ )‖xn – p‖ +√
νnαn‖p‖

=
[
 – (τ – γρ)εn

]‖xn – p‖ + εnmax
{
M̃,‖γVp –μFp‖} +√

νnαn‖p‖

=
[
 – (τ – γρ)εn

]‖xn – p‖ + (τ – γρ)εnmax

{
M̃

τ – γρ
,
‖γVp –μFp‖

τ – γρ

}
+

√
νnαn‖p‖

≤ max

{
‖xn – p‖, M̃

τ – γρ
,
‖γVp –μFp‖

τ – γρ

}
+

√
νnαn‖p‖. (.)

By induction, we can derive

‖xn+ – p‖ ≤max

{
‖x – p‖, M̃

τ – γρ
,
‖γVp –μFp‖

τ – γρ

}
+

n∑
j=

√
νjαj‖p‖, ∀n≥ .

Consequently, {xn} is bounded (due to
∑∞

n= αn < ∞) and so are the sequences {un}, {vn},
{yn}, {zn}, {Avn} and {Ayn}.
Step . ‖xn – un‖ → , ‖xn – vn‖ → , ‖xn – yn‖ → , ‖xn – tn‖ → , ‖xn –Wxn‖ → 

and ‖tn – Ttn‖ →  as n→ ∞.
From (.) and (.), it follows that

‖xn+ – p‖ ≤ ∥∥εnγ
(
δnVxn + ( – δn)Sxn

)
+ (I – εnμF)zn – p

∥∥

=
∥∥εnγ

(
δnVxn + ( – δn)Sxn

)
– εnμFp + (I – εnμF)zn – (I – εnμF)p

∥∥

≤ {∥∥εnγ
(
δnVxn + ( – δn)Sxn

)
– εnμFp

∥∥ +
∥∥(I – εnμF)zn – (I – εnμF)p

∥∥}
≤ {

εn
∥∥δn(γVxn –μFp) + ( – δn)(γ Sxn –μFp)

∥∥ + ( – εnτ )‖zn – p‖}
≤ εn


τ

[
δn‖γVxn –μFp‖ + ( – δn)‖γ Sxn –μFp‖] + ( – εnτ )‖zn – p‖

≤ εn

τ

[‖γVxn –μFp‖ + ‖γ Sxn –μFp‖] + ‖zn – p‖

≤ εn

τ

[‖γVxn –μFp‖ + ‖γ Sxn –μFp‖] + (‖xn – p‖ +√
νnαn‖p‖

)
+ ( – βn)

(
ν
n(αn + L) – 

)‖vn – yn‖ – βn

 – βn
‖zn –Wnxn‖

≤ (‖xn – p‖ +√
νnαn‖p‖

) + εnM̃ + ( – βn)
(
ν
n(αn + L) – 

)‖vn – yn‖

–
βn

 – βn
‖zn –Wnxn‖, (.)

where M̃ = supn≥{ 
τ
[‖γVxn –μFp‖+ ‖γ Sxn –μFp‖]}. This together with {νn} ⊂ [â, b̂] ⊂

(, L ) and {βn} ⊂ [c,d] ⊂ (, ) implies that

( – d)
(
 – b̂(αn + L)

)‖vn – yn‖ + c
 – c

‖zn –Wnxn‖

≤ ( – βn)
(
 – ν

n(αn + L)
)‖vn – yn‖ + βn

 – βn
‖zn –Wnxn‖

≤ (‖xn – p‖ +√
νnαn‖p‖

) – ‖xn+ – p‖ + εnM̃

=
[(‖xn – p‖ +√

νnαn‖p‖
)
– ‖xn+ – p‖]
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× [(‖xn – p‖ +√
νnαn‖p‖

)
+ ‖xn+ – p‖] + εnM̃

≤ [‖xn+ – xn‖ +
√
νnαn‖p‖

][‖xn – p‖ + ‖xn+ – p‖ +√
νnαn‖p‖

]
+ εnM̃

≤ [‖xn+ – xn‖ +
√
b̂αn‖p‖

][‖xn – p‖ + ‖xn+ – p‖ +√
b̂αn‖p‖

]
+ εnM̃. (.)

Note that limn→∞ αn = limn→∞ εn = . Hence, taking into account the boundedness of {xn}
and limn→∞ ‖xn+ – xn‖ = , we deduce from (.) that

lim
n→∞‖vn – yn‖ = lim

n→∞‖zn –Wnxn‖ = . (.)

Furthermore, for simplicity, we write wn = εnγ (δnVxn + ( – δn)Sxn) + (I – εnμF)zn for all
n≥ . Then we have

xn+ – xn = PCwn –wn + εnγ
(
δnVxn + ( – δn)Sxn

)
+ (I – εnμF)zn – xn

= PCwn –wn + εn
[
γ
(
δnVxn + ( – δn)Sxn

)
–μFzn

]
+ zn – xn,

which immediately yields

zn – xn = xn+ – xn – εn
[
γ
(
δnVxn + ( – δn)Sxn

)
–μFzn

]
– (PCwn –wn).

So, utilizing Proposition .(i) we get

‖zn – xn‖ =
∥∥xn+ – xn – εn

[
γ
(
δnVxn + ( – δn)Sxn

)
–μFzn

]
– (PCwn –wn)

∥∥

≤ ∥∥xn+ – xn – εn
[
γ
(
δnVxn + ( – δn)Sxn

)
–μFzn

]∥∥

– 〈PCwn –wn, zn – xn〉
=

∥∥xn+ – xn – εn
[
γ
(
δnVxn + ( – δn)Sxn

)
–μFzn

]∥∥

– 
(〈PCwn –wn, zn – PCwn〉 + 〈PCwn –wn,PCwn – xn〉

)
≤ [‖xn+ – xn‖ + εn

∥∥γ
(
δnVxn + ( – δn)Sxn

)
–μFzn

∥∥]
+ 

(〈PCwn –wn,PCwn – zn〉 + ‖PCwn –wn‖‖PCwn – xn‖
)

≤ ‖xn+ – xn‖ + εn
∥∥γ

(
δnVxn + ( – δn)Sxn

)
–μFzn

∥∥

+ ‖xn+ –wn‖‖xn+ – xn‖.

Since ‖xn+ – xn‖ →  and εn →  (due to (C)), we know from the boundedness of {wn},
{xn}, and {zn} that

lim
n→∞‖zn – xn‖ = . (.)

Taking into account that ‖Wnxn – xn‖ ≤ ‖Wnxn – zn‖ + ‖zn – xn‖, we obtain from (.)
and (.)

lim
n→∞‖xn –Wnxn‖ = . (.)
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Next let us show that limn→∞ ‖xn – yn‖ = . As a matter of fact, from (.) and (.) it
follows that

‖tn – p‖ ≤ ‖vn – p‖ – ‖vn – yn‖ – ‖yn – tn‖ + νn(αn + L)‖vn – yn‖‖tn – yn‖
+ νnαn‖p‖‖p – yn‖

≤ ‖vn – p‖ – ‖vn – yn‖ – ‖yn – tn‖ + ν
n(αn + L)‖tn – yn‖ + ‖vn – yn‖

+ νnαn‖p‖‖p – yn‖
= ‖vn – p‖ + νnαn‖p‖‖p – yn‖ +

(
ν
n(αn + L) – 

)‖tn – yn‖

≤ ‖xn – p‖ + νnαn‖p‖‖p – yn‖ +
(
ν
n(αn + L) – 

)‖tn – yn‖. (.)

Utilizing Lemma .(b), from (.) and (.), we obtain

‖zn – p‖ ≤ βn‖xn – p‖ + ( – βn)‖tn – p‖ – βn

 – βn
‖zn –Wnxn‖

≤ βn‖xn – p‖ + ( – βn)‖tn – p‖

≤ βn‖xn – p‖ + ( – βn)
[‖xn – p‖ + νnαn‖p‖‖p – yn‖

+
(
ν
n(αn + L) – 

)‖tn – yn‖
]

≤ ‖xn – p‖ + νnαn‖p‖‖p – yn‖ + ( – βn)
(
ν
n(αn + L) – 

)‖tn – yn‖,

which immediately implies that

( – d)
(
 – b̂(αn + L)

)‖tn – yn‖

≤ ( – βn)
(
 – ν

n(αn + L)
)‖tn – yn‖

≤ ‖xn – p‖ – ‖zn – p‖ + νnαn‖p‖‖p – yn‖
≤ ‖xn – zn‖

(‖xn – p‖ + ‖zn – p‖) + b̂αn‖p‖‖p – yn‖.

Since αn → , ‖xn – zn‖ →  (due to (.)) and {xn}, {yn}, {zn} are bounded, we get

lim
n→∞‖tn – yn‖ = . (.)

In the meantime, from (.) and (.) it is not hard to find that

‖zn – p‖ ≤ βn‖xn – p‖ + ( – βn)‖tn – p‖

≤ βn‖xn – p‖ + ( – βn)
[‖vn – p‖ + νnαn‖p‖‖p – yn‖

+
(
ν
n(αn + L) – 

)‖vn – yn‖
]

≤ βn‖xn – p‖ + ( – βn)‖vn – p‖ + νnαn‖p‖‖p – yn‖. (.)

Now, let us show that limn→∞ ‖xn – un‖ = limn→∞ ‖xn – vn‖ = . In fact, observe that∥∥Δk
nxn – p

∥∥ =
∥∥T (Θk ,ϕk )

rk,n (I – rk,nAk)Δk–
n xn – T (Θk ,ϕk )

rk,n (I – rk,nAk)p
∥∥

≤ ∥∥(I – rk,nAk)Δk–
n xn – (I – rk,nAk)p

∥∥
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≤ ∥∥Δk–
n xn – p

∥∥ + rk,n(rk,n – μk)
∥∥AkΔ

k–
n xn –Akp

∥∥

≤ ‖xn – p‖ + rk,n(rk,n – μk)
∥∥AkΔ

k–
n xn –Akp

∥∥ (.)

and

∥∥Λi
nun – p

∥∥ =
∥∥JRi ,λi,n (I – λi,nBi)Λi–

n un – JRi ,λi,n (I – λi,nBi)p
∥∥

≤ ∥∥(I – λi,nBi)Λi–
n un – (I – λi,nBi)p

∥∥

≤ ∥∥Λi–
n un – p

∥∥ + λi,n(λi,n – ηi)
∥∥BiΛ

i–
n un – Bip

∥∥

≤ ‖un – p‖ + λi,n(λi,n – ηi)
∥∥BiΛ

i–
n un – Bip

∥∥

≤ ‖xn – p‖ + λi,n(λi,n – ηi)
∥∥BiΛ

i–
n un – Bip

∥∥ (.)

for i ∈ {, , . . . ,N} and k ∈ {, , . . . ,M}. Combining (.), (.), and (.), we get

‖zn – p‖ ≤ βn‖xn – p‖ + ( – βn)‖vn – p‖ + νnαn‖p‖‖p – yn‖
≤ βn‖xn – p‖ + ( – βn)

∥∥Λi
nun – p

∥∥ + νnαn‖p‖‖p – yn‖
≤ βn‖xn – p‖ + ( – βn)

[‖un – p‖ + λi,n(λi,n – ηi)
∥∥BiΛ

i–
n un – Bip

∥∥]
+ νnαn‖p‖‖p – yn‖

≤ βn‖xn – p‖ + ( – βn)
[∥∥Δk

nxn – p
∥∥ + λi,n(λi,n – ηi)

∥∥BiΛ
i–
n un – Bip

∥∥]
+ νnαn‖p‖‖p – yn‖

≤ βn‖xn – p‖ + ( – βn)
[‖xn – p‖ + rk,n(rk,n – μk)

∥∥AkΔ
k–
n xn –Akp

∥∥

+ λi,n(λi,n – ηi)
∥∥BiΛ

i–
n un – Bip

∥∥] + νnαn‖p‖‖p – yn‖
= ‖xn – p‖ + ( – βn)

[
rk,n(rk,n – μk)

∥∥AkΔ
k–
n xn –Akp

∥∥

+ λi,n(λi,n – ηi)
∥∥BiΛ

i–
n un – Bip

∥∥] + νnαn‖p‖‖p – yn‖,

which hence implies that

( – d)
[
rk,n(μk – rk,n)

∥∥AkΔ
k–
n xn –Akp

∥∥ + λi,n(ηi – λi,n)
∥∥BiΛ

i–
n un – Bip

∥∥]
≤ ( – βn)

[
rk,n(μk – rk,n)

∥∥AkΔ
k–
n xn –Akp

∥∥ + λi,n(ηi – λi,n)
∥∥BiΛ

i–
n un – Bip

∥∥]
≤ ‖xn – p‖ – ‖zn – p‖ + νnαn‖p‖‖p – yn‖
≤ ‖xn – zn‖

(‖xn – p‖ + ‖zn – p‖) + νnαn‖p‖‖p – yn‖.

Since αn → , {νn} ⊂ [â, b̂] ⊂ (, L ), {λi,n} ⊂ [ai,bi] ⊂ (, ηi) and {rk,n} ⊂ [ck ,dk] ⊂ (, μk)
where i ∈ {, , . . . ,N} and k ∈ {, , . . . ,M}, we deduce from (.) and the boundedness of
{xn}, {yn}, {zn} that

lim
n→∞

∥∥AkΔ
k–
n xn –Akp

∥∥ =  and lim
n→∞

∥∥BiΛ
i–
n un – Bip

∥∥ = , (.)

where i ∈ {, , . . . ,N} and k ∈ {, , . . . ,M}.
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Furthermore, by Proposition .(ii) and Lemma .(a) we have∥∥Δk
nxn – p

∥∥ =
∥∥T (Θk ,ϕk )

rk,n (I – rk,nAk)Δk–
n xn – T (Θk ,ϕk )

rk,n (I – rk,nAk)p
∥∥

≤ 〈
(I – rk,nAk)Δk–

n xn – (I – rk,nAk)p,Δk
nxn – p

〉
=



(∥∥(I – rk,nAk)Δk–

n xn – (I – rk,nAk)p
∥∥ +

∥∥Δk
nxn – p

∥∥

–
∥∥(I – rk,nAk)Δk–

n xn – (I – rk,nAk)p –
(
Δk

nxn – p
)∥∥)

≤ 

(∥∥Δk–

n xn – p
∥∥ +

∥∥Δk
nxn – p

∥∥

–
∥∥Δk–

n xn –Δk
nxn – rk,n

(
AkΔ

k–
n xn –Akp

)∥∥),
which implies that∥∥Δk

nxn – p
∥∥ ≤ ∥∥Δk–

n xn – p
∥∥ –

∥∥Δk–
n xn –Δk

nxn – rk,n
(
AkΔ

k–
n xn –Akp

)∥∥

=
∥∥Δk–

n xn – p
∥∥ –

∥∥Δk–
n xn –Δk

nxn
∥∥ – rk,n

∥∥AkΔ
k–
n xn –Akp

∥∥

+ rk,n
〈
Δk–

n xn –Δk
nxn,AkΔ

k–
n xn –Akp

〉
≤ ∥∥Δk–

n xn – p
∥∥ –

∥∥Δk–
n xn –Δk

nxn
∥∥

+ rk,n
∥∥Δk–

n xn –Δk
nxn

∥∥∥∥AkΔ
k–
n xn –Akp

∥∥
≤ ‖xn – p‖ – ∥∥Δk–

n xn –Δk
nxn

∥∥

+ rk,n
∥∥Δk–

n xn –Δk
nxn

∥∥∥∥AkΔ
k–
n xn –Akp

∥∥. (.)

By Lemma .(a) and Lemma ., we obtain∥∥Λi
nun – p

∥∥ =
∥∥JRi ,λi,n (I – λi,nBi)Λi–

n un – JRi ,λi,n (I – λi,nBi)p
∥∥

≤ 〈
(I – λi,nBi)Λi–

n un – (I – λi,nBi)p,Λi
nun – p

〉
=



(∥∥(I – λi,nBi)Λi–

n un – (I – λi,nBi)p
∥∥ +

∥∥Λi
nun – p

∥∥

–
∥∥(I – λi,nBi)Λi–

n un – (I – λi,nBi)p –
(
Λi

nun – p
)∥∥)

≤ 

(∥∥Λi–

n un – p
∥∥ +

∥∥Λi
nun – p

∥∥

–
∥∥Λi–

n un –Λi
nun – λi,n

(
BiΛ

i–
n un – Bip

)∥∥)
≤ 


(‖un – p‖ + ∥∥Λi

nun – p
∥∥

–
∥∥Λi–

n un –Λi
nun – λi,n

(
BiΛ

i–
n un – Bip

)∥∥)
≤ 


(‖xn – p‖ + ∥∥Λi

nun – p
∥∥

–
∥∥Λi–

n un –Λi
nun – λi,n

(
BiΛ

i–
n un – Bip

)∥∥),
which immediately leads to∥∥Λi

nun – p
∥∥ ≤ ‖xn – p‖ – ∥∥Λi–

n un –Λi
nun – λi,n

(
BiΛ

i–
n un – Bip

)∥∥

= ‖xn – p‖ – ∥∥Λi–
n un –Λk

nun
∥∥ – λ

i,n
∥∥BiΛ

i–
n un – Bip

∥∥
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+ λi,n
〈
Λi–

n un –Λi
nun,BiΛ

i–
n un – Bip

〉
≤ ‖xn – p‖ – ∥∥Λi–

n un –Λi
nun

∥∥

+ λi,n
∥∥Λi–

n un –Λi
nun

∥∥∥∥BiΛ
i–
n un – Bip

∥∥. (.)

Combining (.) and (.) we conclude that

‖zn – p‖ ≤ βn‖xn – p‖ + ( – βn)‖vn – p‖ + νnαn‖p‖‖p – yn‖
≤ βn‖xn – p‖ + ( – βn)

∥∥Λi
nun – p

∥∥ + νnαn‖p‖‖p – yn‖
≤ βn‖xn – p‖ + ( – βn)

[‖xn – p‖ – ∥∥Λi–
n un –Λi

nun
∥∥

+ λi,n
∥∥Λi–

n un –Λi
nun

∥∥∥∥BiΛ
i–
n un – Bip

∥∥]
+ νnαn‖p‖‖p – yn‖

≤ ‖xn – p‖ – ( – βn)
∥∥Λi–

n un –Λi
nun

∥∥

+ λi,n
∥∥Λi–

n un –Λi
nun

∥∥∥∥BiΛ
i–
n un – Bip

∥∥ + νnαn‖p‖‖p – yn‖,

which yields

( – d)
∥∥Λi–

n un –Λi
nun

∥∥

≤ ( – βn)
∥∥Λi–

n un –Λi
nun

∥∥

≤ ‖xn – p‖ – ‖zn – p‖ + λi,n
∥∥Λi–

n un –Λi
nun

∥∥∥∥BiΛ
i–
n un – Bip

∥∥
+ νnαn‖p‖‖p – yn‖

≤ ‖xn – zn‖
(‖xn – p‖ + ‖zn – p‖) + λi,n

∥∥Λi–
n un –Λi

nun
∥∥∥∥BiΛ

i–
n un – Bip

∥∥
+ νnαn‖p‖‖p – yn‖.

Since αn → , {νn} ⊂ [â, b̂] ⊂ (, L ) and {λi,n} ⊂ [ai,bi]⊂ (, ηi) where i ∈ {, , . . . ,N}, we
deduce from (.) and the boundedness of {un}, {xn}, {yn}, {zn} that

lim
n→∞

∥∥Λi–
n un –Λi

nun
∥∥ = , ∀i ∈ {, , . . . ,N}. (.)

Also, combining (.), (.), and (.) we deduce that

‖zn – p‖ ≤ βn‖xn – p‖ + ( – βn)‖vn – p‖ + νnαn‖p‖‖p – yn‖
≤ βn‖xn – p‖ + ( – βn)‖un – p‖ + νnαn‖p‖‖p – yn‖
≤ βn‖xn – p‖ + ( – βn)

∥∥Δk
nxn – p

∥∥ + νnαn‖p‖‖p – yn‖
≤ βn‖xn – p‖ + ( – βn)

[‖xn – p‖ – ∥∥Δk–
n xn –Δk

nxn
∥∥

+ rk,n
∥∥Δk–

n xn –Δk
nxn

∥∥∥∥AkΔ
k–
n xn –Akp

∥∥]
+ νnαn‖p‖‖p – yn‖

≤ ‖xn – p‖ – ( – βn)
∥∥Δk–

n xn –Δk
nxn

∥∥

+ rk,n
∥∥Δk–

n xn –Δk
nxn

∥∥∥∥AkΔ
k–
n xn –Akp

∥∥
+ νnαn‖p‖‖p – yn‖,
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which leads to

( – d)
∥∥Δk–

n xn –Δk
nxn

∥∥

≤ ( – βn)
∥∥Δk–

n xn –Δk
nxn

∥∥

≤ ‖xn – p‖ – ‖zn – p‖ + rk,n
∥∥Δk–

n xn –Δk
nxn

∥∥∥∥AkΔ
k–
n xn –Akp

∥∥
+ νnαn‖p‖‖p – yn‖

≤ ‖xn – zn‖
(‖xn – p‖ + ‖zn – p‖) + rk,n

∥∥Δk–
n xn –Δk

nxn
∥∥∥∥AkΔ

k–
n xn –Akp

∥∥
+ νnαn‖p‖‖p – yn‖.

Since αn → , {νn} ⊂ [â, b̂] ⊂ (, L ) and {rk,n} ⊂ [ck ,dk] ⊂ (, μk) where k ∈ {, , . . . ,M},
we deduce from (.) and the boundedness of {xn}, {yn}, {zn} that

lim
n→∞

∥∥Δk–
n xn –Δk

nxn
∥∥ = , ∀k ∈ {, , . . . ,M}. (.)

Hence from (.) and (.) we get

‖xn – un‖ =
∥∥Δ

nxn –ΔM
n xn

∥∥
≤ ∥∥Δ

nxn –Δ
nxn

∥∥ +
∥∥Δ

nxn –Δ
nxn

∥∥ + · · · + ∥∥ΔM–
n xn –ΔM

n xn
∥∥

→  as n → ∞ (.)

and

‖un – vn‖ =
∥∥Λ

nun –ΛN
n un

∥∥
≤ ∥∥Λ

nun –Λ
nun

∥∥ +
∥∥Λ

nun –Λ
nun

∥∥ + · · · + ∥∥ΛN–
n un –ΛN

n un
∥∥

→  as n → ∞, (.)

respectively. Thus, from (.) and (.) we obtain

‖xn – vn‖ ≤ ‖xn – un‖ + ‖un – vn‖ →  as n→ ∞. (.)

In addition, it is clear that

‖xn –Wxn‖ ≤ ‖xn –Wnxn‖ + ‖Wnxn –Wxn‖.

Thus, we conclude from Remark ., (.), and the boundedness of {xn} that

lim
n→∞‖xn –Wxn‖ = . (.)

Noting that ‖xn – yn‖ ≤ ‖xn – vn‖ + ‖vn – yn‖, we have from (.) and (.) that

lim
n→∞‖xn – yn‖ = . (.)
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Again, noting that ‖tn – xn‖ ≤ ‖tn – yn‖ + ‖yn – xn‖, we obtain from (.) and (.)

lim
n→∞‖tn – xn‖ = . (.)

Furthermore, from (.) we find that zn – tn = βn(xn – tn) + σn(Ttn – tn) and hence

σn(Ttn – tn) = zn – tn – βn(xn – tn)

= zn – xn + xn – tn – βn(xn – tn)

= zn – xn + ( – βn)(xn – tn),

which immediately leads to

σn‖Ttn – tn‖ ≤ ‖zn – xn‖ + ( – βn)‖xn – tn‖ ≤ ‖zn – xn‖ + ‖xn – tn‖.

Consequently, from (.), (.), and lim infn→∞ σn >  we get

lim
n→∞‖Ttn – tn‖ = . (.)

Step . ωw(xn) ⊂ Ω .
Since H is reflexive and {xn} is bounded, there exists at least a weak convergence subse-

quence of {xn}. Hence it is well known that ωw(xn) �= ∅. Now, take an arbitrary w ∈ ωw(xn).
Then there exists a subsequence {xni} of {xn} such that xni ⇀ w. From (.)-(.),
(.), (.), and (.), we have tni ⇀ w, yni ⇀ w, uni ⇀ w, vni ⇀ w, Λm

niuni ⇀ w and
Δk

nixni ⇀ w, where m ∈ {, , . . . ,N} and k ∈ {, , . . . ,M}. Utilizing Proposition .(ii)
and Lemma ., we deduce from (.) and (.) that w ∈ Fix(T) and w ∈ Fix(W ) =⋂∞

n= Fix(Tn) (due to Lemma .). Next, we prove that w ∈ ⋂N
m= I(Bm,Rm). As a mat-

ter of fact, since Bm is ηm-inverse-strongly monotone, Bm is a monotone and Lipschitz-
continuous mapping. It follows from Lemma . that Rm +Bm is maximal monotone. Let
(v, g) ∈ G(Rm + Bm), i.e., g – Bmv ∈ Rmv. Again, since Λm

n un = JRm ,λm,n (I – λm,nBm)Λm–
n un,

n≥ ,m ∈ {, , . . . ,N}, we have

Λm–
n un – λm,nBmΛm–

n un ∈ (I + λm,nRm)Λm
n un,

that is,


λm,n

(
Λm–

n un –Λm
n un – λm,nBmΛm–

n un
) ∈ RmΛm

n un.

In terms of the monotonicity of Rm, we get〈
v –Λm

n un, g – Bmv –


λm,n

(
Λm–

n un –Λm
n un – λm,nBmΛm–

n un
)〉 ≥ 

and hence

〈
v –Λm

n un, g
〉

≥
〈
v –Λm

n un,Bmv +


λm,n

(
Λm–

n un –Λm
n un – λm,nBmΛm–

n un
)〉
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=
〈
v –Λm

n un,Bmv – BmΛm
n un + BmΛm

n un – BmΛm–
n un +


λm,n

(
Λm–

n un –Λm
n un

)〉
≥ 〈

v –Λm
n un,BmΛm

n un – BmΛm–
n un

〉
+

〈
v –Λm

n un,


λm,n

(
Λm–

n un –Λm
n un

)〉
.

In particular,

〈
v –Λm

niuni , g
〉 ≥ 〈

v –Λm
niuni ,BmΛm

niuni – BmΛm–
ni uni

〉
+

〈
v –Λm

niuni ,


λm,ni

(
Λm–

ni uni –Λm
niuni

)〉
.

Since ‖Λm
n un –Λm–

n un‖ →  (due to (.)) and ‖BmΛm
n un –BmΛm–

n un‖ →  (due to the
Lipschitz continuity of Bm), we conclude from Λm

niuni ⇀ w and {λi,n} ⊂ [ai,bi] ⊂ (, ηi)
that

lim
i→∞

〈
v –Λm

niuni , g
〉
= 〈v –w, g〉 ≥ .

It follows from the maximal monotonicity of Bm + Rm that  ∈ (Rm + Bm)w, i.e., w ∈
I(Bm,Rm). Therefore, w ∈ ⋂N

m= I(Bm,Rm). Next we prove that w ∈ ⋂M
k=GMEP(Θk ,ϕk ,Ak).

Since Δk
nxn = T (Θk ,ϕk )

rk,n (I – rk,nAk)Δk–
n xn, n≥ , k ∈ {, , . . . ,M}, we have

Θk
(
Δk

nxn, y
)
+ ϕk(y) – ϕk

(
Δk

nxn
)
+

〈
AkΔ

k–
n xn, y –Δk

nxn
〉

+

rk,n

〈
y –Δk

nxn,Δ
k
nxn –Δk–

n xn
〉 ≥ .

By (A), we have

ϕk(y) – ϕk
(
Δk

nxn
)
+

〈
AkΔ

k–
n xn, y –Δk

nxn
〉
+


rk,n

〈
y –Δk

nxn,Δ
k
nxn –Δk–

n xn
〉

≥ Θk
(
y,Δk

nxn
)
.

Let zt = ty + ( – t)w for all t ∈ (, ] and y ∈ C. This implies that zt ∈ C. Then we have

〈
zt –Δk

nxn,Akzt
〉

≥ ϕk
(
Δk

nxn
)
– ϕk(zt) +

〈
zt –Δk

nxn,Akzt
〉
–

〈
zt –Δk

nxn,AkΔ
k–
n xn

〉
–

〈
zt –Δk

nxn,
Δk

nxn –Δk–
n xn

rk,n

〉
+Θk

(
zt ,Δk

nxn
)

= ϕk
(
Δk

nxn
)
– ϕk(zt) +

〈
zt –Δk

nxn,Akzt –AkΔ
k
nxn

〉
+

〈
zt –Δk

nxn,AkΔ
k
nxn –AkΔ

k–
n xn

〉
–

〈
zt –Δk

nxn,
Δk

nxn –Δk–
n xn

rk,n

〉
+Θk

(
zt ,Δk

nxn
)
. (.)

By (.), we have ‖AkΔ
k
nxn –AkΔ

k–
n xn‖ →  as n→ ∞. Furthermore, by themonotonic-

ity of Ak , we obtain 〈zt –Δk
nxn,Akzt –AkΔ

k
nxn〉 ≥ . Then by (A) we obtain

〈zt –w,Akzt〉 ≥ ϕk(w) – ϕk(zt) +Θk(zt ,w). (.)
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Utilizing (A), (A), and (.), we obtain

 = Θk(zt , zt) + ϕk(zt) – ϕk(zt)

≤ tΘk(zt , y) + ( – t)Θk(zt ,w) + tϕk(y) + ( – t)ϕk(w) – ϕk(zt)

≤ t
[
Θk(zt , y) + ϕk(y) – ϕk(zt)

]
+ ( – t)〈zt –w,Akzt〉

= t
[
Θk(zt , y) + ϕk(y) – ϕk(zt)

]
+ ( – t)t〈y –w,Akzt〉,

and hence

 ≤ Θk(zt , y) + ϕk(y) – ϕk(zt) + ( – t)〈y –w,Akzt〉.

Letting t → , we have, for each y ∈ C,

 ≤ Θk(w, y) + ϕk(y) – ϕk(w) + 〈y –w,Akw〉.

This implies that w ∈ GMEP(Θk ,ϕk ,Ak) and hence w ∈ ⋂M
k=GMEP(Θk ,ϕk ,Ak). Further-

more, let us show that w ∈VI(C,A). In fact, define

T̃v =

{
Av +NCv, if v ∈ C,
∅, if v /∈ C,

where NCv = {u ∈ H : 〈v – x,u〉 ≥ ,∀x ∈ C}. Then T̃ is maximal monotone and  ∈ T̃v if
and only if v ∈ VI(C,A); see []. Let (v, ṽ) ∈ G(T̃). Then we have ṽ ∈ T̃v = Av +NCv, and
hence ṽ –Av ∈ NCv. So, we have 〈v – x, ṽ –Av〉 ≥  for all x ∈ C. On the other hand, from
yn = PC(vn – νnAnvn) and v ∈ C, we get 〈vn – νnAnvn – yn, yn – v〉 ≥ , and hence,

〈
v – yn,

yn – vn
νn

+Anvn
〉
≥ .

Therefore, from ṽ –Av ∈NCv and yni ∈ C, we have

〈v – yni , ṽ〉 ≥ 〈v – yni ,Av〉

≥ 〈v – yni ,Av〉 –
〈
v – yni ,

yni – vni
νni

+Anivni

〉
= 〈v – yni ,Av〉 –

〈
v – yni ,

yni – vni
νni

+Avni

〉
– αni〈v – yni , vni〉

= 〈v – yni ,Av –Ayni〉 + 〈v – yni ,Ayni –Avni〉 –
〈
v – yni ,

yni – vni
νni

〉
– αni〈v – yni , vni〉

≥ 〈v – yni ,Ayni –Avni〉 –
〈
v – yni ,

yni – vni
νni

〉
– αni〈v – yni , vni〉.

Hence, it is easy to see that 〈v – w, ṽ〉 ≥  as i → ∞. Since T̃ is maximal mono-
tone, we have w ∈ T̃–, and hence, w ∈ VI(C,A). Consequently, w ∈ ⋂∞

n= Fix(Tn) ∩
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⋂M
k=GMEP(Θk ,ϕk ,Ak) ∩ ⋂N

i= I(Bi,Ri) ∩ VI(C,A) ∩ Fix(T) =: Ω . This shows that
ωw(xn) ⊂ Ω .
Step . {xn} converges strongly to a unique solution x∗ ∈ Ω of SHVI (.).
Indeed, according to ‖xn+ – xn‖ → , we can take a subsequence {xni} of {xn} satisfying

lim sup
n→∞

〈
(γV –μF)x∗,xn+ – x∗〉 = lim sup

n→∞
〈
(γV –μF)x∗,xn – x∗〉

= lim sup
i→∞

〈
(γV –μF)x∗,xni – x∗〉.

Without loss of generality, we may further assume that xni ⇀ x̃; then x̃ ∈ Ω due to Step .
Since x∗ is a solution of SHVI (.), we get

lim sup
n→∞

〈
(γV –μF)x∗,xn+ – x∗〉 = 〈

(γV –μF)x∗, x̃ – x∗〉 ≤ . (.)

Repeating the argument of (.), we have

lim sup
n→∞

〈
(γ S –μF)x∗,xn+ – x∗〉 ≤ . (.)

From (.) and (.), it follows that (noticing that xn+ = PCwn and  < γ ≤ τ )

∥∥xn+ – x∗∥∥

=
〈
wn – x∗,xn+ – x∗〉 + 〈

PCwn –wn,PCwn – x∗〉
≤ 〈

wn – x∗,xn+ – x∗〉
=

〈
(I – εnμF)zn – (I – εnμF)x∗,xn+ – x∗〉 + δnεnγ

〈
Vxn –Vx∗,xn+ – x∗〉

+ εn( – δn)γ
〈
Sxn – Sx∗,xn+ – x∗〉 + δnεn

〈
(γV –μF)x∗,xn+ – x∗〉

+ εn( – δn)
〈
(γ S –μF)x∗,xn+ – x∗〉

≤ ( – εnτ )
∥∥zn – x∗∥∥∥∥xn+ – x∗∥∥ +

[
δnεnγρ + εn( – δn)γ

]∥∥xn – x∗∥∥∥∥xn+ – x∗∥∥
+ δnεn

〈
(γV –μF)x∗,xn+ – x∗〉 + εn( – δn)

〈
(γ S –μF)x∗,xn+ – x∗〉

≤ ( – εnτ )


(∥∥zn – x∗∥∥ +

∥∥xn+ – x∗∥∥)
+

[
δnεnγρ + εn( – δn)γ

] 

(∥∥xn – x∗∥∥ +

∥∥xn+ – x∗∥∥)
+ δnεn

〈
(γV –μF)x∗,xn+ – x∗〉 + εn( – δn)

〈
(γ S –μF)x∗,xn+ – x∗〉

≤ ( – εnτ )


[(∥∥xn – x∗∥∥ +

√
νnαn

∥∥x∗∥∥) + ∥∥xn+ – x∗∥∥]
+

[
δnεnγρ + εn( – δn)γ

] 

(∥∥xn – x∗∥∥ +

∥∥xn+ – x∗∥∥)
+ δnεn

〈
(γV –μF)x∗,xn+ – x∗〉 + εn( – δn)

〈
(γ S –μF)x∗,xn+ – x∗〉

≤ ( – εnτ )


(∥∥xn – x∗∥∥ + αnM̃ +

∥∥xn+ – x∗∥∥)
+

[
δnεnγρ + εn( – δn)γ

] 

(∥∥xn – x∗∥∥ +

∥∥xn+ – x∗∥∥)
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+ δnεn
〈
(γV –μF)x∗,xn+ – x∗〉 + εn( – δn)

〈
(γ S –μF)x∗,xn+ – x∗〉

≤ [
 – δnεnγ ( – ρ)

] 

(∥∥xn – x∗∥∥ +

∥∥xn+ – x∗∥∥) + δnεn
〈
(γV –μF)x∗,xn+ – x∗〉

+ εn( – δn)
〈
(γ S –μF)x∗,xn+ – x∗〉 + αnM̃,

where M̃ = supn≥{νn‖x∗‖(√‖xn – x∗‖ + νnαn‖x∗‖)} < ∞. It turns out that

∥∥xn+ – x∗∥∥

≤  – δnεnγ ( – ρ)
 + δnεnγ ( – ρ)

∥∥xn – x∗∥∥ +


 + δnεnγ ( – ρ)
[
δnεn

〈
(γV –μF)x∗,xn+ – x∗〉

+ εn( – δn)
〈
(γ S –μF)x∗,xn+ – x∗〉 + αnM̃

]
≤ [

 – δnεnγ ( – ρ)
]∥∥xn – x∗∥∥ +


 + δnεnγ ( – ρ)

[
δnεn

〈
(γV –μF)x∗,xn+ – x∗〉

+ εn( – δn)
〈
(γ S –μF)x∗,xn+ – x∗〉] + αnM̃

= ( – sn)
∥∥xn – x∗∥∥ + snbn + tn, (.)

where tn = αnM̃, sn = δnεnγ ( – ρ) and

bn =


γ ( – ρ)[ + δnεnγ ( – ρ)]
〈
(γV –μF)x∗,xn+ – x∗〉

+
( – δn)

δnγ ( – ρ)[ + δnεnγ ( – ρ)]
〈
(γ S –μF)x∗,xn+ – x∗〉.

In terms of conditions (C) and (C), we conclude from  < – ρ ≤  that {sn} ⊂ (, ] and∑∞
n= sn = ∞. Note that 

γ (–ρ)[+δnεnγ (–ρ)] ≤ 
γ (–ρ) and

(–δn)
δnγ (–ρ)[+δnεnγ (–ρ)] ≤ 

aγ (–ρ) , where
a = inf{δn : n≥ } > . Consequently, utilizing Lemma . we obtain

lim sup
n→∞

bn ≤ lim sup
n→∞


γ ( – ρ)[ + δnεnγ ( – ρ)]

〈
(γV –μF)x∗,xn+ – x∗〉

+ lim sup
n→∞

( – δn)
δnγ ( – ρ)[ + δnεnγ ( – ρ)]

〈
(γ S –μF)x∗,xn+ – x∗〉

≤ .

So, applying Lemma . to (.), we infer that limn→∞ ‖xn – x∗‖ = . The proof is com-
plete. �

Remark . In Theorem ., whenever V ≡ , the iterative scheme (.) reduces to the
following one:

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

un = T (ΘM ,ϕM)
rM,n (I – rM,nAM)T (ΘM–,ϕM–)

rM–,n (I – rM–,nAM–) · · ·T (Θ,ϕ)
r,n (I – r,nA)xn,

vn = JRN ,λN ,n (I – λN ,nBN )JRN–,λN–,n (I – λN–,nBN–) · · · JR,λ,n (I – λ,nB)un,
yn = PC(vn – νnAnvn),
zn = βnWnxn + γnPC(vn – νnAnyn) + σnTPC(vn – νnAnyn),
xn+ = PC[εn( – δn)γ Sxn + (I – εnμF)zn], ∀n≥ ,

(.)
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whereAn = αnI +A for all n≥ . Assume that the SHVI (.) has a solution and that all the
conditions in Theorem . are satisfied. If {Sxn} is bounded, then {xn} converges strongly
to a unique solution of SHVI (.) provided limn→∞ ‖xn – xn+‖ = .

Next we consider a special case of SHVI (.). In SHVI (.), put μ = , F = 
 I and

γ = τ = . In this case, the objective is to find x∗ ∈ Ω such that{
〈(I –V )x∗,x – x∗〉 ≥ , ∀x ∈ Ω ,
〈(I – S)x∗, y – x∗〉 ≥ , ∀y ∈ Ω .

(.)

Utilizing Theorem . we immediately derive the following.

Corollary . Let C be a nonempty closed convex subset of a real Hilbert space H . Let M,
N be two positive integers. Let Θk be a bifunction from C×C to R satisfying (A)-(A) and
ϕk : C → R∪ {+∞} be a proper lower semicontinuous and convex function with restriction
(B) or (B), where k ∈ {, , . . . ,M}. Let Ri : C → H be a maximal monotone mapping and
let Ak : H → H and Bi : C → H be μk-inverse-strongly monotone and ηi-inverse-strongly
monotone, respectively, where k ∈ {, , . . . ,M}, i ∈ {, , . . . ,N}. Let {Tn}∞n= be a sequence
of nonexpansive self-mappings on C and {λn}∞n= be a sequence in (,b] for some b ∈ (, ).
Let T : C → C be a ξ -strictly pseudocontractive mapping, S : C → C be a nonexpansive
mapping and V : C → H be a ρ-contraction with coefficient ρ ∈ [, ). Let A : C → H be a

L -inverse-strongly monotone mapping. Assume that the SHVI (.) has a solution, where
Ω :=

⋂∞
n= Fix(Tn)∩⋂M

k=GMEP(Θk ,ϕk ,Ak)∩⋂N
i= I(Bi,Ri)∩VI(C,A)∩Fix(T). Let {αn} ⊂

[,∞), {νn} ⊂ (, L ), {εn}, {δn}, {βn}, {γn}, {σn} ⊂ (, ) and {λi,n} ⊂ [ai,bi] ⊂ (, ηi), {rk,n} ⊂
[ck ,dk] ⊂ (, μk) where i ∈ {, , . . . ,N} and k ∈ {, , . . . ,M}. For arbitrarily given x ∈ C,
let {xn} be a sequence generated by⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

un = T (ΘM ,ϕM)
rM,n (I – rM,nAM)T (ΘM–,ϕM–)

rM–,n (I – rM–,nAM–) · · ·T (Θ,ϕ)
r,n (I – r,nA)xn,

vn = JRN ,λN ,n (I – λN ,nBN )JRN–,λN–,n (I – λN–,nBN–) · · · JR,λ,n (I – λ,nB)un,
yn = PC(vn – νnAnvn),
zn = βnWnxn + γnPC(vn – νnAnyn) + σnTPC(vn – νnAnyn),
xn+ = PC[εn(δnVxn + ( – δn)Sxn) + ( – εn)zn], ∀n≥ ,

(.)

where An = αnI +A for all n≥ . Suppose that
(C)

∑∞
n= αn < ∞;

(C)  < lim infn→∞ νn ≤ lim supn→∞ νn < 
L ;

(C) βn + γn + σn =  and (γn + σn)ξ ≤ γn for all n≥ ;
(C)  < lim infn→∞ βn ≤ lim supn→∞ βn <  and lim infn→∞ σn > ;
(C)  < lim infn→∞ δn ≤ lim supn→∞ δn < ;
(C) limn→∞ εn =  and

∑∞
n= εn =∞.

If {Sxn} is bounded, then {xn} converges strongly to a unique solution of the SHVI (.)
provided limn→∞ ‖xn – xn+‖ = .

In Theorem ., puttingM =  and N = , we obtain the following.

Corollary . Let C be a nonempty closed convex subset of a real Hilbert space H . Let
Θ be a bifunction from C × C to R satisfying (A)-(A), ϕ : C → R ∪ {+∞} be a proper
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lower semicontinuous and convex function with restriction (B) or (B), and A : H → H
be μ-inverse strongly monotone. Let Ri : C → H be a maximal monotone mapping and
Bi : C → H be ηi-inverse-strongly monotone, for i = , . Let {Tn}∞n= be a sequence of non-
expansive self-mappings on C and {λn}∞n= be a sequence in (,b] for some b ∈ (, ). Let
T : C → C be a ξ -strictly pseudocontractive mapping, S : C → C be a nonexpansive map-
ping and V : C → H be a ρ-contraction with coefficient ρ ∈ [, ). Let A : C → H be a

L -inverse-strongly monotone mapping, and F : C → H be κ-Lipschitzian and η-strongly
monotone with positive constants κ ,η >  such that  < μ < η

κ
and  < γ ≤ τ where τ = –√

 –μ(η –μκ). Assume that the SHVI (.) has a solution, where Ω :=
⋂∞

n= Fix(Tn)∩
GMEP(Θ,ϕ,A)∩ I(B,R)∩ I(B,R)∩VI(C,A)∩Fix(T). Let {αn} ⊂ [,∞), {νn} ⊂ (, L ),
{εn}, {δn}, {βn}, {γn}, {σn} ⊂ (, ), {r,n} ⊂ [c,d]⊂ (, μ) and {λi,n} ⊂ [ai,bi] ⊂ (, ηi) for
i = , . For arbitrarily given x ∈ C, let {xn} be a sequence generated by

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Θ(un, y) + ϕ(y) – ϕ(un) + 〈Axn, y – un〉 + 
r,n

〈un – xn, y – un〉 ≥ , ∀y ∈ C,
vn = JR,λ,n (I – λ,nB)JR,λ,n (I – λ,nB)un,
yn = PC(vn – νnAnvn),
zn = βnWnxn + γnPC(vn – νnAnyn) + σnTPC(vn – νnAnyn),
xn+ = PC[εnγ (δnVxn + ( – δn)Sxn) + (I – εnμF)zn], ∀n≥ ,

(.)

where An = αnI +A for all n≥ . Suppose that
(C)

∑∞
n= αn < ∞;

(C)  < lim infn→∞ νn ≤ lim supn→∞ νn < 
L ;

(C) βn + γn + σn =  and (γn + σn)ξ ≤ γn for all n≥ ;
(C)  < lim infn→∞ βn ≤ lim supn→∞ βn <  and lim infn→∞ σn > ;
(C)  < lim infn→∞ δn ≤ lim supn→∞ δn < ;
(C) limn→∞ εn =  and

∑∞
n= εn =∞.

If {Sxn} is bounded, then {xn} converges strongly to a unique solution of the SHVI (.)
provided limn→∞ ‖xn – xn+‖ = .

In Theorem ., puttingM =N = , we obtain the following.

Corollary . Let C be a nonempty closed convex subset of a real Hilbert space H . Let
Θ be a bifunction from C × C to R satisfying (A)-(A), ϕ : C → R ∪ {+∞} be a proper
lower semicontinuous and convex function with restriction (B) or (B), and A : H → H
be μ-inverse strongly monotone. Let R : C → H be a maximal monotone mapping and
B : C →H be η-inverse-stronglymonotone.Let {Tn}∞n= be a sequence of nonexpansive self-
mappings on C and {λn}∞n= be a sequence in (,b] for some b ∈ (, ). Let T : C → C be a
ξ -strictly pseudocontractive mapping, S : C → C be a nonexpansive mapping and V : C →
H be a ρ-contraction with coefficient ρ ∈ [, ). Let A : C → H be a 

L -inverse-strongly
monotone mapping, and F : C → H be κ-Lipschitzian and η-strongly monotone with posi-
tive constants κ ,η >  such that  < μ < η

κ
and  < γ ≤ τ where τ =  –

√
 –μ(η –μκ).

Assume that the SHVI (.) has a solution,whereΩ :=
⋂∞

n= Fix(Tn)∩GMEP(Θ,ϕ,A)∩
I(B,R) ∩ VI(C,A) ∩ Fix(T). Let {αn} ⊂ [,∞), {νn} ⊂ (, L ), {εn}, {δn}, {βn}, {γn}, {σn} ⊂
(, ), {λ,n} ⊂ [a,b] ⊂ (, η) and {r,n} ⊂ [c,d] ⊂ (, μ). For arbitrarily given x ∈ C,
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let {xn} be a sequence generated by

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Θ(un, y) + ϕ(y) – ϕ(un) + 〈Axn, y – un〉 + 
r,n

〈un – xn, y – un〉 ≥ , ∀y ∈ C,
vn = JR,λ,n (I – λ,nB)un,
yn = PC(vn – νnAnvn),
zn = βnWnxn + γnPC(vn – νnAnyn) + σnTPC(vn – νnAnyn),
xn+ = PC[εnγ (δnVxn + ( – δn)Sxn) + (I – εnμF)zn], ∀n≥ ,

(.)

where An = αnI +A for all n≥ . Suppose that
(C)

∑∞
n= αn < ∞;

(C)  < lim infn→∞ νn ≤ lim supn→∞ νn < 
L ;

(C) βn + γn + σn =  and (γn + σn)ξ ≤ γn for all n≥ ;
(C)  < lim infn→∞ βn ≤ lim supn→∞ βn <  and lim infn→∞ σn > ;
(C)  < lim infn→∞ δn ≤ lim supn→∞ δn < ;
(C) limn→∞ εn =  and

∑∞
n= εn =∞.

If {Sxn} is bounded, then {xn} converges strongly to a unique solution of the SHVI (.)
provided limn→∞ ‖xn – xn+‖ = .

Remark . It is obvious that our iterative scheme (.) is very different from Yao et al.’s
iterative one (.) and Kong et al.’s iterative one (.). Here, the three-step iterative scheme
in [, Algorithm I] is extended to develop our five-step iterative scheme (.) for the SHVI
(.) by combiningKorpelevich’s extragradientmethod, viscosity approximationmethod,
hybrid steepest-descent method [], Mann’s iteration method and projection method. It
is worth pointing out that under the lack of the assumptions similar to those in [, Theo-
rem .], e.g., {xn} is bounded and Fix(T)∩ intC �= ∅, the sequence {xn} generated by (.)
converges strongly to a point x∗ ∈ ⋂∞

n= Fix(Tn)∩⋂M
k=GMEP(Θk ,ϕk ,Ak)∩⋂N

i= I(Bi,Ri)∩
VI(C,A)∩Fix(T) =: Ω , which is a unique solution x∗ ∈ Ω of the SHVI (.) (over the fixed
point set of an infinite family of nonexpansive mappings {Tn}∞n= and a ξ -strictly pseudo-
contractivemapping T ). It is worth emphasizing that the nonexpansivemapping T in (.)
is extended to a ξ -strictly pseudocontractive mapping T in (.) and the VIP in SHVI (.)
is extended to the setting of finitely many GMEPs and finitely many variational inclusions
in SHVI (.).

Remark . Our Theorem . improves, extends, supplements and develops Yao et al.
[, Theorems . and .] and Kong et al. [, Theorem ] in the following aspects:
(a) Our SHVI (.) with the unique solution x∗ ∈ Ω satisfying

x∗ = P⋂∞
n= Fix(Tn)∩

⋂M
k=GMEP(Θk ,ϕk ,Ak )∩

⋂N
i= I(Bi ,Ri)∩VI(C,A)∩Fix(T)

(
I – (μF – γ S)

)
x∗

is more general than the problem of finding a point x̃ ∈ C satisfying x̃ = PFix(T)Sx̃ in
[] and than the problem of finding a point x∗ ∈ Fix(T)∩VI(C,A) satisfying
x∗ = PFix(T)∩VI(C,A)(I – (μF – γ S))x∗ in [, Theorem ]. It is worth emphasizing that
S is nonexpansive if and only if the complement I – S is 

 -inverse-strongly
monotone; see [].

(b) Our five-step iterative scheme (.) for SHVI (.) is more flexible, more
advantageous and more subtle than Kong et al.’s three-step iterative one in
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[, Algorithm I] and than Yao et al.’s two-step iterative one (.) because it can be
used to solve several kinds of problems, e.g., the SHVI, the HVIP and the problem of
finding a common point of four sets:

⋂∞
n= Fix(Tn)∩ Fix(T),⋂M

k=GMEP(Θk ,ϕk ,Ak),
⋂N

i= I(Bi,Ri) and VI(C,A). In addition, our Theorem .
drops the crucial requirements in [, Theorem .] that limn→∞ αn

βn
= ,

limn→∞
β
n

αn
= , Fix(T)∩ intC �= ∅ and {xn} is bounded, generalizes [, Theorem ]

from one nonlinear mapping T to an infinite family of nonlinear mappings {Tn}∞n=
and T and extends [, Theorem ] to the setting of finitely many GMEPs and
finitely many variational inclusions.

(c) The argument techniques in our Theorem . are very different from the argument
ones in [, Theorems . and .] and from the argument ones in [, Theorem ]
because we make use of the properties of theW -mappingsWn (see Lemmas .
and .), the properties of resolvent operators and maximal monotone mappings
(see Proposition . and Lemmas .-.), the inclusion problem  ∈ T̃v
(⇔ v ∈ VI(C,A) for maximal monotone operator T̃ ) (see (.)) and the contractive
coefficient estimates for the contractions associating with nonexpansive mappings
(see Lemma .).
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