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Abstract
This paper is concerned with a new method to prove the weak convergence of a
strictly pseudo-contractive mapping in a p-uniformly convex Banach space with more
relaxed restrictions on the parameters. Our results extend and improve the
corresponding earlier results.
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1 Introduction and preliminaries
In , Browder and Petryshyn [] gave the classical definition for strictly pseudo-
contractive mappings in Hilbert spaces for the first time.

Definition . Let C be a nonempty closed convex subset of a real Hilbert space H .
T : C →H is called a Browder-Petryshyn-type k-strictly pseudo-contractive mapping.
Then there exists k ∈ [, ) such that for every x, y ∈ C

〈
Tx – Ty, j(x – y)

〉 ≤ ‖x – y‖ – k
∥∥(I – T)x – (I – T)y

∥∥. (.)

In , Zhou [] gave a new definition for k-strictly pseudo-contractive mappings in
q-uniformly smooth Banach spaces.

Definition . Let C be a nonempty closed convex subset of a q-uniformly smooth Ba-
nach space X. T : C → C is called a Zhou-type k-strictly pseudo-contractive mapping, if
there exists k ∈ [, ) such that for every x, y ∈ C

〈
Tx – Ty, jq(x – y)

〉 ≤ ‖x – y‖q –  – k


∥∥(I – T)x – (I – T)y
∥∥q. (.)

In ,Hu andWang [] gave another definition for k-strictly pseudo-contractivemap-
pings in p-uniformly convex Banach spaces.
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Definition . LetC be a nonempty closed convex subset of a p-uniformly convex Banach
space X. T : C → C is called a Hu-type k-strictly pseudo-contractive mapping, if there
exists k ∈ [, ) such that for every x, y ∈ C

‖Tx – Ty‖p ≤ ‖x – y‖p + k
∥∥(I – T)x – (I – T)y

∥∥p. (.)

Remark . The mappings defined by (.) and (.) are pseudo-contractive mappings,
but themapping defined by (.) may not be pseudo-contractive in general Banach spaces.

Remark . If and only if q = , the mappings defined by (.) and (.) are equivalent.

Remark . If p = q = , the mappings defined by (.), (.), and (.) are equivalent in
Hilbert space.

In , Reich [] established a weak convergence theorem via a Mann-type iterative
process for nonexpansive mapping in a uniformly convex Banach space with Fréchet dif-
ferentiable norm.

Theorem R Let C be a closed convex subset of a uniformly convex Banach space X with
a Fréchet differentiable norm and T : C → C a nonexpansive mapping with F(T) �= ∅. For
any x ∈ C, the iterative sequence {xn} is defined by xn+ = (–αn)xn +αnTxn,where the real
sequence {αn} ⊂ [, ] and

∑∞
n=( – αn)αn = ∞. Then the sequence {xn} converges weakly

to a fixed point of T .

In , Marino and Xu [] improved Reich’s [] result and gave several weak conver-
gence theorems via the normal Mann iterative algorithm for strictly pseudo-contractive
mappings in Hilbert spaces. Further, they proposed an open problem:Do the main results
of [] still hold true in the framework of Banach spaces which are uniformly convex and
have a Fréchet differentiable norm?
In , Hu and Wang [] considered above problem in a p-uniformly convex Banach

space and established the following theorem.

TheoremH Let C be a closed convex subset of a p-uniformly convex Banach space X with
a Fréchet differentiable norm and T : C → C be a k-strictly pseudo-contractive mapping
in the light of (.) with coefficients p,k < min{, –(p–)cp} and F(T) �= ∅. For any x ∈ C
and n > , the iterative sequence {xn} is defined by xn+ = ( – αn)xn + αnTxn, where the real
sequence {αn} ⊂ [, ] and  < ε ≤ αn ≤  – ε <  – p–k

cp . Then the sequence {xn} converges
weakly to a fixed point of T .

Question Can one relax the restriction on the parameters αn in TheoremH and simplify
its proof?

The purpose of this paper is to solve the questionmentioned above. To prove our results,
we need the following lemmas.

Lemma . (see []) Let C be a nonempty closed convex subset of a p-uniformly convex
Banach space X and T : C → C be a Hu-type strictly pseudo-contractive mapping in the
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light of (.). For α ∈ (, ), define Tα : C → C by Tα = ( – α)x + αTx, for x ∈ C. If α ∈
(,  – (kp–)/cp), then Tα is a nonexpansive mapping and F(Tα) = F(T).

Lemma . (see []) Let C be a nonempty closed convex subset of a p-uniformly convex
Banach space X and T : C → C be a Hu-type strictly pseudo-contractive mapping in the
light of (.). For μ ∈ (, ), Tμ : C → C is defined by Tμ = ( – μ)x + μTx, for x ∈ C. Then
the following inequality holds:

‖Tμx – Tμy‖p ≤ ‖x – y‖p – (
Wp(μ)cp –μλ

)∥∥(I – T)x – (I – T)y
∥∥p, ∀x, y ∈ C,

where Wp(μ) = μp( –μ) +μ( –μ)p.

Lemma . (see []) Let C be a nonempty closed convex subset of a p-uniformly convex
Banach space X and T : C → C be a nonexpansive mapping, then I – T is demiclosed at
zero.

Lemma . (see []) Let C be a nonempty closed convex subset of a p-uniformly convex Ba-
nach space X which satisfies the Opial condition and T : C → C be a quasi-nonexpansive
mapping with F(T) �= ∅. If I–T is demiclosed at zero, then for any x ∈ C, the normalMann
iteration {xn} defined by

xn+ = ( – αn)xn + αnTxn, ∀n≥ ,

converges weakly to a fixed point of T , where {αn} ⊂ [, ] and
∑∞

n=min{αn, ( – αn)} =∞.

Lemma . (see []) Let C be a nonempty closed convex subset of a p-uniformly convex
Banach space X whose dual space X∗ satisfies Kadec-Klee property and T : C → C be a
nonexpansive mapping with F(T) �= ∅. Then, for any x ∈ C, the normal Mann iteration
{xn} defined by

xn+ = ( – αn)xn + αnTxn, ∀n≥ ,

converges weakly to a fixed point of T , where {αn} ⊂ [, ] and
∑∞

n=min{αn, ( – αn)} =∞.

Now we are in a position to state and prove the main results in this paper.

2 Main results
Theorem . Let C be a nonempty closed convex subset of a p-uniformly convex Ba-
nach space X with Fréchet differential norm. Let T : C → C be a Hu-type k-strictly
pseudo-contractive mapping in the light of (.) with coefficients p,k <min{, –(p–)cn} and
F(T) �= ∅. Assume that a real sequence {αn} in [, ] satisfies the conditions:

(i)  ≤ αn ≤ α =  – (kp–/cp), n ≥ ;
(ii)

∑∞
n= αn[( – αn)–pcp – k] = ∞.

For any x ∈ C, the normal Mann iterative sequence {xn} is defined by

xn+ = ( – αn)xn + αnTxn, n ≥ . (.)

Then the sequence {xn} defined by (.) converges weakly to a fixed point of T .
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Proof Let Tα be given as in Lemma .. Then Tα : C → C is a nonexpansive mapping with
F(Tα) = F(T). Set βn = α–αn

α
. Then (.) reduces to xn+ = βnxn + ( – βn)Tαxn.

We note that

∞∑
n=

βn( – βn) =

α

∞∑
n=

αn(α – αn)

=

α

∞∑
n=

αn

(
 – αn –

kp–

cp

)

=
p–

αcp

∞∑
n=

αn
[
( – αn)p–cp – k

]

=∞.

By using Theorem R, we conclude that {xn} converges weakly to a fixed point of Tα , and
of T . The proof is complete. �

Remark . Theorem . relaxes the iterative parameters in Theorem H and our proof
method is also quite concise.

Theorem . Let C be a nonempty closed convex subset of a p-uniformly convex Ba-
nach space X which satisfies the Opial condition. Let T : C → C be a Hu-type k-strictly
pseudo-contractive mapping in the light of (.) with coefficients p,k <min{, –(p–)cp} and
F(T) �= ∅. Assume that the real sequence {αn} in [, ] satisfies the conditions:

(i)  ≤ αn ≤ α =  – (kp–/cp), n ≥ ;
(ii)

∑∞
n= αn[( – αn)–pcp – k] = ∞.

For any x ∈ C, the normal Mann iteration {xn} is defined by

xn+ = ( – αn)xn + αnTxn, n ≥ . (.)

Then the sequence {xn} defined by (.) converges weakly to the fixed point of T .

Proof Let Tα be given as in Lemma .. Then Tα : C → C is a nonexpansive mapping with
F(Tα) = F(T). Set βn = α–αn

α
. Then (.) reduces to xn+ = βnxn + ( – βn)Tαxn. As shown

in Theorem .,
∑∞

n= βn( – βn) = ∞. By Lemma ., I – Tα is demiclosed at zero. By
Lemma ., we conclude that {xn} converges weakly to a fixed point of Tα , and of T . The
proof is complete. �

Theorem . Let C be a nonempty closed convex subset of a p-uniformly convex Banach
space X with the dual space X∗ satisfying the Kadec-Klee property. Let T : C → C be a
Hu-type k-strictly pseudo-contractive mapping in the light of (.) with coefficients p,k <
min{, –(p–)cp} and F(T) �= ∅. Assume that the real sequence {αn} in [, ] satisfies the
conditions:

(i)  ≤ αn ≤ α =  – (kp–/cp), n ≥ ;
(ii)

∑∞
n= αn[( – αn)–pcp – k] = ∞.
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For any x ∈ C, the normal Mann iteration {xn} is defined by

xn+ = ( – αn)xn + αnTxn, n ≥ . (.)

Then the sequence {xn} defined by (.) converges weakly to a fixed point of T .

Proof Let Tα be given as in Lemma .. Then Tα : C → C is a nonexpansive mapping with
F(Tα) = F(T). Set βn = α–αn

α
. Then (.) reduces to xn+ = βnxn + ( –βn)Tαxn. As shown in

Theorem .,
∑∞

n= βn( – βn) = ∞. By using Lemma ., {xn} defined by (.) converges
weakly to a fixed point of Tα , and of T . The proof is complete. �
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