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In this paper we present a technique for the calculation of the Fourier transform for functions defined 
on oriented closed 2-manifolds. The objects are given as oriented triangular meshes. Our focus in this 
paper is on the characteristic function of the model, that is, the function that is equal to one inside the 
model and zero outside. The advantage of our approach is that it provides an automatic, simple, and 
efficient method for computing the Fourier coefficients directly from the mesh representation. This 
avoids the approximation of the mesh by a grid of voxels which leads to a loss of details and error 
prone in calculation. The main idea is to distribute the calculation of the Fourier coefficients over the 
elementary shapes composing the mesh. Then we use the divergence theorem to simplify the 
computation by calculating the coefficients using integrations on simpler domains. The algorithm is 
simple and efficient, with many potential applications. Some examples are given to demonstrate the 
effectiveness of our approach. 
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INTRODUCTION 
 
3D scanning technology easily produces computer 
representations from real objects. The main purpose of a 
3D scanner is usually to create point cloud of geometric 
samples on the surface of the subject. These points can 
then be used to extrapolate the shape of the subject (a 
process called surface reconstruction). Therefore, 3D 
object browsing is becoming more and more popular as it 
engages people with much richer experience than 2D 
images. The most common representation for these 3D 
objects is the polygonal mesh or triangular mesh. A 
triangle mesh is a type of polygon mesh in computer 
graphics. It comprises a set of triangles (typically in three 
dimensions) that are connected by their common edges 
or corners. Various methods of storing and working with a 
mesh in computer memory are possible. For example, 
VRML (Carey, 1998) file model, which is the surface of a 
virtual object or environment with a collection of 3D 
geometrical entities, such as vertices and polygons. 
 
 
 
*Corresponding author. E-mail: 
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However, the acquired geometry often presents some 
noise that needs to be filtered out. More generally, it may 
be suitable to enhance some details while removing other 
ones, depending on their sizes (spatial frequencies). 
Taubin (1995) showed that the techniques of the classic 
spectral analysis can be successfully applied to geometry 
processing using the Fourier function basis. This Fourier 
function basis enables a given signal to be decomposed 
into a sum of sine waves of increasing frequencies. He 
used this analogy as a theoretical tool to design and 
analyze approximations of low-pass filters. Several 
variants of this approach were then suggested, as 
discussed later. 

Intuitively, we may calculate the Fourier transform of a 
3D object by first transforming the object into its 
volumetric representation and then voxelize this 
representation in a regular grid. Finally, we evaluate the 
required transform in the voxel space using one of the 
classical discrete Fourier transform algorithms (Tolimieri, 
et al., 1997; Frigo and Johnson, 2005). However, 
transforming a 3D model into its voxelized version allows 
finer details on the object to be lost. To minimize the loss 
of these  finer  details,  the  voxel  grid  dimension  should 
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Figure 1. An example of object voxelization. The original object (left) loses some details according to the dimension of the 
voxelization (middle and right). 

 
 
 
be large enough Vacavant  and Coeurjolly, 2009). 
 
 
Related work 
 
Mathematically, the Fourier exponentials are the eigen 
functions of the Laplacian operator applied on the 
rectangular domains (Zhang and Kaick, 2007). The 
discretization of the Laplacian operator plays a central 
role in geometry processing and has been extensively 
studied (Wardetzky and Mathur, 2008), motivated by the 
large number of its applications, such as 
parameterization, surface remeshing, compression, 
reconstruction and minimal surfaces. 

The generation of the Laplacian depends only on the 
connectivity of the mesh. Spectral analysis of the 
Laplacian graph was first used by Taubin (1995) to 
approximate low pass filters. A basis of eigenfunctions of 
the Laplacian graph was used by Karni and Gotsman 
(2000) for geometry compression. Zhang (2004) studied 
several variants of the combinatorial Laplacian and its 
properties for spectral geometry processing and JPEG-
like mesh compression. However, as pointed-out by 
Meyer and Desbrun (2003), the analogy between the 
Laplacian graph and the discrete cosine transform 
supposes a uniform sampling of the mesh. Moreover, 
different embeddings of the same graph yield the same 
eigenfunctions, and two different meshings of the same 
object yield different eigenfunctions. 

More geometry can be injected into the definition of a 
discrete Laplacian through the ubiquitous cotan weights 
(Pinkall and Polthier, 1993; Meyer and Desbrun, 2003). 
These weights can also be derived from finite element 
modeling (FEM) as done by Wardetzky and Bergou 
(2007), and they converge to the continuous Laplacian 
under certain conditions as explained by Hildebrandt and 
Polthier (2006) and Arnold and Falk (2006). 

To directly implement the spectral transform on 
manifolds, several methods consist in putting the input 
surface in one-to-one correspondence with a simpler 
domain or to partition it into a set of simpler domains (Lee 
and Sweldens, 1998; Pauly and Gross, 2001) on which it 

is easier to define a frequency space. Note that these 
methods generally need to resample the geometry. It is 
also possible to extract the frequencies from a 
progressive mesh (Lee and Sweldens, 1998) and avoid 
resampling the geometry by using irregular subdivision 
(Guskov and Sweldens, 1999).  
 
 
Contribution 
 
The main contribution of this paper is to use an efficient 
numerical mechanism to compute the Fourier coefficients 
of the indicator function representing the solid object. We 
calculate the Fourier coefficients from the mesh 
representation directly without any prior voxelization. 
Based on the linearity of the Fourier integrations, we 
distribute the calculation of the frequency coefficients 
over the elementary shapes composing the mesh, such 
as tetrahedrons, and then summing them up. The 
presented formula to calculate the coefficients values are 
mathematically exact, that is having an approximation 
error of zero. The proposed mechanism overcomes the 
current limits of calculating limited bandwidths. Moreover, 
the computational complexity is proportional to the 
number of elementary shapes, which is typically much 
smaller than the number of voxels in the equivalent 
volumetric representation. The result is general and has 
many potential applications. 

The rest of the paper is organized as follows: The 
decomposition of the triangular mesh into a set of signed 
tetrahedrons is presented and also the application of the 
divergence theorem to distribute the calculation of the 
Fourier coefficients over the elementary tetrahedrons is 
discussed. Furthermore, some examples of applications 
that demonstrate the effectiveness of our approach are 
presented and then conclusion. 
 
 
Volumetric decomposition 
 
The mesh is represented by a set of vertices and 
polygons.   Before   we  decompose  the  volume,  we  do  
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Figure 2. Normals and order of vertices around the faces. 

The shared edge  has different directions in each 
face. 

 
 
 

 
 

Figure 3. The decomposition of the 3D volume into a set of 
signed sub-volumes. Each triangle is connected to the origin 
to form a tetrahedron. 

 
 
 

some preprocessing on the model and make sure that all 
the polygons are triangles. Such preprocessing is called 
triangulation and is commonly used in mesh coding, 
mesh signal processing, and mesh editing. The order of 
the vertices around the triangles should be consistent. 
That is, for two neighboring triangles, if the common edge 
has different directions, then the normals of the two 
triangles are consistent. The direction of the normal for a 
triangle can be determined by the order of the vertices 
and the right-hand rule, as shown in figure 2. 

The consistency condition is very easy to satisfy. In 

Figure 2,  is the common edge of the 

triangles  and . In the triangle , 

the direction of the shared edge is from to , and in  

 
 
 
 

the triangle , the direction is from  to , thus 

 and  are consistent.  
In our case, the elementary decomposition unit is a 

tetrahedron. For each triangle, we connect each of its 
vertices with the origin and form a tetrahedron, as shown 
in figure 3. 

We define the signed volume for each elementary 
tetrahedron as: The magnitude of its value is the volume 
of the tetrahedron, and the sign of the value is 
determined by checking if the origin is at the same side 
as   the    normal    with    respect    to    the    triangle.   In 

Figure 3, triangle  has a normal . As the 

origin  is at the opposite side of 
 𝑵𝐴𝐶𝐵 ,  

the sign of this 
tetrahedron is positive. The sign can also be calculated 

by inner product
 𝑂𝐴       ⋅ 𝑁𝐴𝐶𝐵 . 

 

Given a triangular mesh , the enclosed volume  
of this mesh is given by the following expression:  
 

𝑉 =  𝑠𝑡𝑉𝑡𝑡∈𝑇                                   
                                                              (1) 

 

where 𝑇  is the set of triangles of ,  is the sign of 

the tetrahedron corresponding to  and  is its volume. 
The previous volumetric decomposition is valid for any 

mesh whether its shape is convex or concave. Moreover, 
the adoption of the signed volume calculation makes 
Equation (1) independent of the choice of the origin. That 

is, if we choose any point  instead of the origin, 
Equation (1) is still valid. 
 
 

Partial Fourier coefficients 
 

The Fourier transform is a mathematical operation with 
many applications in physics and engineering that 
expresses a mathematical function of time as a function 
of frequency, known as its frequency spectrum. Given a 
solid model, we are interested in the characteristic 
function of the given model. This is a function defined in 
3D whose value is equal to one inside the solid and zero 
outside. Our goal is to compute the Fourier coefficients of 

this characteristic function. Specifically, if  is a solid 

model and  is its characteristic function, we would like 
to compute the coefficients. 

 

𝜒 𝑀 𝜔 =  𝜒𝑀 𝑥, 𝑦, 𝑧 𝑒−2π𝑖𝑝 .ω𝑑𝑝
ℝ3

 
              

=  𝑒−2π𝑖𝑝 .ω𝑑𝑝
𝑉𝑀

 

                      (2) 
 

where 
𝑝 = (𝑥, 𝑦, 𝑧) 

 and 𝜔 = (𝑙,𝑚, 𝑛) , which are three 

dimensional vectors. Note that since the  function    is  



 

 
 
 
 

 
 

Figure 4. A normal integration manifold for the special case . 

 
 
  
equal to one inside the model and zero outside, 
integrating the complex exponentials against the 
characteristic function is equivalent to computing the 
integral of these functions over the volume of the solid 
model. Putting the previous note in combination with 
Equation (1): 
 

𝜒 𝑀 𝜔 =   𝑒−2π𝑖𝑝 .ω𝑑𝑝
𝑉𝑀

 

=  𝑠𝑡  𝑒−2π𝑖𝑝.ω𝑑𝑝
𝑉𝑡𝑡∈𝑇

 

                                           (3) 
 
Note that the last integration of Equation (3) is equivalent 
to: 
 

 

 𝑒−2π𝑖𝑝.ω𝑑𝑝
𝑉𝑡

=   𝜒𝑉𝑡
𝑒−2π𝑖𝑝 .ω𝑑𝑝

ℝ3
 

=  𝜒 𝑉𝑡 𝜔                            (4) 
 
where  is the partial indicator function defined on the 

tetrahedron . and  is its corresponding partial 

Fourier coefficient. Therefore, Equation (3) becomes: 
 

𝜒 𝑀 𝜔 =   𝑠𝑡
𝑡∈𝑇

𝜒 𝑉𝑡 𝜔  

                                        (5) 
 

That is to calculate the Fourier coefficient  it is 

sufficient to calculate the sum of the corresponding partial  
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coefficients defined over the tetrahedrons . Now 

we will state the Stokes’ theorem and show how to use 
this theorem to simplify the calculation of the partial 
Fourier coefficients of . 

 
 
Divergence theorem 
 
In differential geometry, Stokes' theorem (also called the 
generalized Stokes' theorem) is a statement about the 
integration of differential forms on manifolds, which 
simplifies and generalizes several theorems from vector 
calculus. It provides a method for expressing the integral 
of a function over the interior of a volume as an integral 
over the volume's boundary. The general form of the 

Stokes’ theorem reads: If   is an - form with 

compact support on     and    denotes 

the boundary of   with its induced orientation, then: 
 

 𝑑𝜔
Ω

=  𝜔
∂Ω

 
                                                       (6) 

 

Here  is the exterior derivative, which is defined using 

the manifold structure only. On the right hand side of 
Equation, a circle is used within the integral sign to stress 

the fact that the -manifold is closed. The theorem 

is often used in situations where  is an embedded 
oriented sub-manifold of some bigger manifold on which 

the form  is defined (Figure 4). 

In this paper, we consider a specific instance of Stokes' 
theorem known as the divergence theorem or Gauss's 

theorem. Specifically, if  is a three dimensional 

solid and and  𝐹 =  𝐹𝑥 , 𝐹𝑦 , 𝐹𝑧 :ℝ3 ⟶ ℝ3    is a vector-valued 
function, the divergence theorem expresses the volume 
integral as a surface integral as follows: 
 

 ∇ ⋅ 𝐹  𝑝 𝑑𝑣 =   𝐹  𝑝 ,𝑛   𝑝  𝑑𝑎
𝜕𝑀𝑀

 

                     (7) 
 

Where 
where ∇ ⋅ 𝐹 =  

𝜕

𝜕𝑥
+

𝜕

𝜕𝑦
+

𝜕

𝜕𝑧
 ⋅ 𝐹   

is the divergence 

of  and is the surface normal at the point 𝑝.  
 
 
Fourier transform decomposition 
 
Our objective in this section is to simplify the integration 

of 

𝜒 𝑉𝑡 𝜔 =  𝑒−2π𝑖𝑝.ω𝑑𝑝
𝑉𝑡

 
 into a surface integration 

over    the   boundary  of  the  tetrahedron  .  Using  the 



 

5252         Int. J. Phys. Sci. 
 
 
 

divergence theorem, we know that if 𝐹 𝜔 : ℝ3 ⟶ ℝ3  is a 
vector-valued function such that: 
 

 ∇ ∙ 𝐹 𝜔  𝑝 = 𝑒−2π𝑖𝑝 .ω                                              (8) (6)  
 
The volume integral can be expressed as the surface 
integral as follows:  
 

𝜒 𝑉𝑡 𝜔 =   𝑒−2π𝑖𝑝 .ω𝑑𝑝
𝑝∈𝑉𝑡

 

 
 

=   𝐹  𝑝 ,𝑛   𝑝  𝑑𝑎
𝜕𝑉𝑡

 

                                            (7) 

 

where where 𝑛   𝑝  is the unit normal at  around the boundary 

.  
In order to be able to evaluate the above summation 

explicitly, we need to choose a vector-valued function  
whose divergences are equal to the complex 

exponentials . In this paper, we use the function 

 that does not depend on the alignment of the 
coordinate axis: 

 

𝐹 𝜔 𝑥, 𝑦, 𝑧 =
1

2π

 

 
 
 
 
 

𝑖𝑙

  ω  
2 𝑒

−2π𝑖𝑝 .ω

𝑖𝑚

  ω  
2 𝑒

−2π𝑖𝑝 .ω

𝑖𝑛

  ω  
2 𝑒

−2π𝑖𝑝 .ω

 

 
 
 
 
 

 

                  (10) (8) 
 
 

Partial coefficient evaluation 
 

Each tetrahedron  consists of four vertices; the origin 

 and the three vertices of the triangle 

 𝑡; 𝑣1 =  𝑥1, 𝑦1 , 𝑧1 , 𝑣2 =  𝑥2, 𝑦2 , 𝑧2   and 

𝑣3 = (𝑥3, 𝑦3 , 𝑧3).   These four points are sufficient to 
calculate the magnitudes and the directions of the four 

normals; and  around 

the four triangular faces of the tetrahedron . For 

example, the normal  can be calculated 

by

𝑣0𝑣1           ×𝑣0𝑣2           

 𝑣0𝑣1           ×𝑣0𝑣2            
  
. Using the divergence theorem and the 

proposed 𝐹 𝜔 ,  the partial coefficient 𝜒 𝑉𝑡  ω   expressed in 
Equation (4) is simplified to: 
 

𝜒 𝑉𝑡 ω =   𝐹 𝜔  𝑝 , 𝑛   𝑝  𝑑𝑎
𝜕𝑉𝑡

 
                                       (11) 

 
 
 
 

Since the tetrahedron .has four triangular faces, we get 

the following sub-integrals: 
 
𝜒 𝑉𝑡 ω = ∫ 𝐹 ω ⋅ n  012𝑑𝑎 + ∫ 𝐹 ω ⋅ n  023𝑑𝑎 + ∫ 𝐹 ω ⋅ n  031𝑑𝑎 + ∫ 𝐹 ω ⋅ n  123𝑑𝑎     
                                                                                     (12) 
 
Evaluating these bounded integrals along the faces of the 

tetrahedron  yields the following results (Brandolini and 
Colzani, 1997; Li and Xu, 2009): 
 

𝜒 𝑉𝑡  ω = 𝑉𝑡(𝑄0 + 𝑄1 + 𝑄2 + 𝑄3)                               (13) 
 

where  is the volume of the tetrahedron and is defined 
as follows,  
 

𝑉𝑡 =
1

6
 −𝑥3𝑦2𝑧1 + 𝑥2𝑦3𝑧1 + 𝑥3𝑦1𝑧2 − 𝑥1𝑦3𝑧2 − 𝑥2𝑦1𝑧3 + 𝑥1𝑦2𝑧3  

     (14) 
 

and  is as follows: 
 

𝑄𝑖 =
𝑖𝑒−2π𝑖𝑝 .ω

  𝑙(𝑥𝑖 − 𝑥𝑘 + 𝑚 𝑦𝑖 − 𝑦𝑘 + 𝑛(𝑧𝑖 − 𝑧𝑘))𝑘∈ 0,3 

𝑘≠𝑖

 

  (15)  
 
We should note that computing the Fourier coefficient of 

the characteristic function  using Stokes' theorem 
defined in Equations (6) to (15), all the Fourier 
coefficients of the characteristic function except the 

constant order term,  Thus, the obtained 
function is well defined up to an additive constant. This 
constant order term can be calculated using Equation (2) 
as follows: 
 

𝜒 𝑀 0,0,0 =  𝑑𝑝
𝑝∈𝑀

 

                                              (16) 
 

which is equal to the volume of the mesh. 
 
 

RESULTS 
 
Our algorithm is implemented in C++, using the 
Computational Geometry Algorithms Library (CGAL, 
2011). The experiments were run on a PC with a dual-
core 2.8 GHz processor and 4 GB of memory. The input 
solids are given as oriented triangulated meshes. If the 
meshed are not triangulated a preprocessing step is 
required to convert the polygonal faces to triangles. We 
compute the required Fourier coefficients of the indicator 
function of the input object using Equations (5), (13) to 
(15). Our algorithm evaluates the resulting Fourier 
transform in continuous form. There is no discretization 
alias since we can evaluate a Fourier transform 
coefficient from the continuous form directly. The 
computational complexity of the Fourier transform  of  the 
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Table 1. The average times, in seconds, for the calculation of the Fourier coefficients of the input objects as a function of the number of 
triangles T and bandwidthB. The first column of s corresponds to our approach and the second column corresponds to the approach 
described by Frigo and Johnson (2005) including the voxelization preprocessing time. 

 

#  

   

 
(Ours) 

 
Frigo and Johnson (2005) 

 
(Ours) 

 
Frigo and Johnson (2005) 

 
(Ours) 

 
Frigo and Johnson (2005) 

1000 0.01 0.07 0.04 0.1 0.15 0.5 

10000 0.1 0.6 0.35 1.1 1.5 4 

100000 1 5 3.8 10 16 30 

 
 
 

 
 

Figure 5. An object constructed using a successive calculation of the frequency components using our approach. 
The number of calculated frequency components for each version is 2, 8, 14, 45, 64 and 96 respectively. 

 
 
 
input surface is described in Table 1. shows the timing (in 
seconds) of calculating the Fourier coefficients of the 
indicator function of 3D objects having different number 
of triangles. We compare our algorithm with the best 
known algorithm calculating the Fourier coefficients 
(Frigo and Johnson, 2005) in combination with the 
voxelization proposed by Kaufman and Shimony (1987). 
From Table 1, it can be seen that our time is much better 
than that of Frigo and Johnson (2005), and that our time 
is proportional to the number of triangles of the model 
and the required bandwidth. In fact, our algorithm runs in 

 time, where  is the bandwidth and  is 
the triangle count. 

In order to determine how well our method works in 
practice, we ran our approach on oriented triangulated 
solids and applied the obtained frequency-based 
representation on two applications filtering and texture 
transfer. 
 
 

Progressive transmission 
 
Progressive transmission of 3D  models  is  an  important  

application for remote visualization of 3D objects. 
Transmission of the whole model might take minutes or 
even hours for a large mesh using a low-bandwidth 
network. The progressive transmission using our 
approach is based on the following fact. The low 
frequency components reflect the overall shape of the 
objects and the higher components correspond to the 
finer details of the objects. Therefore, our method 
successively transmits the surface geometry starting with 
a set of the first few frequency components. Then the 
next order frequency components are then progressively 
transmitted to add more details to the object. Transmitting 
the whole object while getting an early impression of its 
appearance is easily and efficiently done by transmitting 
the frequency components calculated using our 
approach. 

Figure 5 shows an example of calculated multi- 
resolution versions of a 3D object. Each multi- resolution 
level is computed by evaluating the set of frequency 
components that corresponds to the required level of 
details. A highly detailed version of the object is obtained 
only using 96 frequency components. This reduces the 
number   of   coefficients   sent   through   the  network  to 



 

5254         Int. J. Phys. Sci. 
 
 
 

 
 

Figure 6. A geometric details are transferred from an initial surface (left) to another surface (middle). The 
rightmost object is the textured target. 

 

 
 
visualize the objects. 

In the view-dependent framework the user only 
requests a small part of the object stored at the server. 
Our approach handles this case by calculating only the 
frequency coefficients of the tetrahedrons corresponding 
to the mesh triangles that match the selection criteria 
given by the user. 
 
 
Texture transfer 
 
Another application of our approach is the transfer of 
geometric details from a surface to another (Bhat and 
Ingram, 2004; Ran and Meng, 2010). Geometric texturing 
uses localized 3D vertex displacements to represent 
surface texture in place of conventional 2D intensity 
based texture mapping. Here, we investigate “geometric 
texturing by example” - the transfer and synthesis of 
geometric texture from real surface meshes (source), 
captured via 3D laser scanner, onto synthetically created 
surface meshes (target). This application is based on the 
fact that the higher frequency components correspond to 
the details of the surface. Therefore, these high 
frequency components capture the required geometric 
details to be transferred. 

The frequency components are computed for the two 
objects, the source and the target. The high frequency 
components of the source object are added to the 
corresponding frequency components of the target 
object. The transferred frequency components add some 
geometric details to the target objects similar to that of 
the source object. 

Figure 6 shows an example of transferring a geometric 
texture from the source object (left) to the target object 
(middle). The level of details to be transferred depends 
on the number of high frequency components evaluated 
from the source object. 

Conclusion 
 
In this paper, we have presented a novel method for 
calculating the Fourier coefficients of 2-manifolds from 
oriented triangular meshes. An explicit method to 
compute the Fourier transform from the mesh 
representation directly is given. Our method differs from 
past approaches in that it leverages Stokes' theorem to 
provide a method for distributing the calculations over the 
tetrahedrons composing the volume of the mesh. 
Consequently, we provide a computational method that is 
both simple and efficient. The distribution of computations 
over the tetrahedron would enable us to run our method 
on each of the local surface patches independently, 
allowing us to overcome the memory bottleneck that 
restricts the calculations of higher bandwidths. We have 
shown that the method is robust and can be used in 
many applications such as progressive transmission and 
geometric texture transfer. 

The proposed algorithm still has some room for 
improvement. For example, the Fourier transform may 
lose its computational efficiency if many coefficients are 
required simultaneously. More research is in progress to 
speed this up. 
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