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Abstract

In this short paper, we give a generalization of the classical Korovkin approximation
theorem (Korovkin in Linear Operators and Approximation Theory, 1960), Volkov-type
theorems (Volkov in Dokl. Akad. Nauk SSSR 115:17-19, 1957), and a recent result of
(Tasdelen and Erencin in J. Math. Anal. Appl. 331(1):727-735, 2007).
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1 Introduction

In this paper, the classical Korovkin theorem (see [1]) and one of the key results (Theo-
rem 1) of [2] will be generalized to arbitrary compact Hausdorff spaces. For a topological
space X, the space of real-valued continuous functions on X, as usual, will be denoted by
C(X). We note that if X is a compact Hausdorff space, then C(X) is a Banach space under
pointwise algebraic operations and under the norm

IfIl = sup|f(x)|.
xeX

Let X be a compact Hausdorff space and E be a subspace of C(X). Then a linear map
A:E — C(X) is called positive if A(f) > 0 in C(X) whenever f > 0 in E. Here f > 0 means
that f(x) > 0 in R for all x € X.
For more details on abstract Korovkin approximations theory, we refer to [3] and [4].
Constant-one function on a topological space X will be denoted by fj, that is, fo(x) = 1
for all x € X. If A = (a,b) and B = (c,d) are elements of R?, then the Euclidean distance
between A and B, given by

|(a,b) - (c,d)| =+ (@-c)?+((b-d)?
is denoted by |A — B|.

Definition 1.1 Let X and Y be compact Hausdorff spaces, Z be the product space of X
and Y, and let &1 € C(Z x Z) and f € C(Z) be given. The module of continuity of f with
respect to /1 is a function wy(f) : [0, 00) — R defined by w(f)(0) = 0, and

wy(F)(8) = sup{[f(u, V) —f(x,y)| :(u,v), (x,y) € Z and \h((u, v), (x,y))| < 8}
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whenever § > 0, with the following additional properties:
(i) w(f) is increasing;
(11) lim5_>0 =0.

We note that the above definition is motivated from [2, p.729] and generalizes the defi-
nition which is given there.

Definition1.2 LetX, Y, and Z be as in Definition 1.1. Let # € C(Z x Z) be given. We define
H,, j as the set of all continuous functions f € C(X x Y) such that forall (&, v), (x,y) e X x Y,
one has

[ (,v) = £, 9)| < wi()) (|1, v), (%,9))|)-

When H,,;, is mentioned, we always suppose that / satisfies the property for H,, being
a vector subspace of C(X x X). We note that H,,; has been considered in [2] by taking
X =[0,A], Y = [0,B] (4,B > 0),

h((w,v), (%)) = | (A ). f(1,v)) = (fix 1), 2(x,9))

’

where

14

ﬁ(u,v)=£ and fz(u,v)zl_v.

The main result of this paper will be obtained via the following lemma.

2 Main result
Lemma 2.1 Let X and Y be compact Hausdorff spaces and Z be a product space of X
and Y. Let fi,f» € C(Z) and h € C(Z x Z) be defined by

h((w,v), (%,9)) = | (i), L) = (Ax9).L6)]

so that H,,, is a subspace C(X x Y) and f1,f» € Hyu(Z). Let A : H,,;, — C(Z) be a positive
linear map. Let (u,v) € Z be given, and define ¢,,, ®,,, € C(Z) by

Gun = (o —f)° and @, = (A V)fo -5)".
Then, for all (u,v) € Z, one has

0< A(‘pu,v + q)u,v)

< GlAG) ~fo]wv) - G[AG +) - L+ L]+ [A(F + 1) - (FF + )],
where
Ci= (A v +fwv)?) and  Cy=—2(fi(w,v) + fo(u, ).
Proof Note that

0 < uy=A(u, V)zfo =2fi(u,v)A +f12.
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Applying the linearity and positivity of A, we have

0< A((pu,v) =f1(bt, V)ZA(fO) - 2f1(u, V)A(fl) + A(fiz)
Then one can have

0 < A@uy)(w,v)
= A, ) Afo)(w, v) - 2, V)AGR) (s, v) + A(f?) (1, v)
= [, V)[Afo) (1, v) = fo(u,v) + fo(u, V)]
= 2@, v)[AGR) (V) = fi(w, V) + fi(u, V)]
+[A(R) v) = Al v)? + filw )]
= P2, V[A) —fo] (V) — 2w, W[AG) — ] ) + [A(FR) - £2] o).

Similarly, we have

A(@u,) (W, v) = f5 w,v)[A(f) —fo | (. v)
26w, V)[AR) - £]wv) + [A(f) = £ |, v).

Now applying A, which is linear, to ¢, , + ®,,, completes the proof. O

Lemma 2.2 Let X and Y be compact Hausdor(f spaces and fi, fo, and h be defined as in
Lemma 2.1. Let f € Hy,j, be given. For each € > 0, there exists § > 0 such that

2|71
)

If ,v) = f(x,9)| < € + —5=H*((u, V), (x,9)).

Proof Let € > 0 be given. Since w(f) : [0,00) — R is continuous, there exists § > 0 such
that w(f,8’) = w(f)(8’) < € for all 0 < §’ < 8. This implies, since

If (u,v) = f (x,9)| < w(f,

h((,v), (x,9))|)  forall (,v), (x,y) € Z,
that

[+ Du)]? @9) = | (1) — hx,9)| <5 implies  |f () —f(x,9)] < e,
where ¢, , and ®,,, are defined as in Lemma 2.1. If [(¢,,, + ®,,)] 3 (%,y) > 8, then

Puy + (Du,v)] (%, y)
82 '

) - F| <2001 = 211 &
Hence, for all (i, v) € Z, we have

\f ()~ £ §e+2|[f||w

This completes the proof. d
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Lemma 2.3 Suppose that the hypotheses of Lemma 2.2 are satisfied. Let f € H,,j, and € > 0
be given. Then there exists C > 0 such that

|AD =1 <€+ C(|AG) =] + |AGh +£) = (h+ )] + |AG +£57) = (2 +5)])-

Proof Set K := %U;H From Lemma 2.2, there exists § > 0 such that for each (u,v) € Z we
have

flze Ilfll

V(u; V)ﬁ) - [§0u vt q>u v]

<e “f” [ 8 ( V)f() +f22(u, V)fo — 2f1(u, V)fl - 2f2(”: V)f2 + (fiz +f22)]’

whence

[AG) = f (VA (1, V)] < €A(fo) (4, V) + K (A(@uy) + A(Pyy)
=€+ e[A(ﬁ) fo] u,v) + KA(p,y + D).

In particular, we have

AG) = 1) = [[AG) = £l AGD) |, 9)] + |, V)| (AGo) =) (4,v)]
<e+KA(pyy + Oy,)(u,v) + (|[f|| + e) ||A(f0) —fo ||

Now, applying Lemma 2.1 and taking
C=2K+|fI,
we have what is to be shown. d

We note that in the above theorem C depends only on ||f|| and ¢, and is independent of
the positive linear operator A.
We are now in a position to state the main result of the paper.

Theorem 2.4 Let X and Y be compact Hausdor(f spaces and Z be the product space of X
and Y. Let fi,f> € C(Z), and h € C(Z x Z) be defined by

h((,), () = | (). v) = (i) fox )|

so that H, j, is a subspace C(X x Y) and fi,f» € Hy;(Z). Let (An)nen be a sequence of positive
operators from H,,), into C(X x Y) satisfying:
) 1 An(fo) = foll = 0
(i) 1A.(f) - fill > 05
(i) 1An(f2) —fall = O;
() 1A.(f7 +f5) = (R + £ — 0.
Then, for all f € H,,;,, we have

|A4x(F) -f] — o.
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Proof Letf € H,; and € > 0 be given. By Lemma 2.3, there exists C > 0 (depending only
on ||f|| and € > 0) such that for each n,

[A4n(N =f]| = €+ C(|Anto) ~fo] + [Anth +£0) = i+ )] + [An (R +15) = (2 +15)]).

Since € > 0 is arbitrary and the last three terms of the inequality converge to zero by the
assumption, we have

Auf)—f.
This completes the proof. d

Note also that in Theorem 1 of [2] it is not necessary to take a double sequence of positive
operators: as the above result reveals, one can take (4,) instead of (4,,,,).

Remarks
(1) fX=1[0,1],and Y = {y} and f;, /> € C(X x Y) are defined by

fuy=u and f,=0,

then Theorem 2.4 becomes the classical Korovkin theorem.

(2) If one takes X = [0,A], Y = [0,B] (0 < A,B < 1), and f; and f; are defined by

filwv) = % and  fo(u,v) = %
then the above theorem becomes Theorem 1 of [2].

(3) For linear positive operators of two variables, Theorem 2.4 generalizes the result of
Volkov in [5].

(4) We believe that the above theorem can be generalized to n-fold copies by taking
Z=X; X X3 x --- x X, instead of Z = X x Y, where X3, Xy, ..., X, are compact
Hausdorff spaces.

(5) The above theorem is also true if one replaces C(X) by Cy(X), the space of bounded
continuous functions, in the case of an arbitrary topological space X.
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