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Abstract

In this paper, we propose a new class of variational inequality problems, say, uncertain
variational inequality problems based on uncertainty theory in finite Euclidean
spaces R". It can be viewed as another extension of classical variational inequality
problems besides stochastic variational inequality problems. Note that both
stochastic variational inequality problems and uncertain variational inequality
problems involve uncertainty in the real world, thus they have no conceptual
solutions. Hence, in order to solve uncertain variational inequality problems, we
introduce the expected value of uncertain variables (vector). Then we convert it into
a classical deterministic variational inequality problem, which can be solved by many
algorithms that are developed on the basis of gap functions. Thus the core of this
paper is to discuss under what conditions we can convert the expected value model
of uncertain variational inequality problems into deterministic variational inequality
problems. Finally, as an application, we present an example in a noncooperation
game from economics.

Keywords: variational inequality; uncertainty theory; optimization; descent method;
line search

1 Introduction
The variational inequality problem (VIP for short) is an important discipline of mathe-
matics. Over the past several decades, VIP has developed into a very fruitful discipline in
the field of mathematical programming. The developments include a rich mathematical
theory, a host of effective solution algorithms, a multitude of interesting connections to
numerous disciplines such as optimization theory, economics, engineering, game theory
and networks (see [1-8]) and so forth. Although there are many derivatives of VIP in infi-
nite spaces such as Hilbert spaces, Banach spaces ezc. from the classical VIP of R”, we just
pay our attention to the finite dimensional Euclidean space R".

Consider the problem of finding a point x € S C R” such that

(y-x)TFx)>0, Vyes, @)

where S is a nonempty closed convex subset of R”, and F : § — R” is a mapping. If there
exists an element x* satisfying (1) for every y € S, then x* is called a solution to the vari-
ational inequality (1). Then the problem to find a solution to variational inequality (1) is
called a variational inequality problem associated with the mapping F and the subset S,
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which is denoted by VIP(F, S). The set of solutions to this problem is denoted by Sol(S, F).
Note that what the underlying mapping F in (1) reflects is deterministic, i.e., it does not
involve uncertainties. However, there are many instances in practice that the underlying
problem not only involves deterministic data, but also contains some uncertain factors
in those data. For example, during the transmission of one signal, say sound signal from
the base station through relays to the user, it may be interfered by other signals. Hence, in
order to reflect those uncertainties, many researchers begin to set foot to the stochastic
variational inequality problem (SVIP for short).
Finding a vector x € S C R” such that

Pl € O|(y -x)"F(x,w(0)) = 0,¥y € S} =1, 2)
where P is the given probability measure of the random variate w. Or
y-2"F(xw®) >0, VyeS0ecOas, (3)

where F: S x ® — R” is a mapping, © is the underlying sample space and a.s. is the ab-
breviation for ‘almost surely’ under the given probability measure. Note that problem (3)
does not have solutions in general because of the randomness in the underlying function F.
Therefore, it is natural to give a reasonable reformulation for problem (3). By introducing
expected value of F(x, w(0)) over w(0), we can rewrite problem (3) as follows.

Find a vector x € S C R” such that

(y-x)"E[F(xw(®))] =0, VyeS, (4)

where E[F(x, w(0))] is the expected value of F(x,w(0)) over w(0).

SVIP (4) was investigated in references such as [9-15], efc. And its applications can be
found in inventory or pricing competition among several firms that provide substitutable
goods or services (see [16] and [17]), a supply chain network model (see [18]), stochastic
user equilibrium traffic network (see [19]) and wireless network (see [20]).

On the other hand, in the real world, there are some circumstances when no samples are
available in the determinacy phenomena, for example, data of a new stock, data of devas-
tating military experiments, efc., in which it is impossible for us to estimate a probability
distribution. It seems that to invite some relevant experts to evaluate their belief degree
that each event will happen makes sense. Here the belief degree represents the degree
with which we believe the indeterminacy quantity falls into the left side of a given point
about the indeterminacy phenomena. There also exist the cases that people’s viewpoints
may vary from person to person for the same event; even for the same person, his/her
view to the event may vary from time to time. Hence, in order to deal with those uncer-
tainty phenomena, Prof. Liu, who came from Tsinghua University of China, founded a new
theory - uncertainty theory - in 2007 (see [21]), which is quite different from probability
theory. While SVIP is based on probability theory, we present in this paper its counterpart
UVIP on the basis of uncertainty theory. There is no doubt that both of them are natural
extensions of deterministic VIP.

For solving the deterministic VIP, we can reform it as a system of (unconstraint) equa-
tions. We can also cast it as a minimization problem by introducing gap functions [1].
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Hence, on the basis of gap functions, we can design a host of effective solution algorithms
for solving VIP.

In 1992, Fukushima [22] designed a regularized gap function as g(x) = max{F(x) (x —
y)— % lx = y|12}. Then, on the basis of it, he casted a VIP as a constrained differentiable op-
timization problem in the sense that any global solution of the reformulated optimization
problem is a solution to VIP, and vice versa. It is presented as the following theorem.

(Theorem 3.3 in [22]) Assume that the mapping F : R" — R" is continuously differen-
tiable and its Jacobian matrix VF(x) is positive definite for all x € S. If x is a stationary
point of problem min,cs g(x), i.e.,

(Vg),y-x)=0 forallyes,

then x is a global optimal solution of problem mines g(x), and hence it solves the variational
inequality (1).

His research shows that the objective function is continuously differentiable whenever
the mapping involved in the VIP is continuously differentiable (see Theorem 3.2 in [22]).
Moreover, he discussed descent methods for solving the equivalent problem (see Lemma 5
in Section 2).

We highlight that the main idea for this paper is to discuss how to convert a UVIP into a
classical VIP. Then one can solve it by many mature algorithms, which can be documented
in [1, 22].

This paper is organized as follows. In Section 2, we review some definitions and lemmas
which are useful in the sequel; in Section 3, we present a class of uncertain variational
inequalities, discuss its expected value model and convert it into a class of classical deter-
ministic variational inequalities in detail; as an application, we investigate in Section 4 an

example developed from economics; we conclude the paper with Section 5.

2 Preliminaries
Before starting our discussion, in this section, let us review a few necessary definitions and
lemmas.

We first state the axiomatic system of uncertainty theory as follows.

Let I' be a nonempty set (universal set), and let £ be a o-algebra over I'. Then (I", £)
is called a measurable space and each element A in L is called a measurable set, which is
also called an event in uncertainty theory.

Definition 1 (Liu [21]) A set function M defined on the o-algebra L over I is called an
uncertain measure if it satisfies the following three axioms.

Axiom 1 (Normality axiom) M(T") =1 for the universal set T".
Axiom 2 (Duality axiom) M{A} + M{A¢} =1 for any event A.

Axiom 3 (Subadditivity axiom) For every countable sequence of events A1, As, ..., we have

i=1 i=1



Chen and Zhu Journal of Inequalities and Applications (2015) 2015:231 Page 4 of 13

Remark 1 Uncertain measure is interpreted as the personal belief degree (not frequency)
of an uncertain event that may occur. It depends on the personal knowledge concerning
the event. The uncertain measure will change if the state of knowledge changes.

Similar to stochastic variable defined on a probability space, an uncertain variable is
a real-valued function defined on an uncertainty space. A formal definition is given as

follows.

Definition 2 (Liu [21]) An uncertain variable is a function & from an uncertainty space
(T, £, M) to the set of real numbers such that {§ € B} is an event for any Borel set B.
A k-dimensional uncertain vector is a function & from an uncertainty space (I", £, M) to
the set of k-dimensional real vectors such that & € B is an event for any Borel set B of

k-dimensional real vector.

Note that the vector & = (&, &,...,&x) is an uncertain vector if and only if &, &,, ..., & are
uncertain variables.
In order to describe uncertain variables, Liu [21] introduced a new concept: uncertainty

distribution. Note that it is a carrier of incomplete information of uncertain variable.

Definition 3 (Liu [21]) The uncertainty distribution ® of an uncertain variable £ is de-
fined by

(x) = M{§ <x}
for any real numbers.

As a special uncertainty distribution, a linear uncertainty distribution which is denoted

by L(a, D) is
0, ifx <a;
D(x) = e fa<x<b;
1, ifx>b,

where a and b are real numbers with a < b.
Besides the uncertainty distribution, we present the regular uncertainty distribution as
follows, which is used more often.

Definition 4 (Liu [23]) An uncertainty distribution ®(x) is said to be regular if it is a

continuous and strictly increasing function, with respect to x at which 0 < ®(x) <1, and

lim ®(x)=0, lim ®(x)=1.
xX—>—00 xX—+00
Remark 2 It is clear that a regular uncertainty distribution ®(x) has an inverse func-
tion on the range of x with 0 < ®(x) < 1, and the inverse function ®!(«) exists on the
open interval (0,1). Hence we have the following definition of inverse uncertain distribu-

tion.
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Definition 5 (Liu [23]) Let & be an uncertain variable with regular uncertainty distribu-
tion ®(x). Then the inverse function ®~!(«) is called the inverse uncertainty distribution
of .

Since the expected value is the average value of the uncertain variable in the sense of
uncertain measure and it represents the size of uncertain variable, it is natural to present
the expected value of an uncertain variable as follows.

Definition 6 (Liu [21]) Let & be an uncertain variable. Then the expected value of & is
defined by

+00 0
E(g):/ Mig zx}dx—/ MiE <) dx
0 —00

provided that at least one of the two integrals is finite.

It is easy to know that if an uncertain variable & ~ L(a, b), i.e., it is subject to a linear
atb

>
Since the independence between uncertain variables is very important while describing

uncertainty distribution, then it has an expected value E[£] =

many results, we state it formally.

Definition 7 (Liu [24]) The uncertain variables &, &,,...,&, are said to be independent if
Mlﬂ(si € B,»)} = \ Mi& € B
i=1 i=1
for any Borel sets By, By, ..., B,.

Definition 8 (Liu [21]) Suppose that &,£&,&,,... are uncertain variables defined on the
uncertainty space (I', £, M). The sequence {&;} is said to converge almost surely to & if
there exists an event A with M(A) =1 such that

lim [&(y) - £(y)| = 0
I—> 00
for every y € A. In that case we write § — £, a.s.

Next, we present some lemmas which will be used in the discussion that follows.

Lemma 1 (Liu [21]) Let & be an uncertain variable with uncertainty distribution ®(x).
Then

oo 0
E©)- [ (1-0m)dr- [ owds
0

—00

Lemma 2 (Liu [23]) Let & be an uncertain variable with regular uncertainty distribution
®(x). Then

1
E@E) = /0 & Ho) da.
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Lemma 3 (Liu and Ha [25]) Assume &1,&,,...,&, are independent uncertain variables with
regular uncertainty distributions ®1, o, ..., D, respectively. If f(x1,%2,...,%,) is strictly
increasing with respect to xy, ..., x,, and strictly decreasing with respect t0 X1, . - ., Xy, then
the uncertain variable & = f(£1,&,,...,&,) has an expected value

1
E(§) =/0 f(@H@),..., ®, (@), @, A -a),...,,' 1~ a)) do,

where ;' (i =1,2,...,n) are the inverse uncertainty distributions of & (i=1,2,...,n).

Note that a constant x is also an uncertain variable with which its inverse distribution is
x itself. If we take & = x € R” in Lemma 3, then we have the next lemma naturally.

Lemma 4 Assume that f(x,&,...,&,) is strictly increasing with respect to &,...,&,, and
strictly decreasing with respect to &1, ...,6n. If &1,.. ., &, are independent uncertain vari-
ables with uncertainty distributions @, ..., D,, respectively, then the expected function

E[f(xy gl; cee gn)] is equal to
1
/ fxoM@),..., @, (@), @, 1-a),...,,'1-a))da,
0

where d>i‘1 (i=1,2,...,n) are the inverse uncertainty distributions of &; (i=1,2,...,n).

Sincea VIP can be converted into an equivalent optimization problem through a regular-
ized gap function (refer to Theorem 3.1 and Theorem 3.3 in [22]). Here we give the defini-
tion of a regularized gap function. Note that this terminology was not used by Fukushima
in [22], but the function he defined was really a gap function by his later work [26].

Definition 9 (Facchinei and Pang [1]) Let the VIP(F,S) be given with F defined on an
open set 2 containing S. Let o be a positive constant and let G be a symmetric positive
definite matrix. The regularized gap function of VIP(F,S) is defined as

o
& = sup{F(x)T(x —9) =5l —yllé}
yesS

for all x in 2, where ||x||2G = +/xTGx is the G-norm of x € R". We note immediately that
o > gp, Yx € Q for any two scalars « > > 0.

Facchinei and Pang discussed many properties of g, ; for more details, please refer to the
book [1].

Definition 10 (Facchinei and Pang [1]) Let S be a convex subset of R” and G € R**" be a
symmetric positive definite matrix. The projection operator Projg ; : R" — S is called the
skewed projection mapping onto S if for every fixed x € R”, Projg () is the solution of the
following convex optimization problem:

min 3 ||y - xll5 = 3 (v = %) 7Sy - )
st.yes.
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Lemma 5 (Proposition 4.11in [22]) Let the mapping F : R" — R" be continuously differen-
tiable. If the Jacobian matrix VF(x) is positive definite on S, then for each x € S the vector
d = H(x) — x satisfies the descent condition

(Vg(x),d) <0, wheneverd #0, (5)
where g(x) = F(x)" (x - H(x)) |l ~ H)II%, H() = Projg (6 - G ().
Following Fukushima [22], we can give the following lemma.

Lemma 6 Let the mapping F : R* — R" be continuously differentiable. If the Jacobian ma-
trix VF(x) is positive definite on S, then for each x € S the vector d,, = H,(x) — x satisfies the
descent direction

(Vga (x),da> <0,

whenever d, # 0, where g,(x) is as defined in Definition 9 and H,(x) = Projsg(x —
a'G1F(x)).

Proof Similar to the proof of Proposition 4.1 in [22] just replace the mapping H with H,.
O

From Lemma 6, we can execute the descent methods to find a solution to the VIP related;
for more details, one can refer to [22].

3 Main results
We are now in the position to reveal the main results of this paper. Invoked by the defini-
tion of stochastic variational inequality problems, we present the definition of uncertain
variational inequality problems first.

Consider the uncertain variational inequality problems (U VIP for short): finding a vec-
tor x € S C R” such that

M{y € F|(y—x)TF(x,E(y)) >0,Vye S} =1,
where M is the given uncertain measure of the uncertain variable &. Or
(y-%)"F(x,&(y) =0, VyeSVyeAas, (6)
where S is a closed convex subset of R”, £(y) is an uncertain variable defined on an uncer-
tainty space (I, £, M), A is an event with M(A) =1, F: R" x R — R" is a mapping, and
a.s. is the abbreviation for ‘almost surely’ under the given uncertain measure.

Since there is no solution to problem (6), by introducing the expected value of F(x,&(y))
over £(y), we rewrite (6) as finding a vector x € S such that

(-»TE[F(x,£(1))] 20, Vyes. @)
Take f(x) = E[F(x,&(y))], then UVIP (7) can be written as

(y-%)"fx)>0, Vyes. (8)
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Note that if f(x) can be evaluated either analytically or numerically, then (8) can be re-
garded as a deterministic VIP and consequently can be solved by many mature numerical
methods, which can be documented in [1, 22].

Hence we now investigate under what circumstances f(x) can be evaluated in uncer-
tainty theory.

Theorem 1 Let & be an uncertain variable with regular uncertainty distribution ®(t). Let
F(x,y) be a function defined on R" x R. If F(x,y) is strictly increasing with respect to y,
VxF(x,y) and F(x,y) are continuous on R" x R, then

1
5= E[Fx.6)] = [ F(x 07 @) da

is continuous on R" and, moreover,

Vif (x) = /01 VXF(X, CD_I(a)) da, )

where VyF(X,y) is the gradient of F(x,y) with respect to the vector x € R" and Vif(x) is
analogous.

Proof Since £ is an uncertain variable with regular uncertainty distribution ®(¢), its in-
verse uncertainty distribution ®!(a) continuously exists from Definition 4 and Defi-
nition 5. Because F(x,y) is continuous on R” x R, thus F(x,®!(«)) is continuous on
R" x [0,1] by extending the continuity of ®~!(«) to the endpoint. Then, from Lemma 4
in conjunction with the continuity property of parametric integral, we know that f(x) =
E[F(x,&)] = fol F(x, ®}(a)) da is continuous on R". Furthermore, we arrive at the identity
(9) from the analysis of matrix and when VyF(x,y) is continuous R” x R, so is Vxf(x) =
fol Vi F(x, ® () da by the differentiable property of parametric integral. This completes
the proof. g

On the other hand, when F(x, y) is strictly decreasing, we have the following result.

Corollary 1 Let & be an uncertain variable with regular uncertainty distribution ®(t). Let
F(x,y) be a function defined on R" x R. If F(X,y) is strictly decreasing with respect to y,
VxF(x,y) and F(x,y) are continuous on R" x R, then

1
f(x):E[F(x,E)]:/O F(x,@’l(l—a))da

is continuous on R" and, moreover,

1
Vif (x) = / VXF(X, o1 - a)) do,
0
where V is the gradient operator in terms of X.

Proof From Lemma 4, what we need to do is to replace ®!(«) in the proof of Theorem 1
with ®~1(1 — &) since the inverse distribution of uncertain variables in these two situations
is different. O
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As an extension of Theorem 1 and Corollary 1 to uncertain vector, we present the fol-
lowing result.

Theorem 2 Let & = (§1,&,...,&) be a k-dimensional uncertain vector, X be a vector in R",
Y = OLY2, ..., Yk) be a vector in RK. Let F(x, y): R" X Rk — R be a function which is strictly
increasing with respect to y1, ...,y and strictly decreasing with respect to Y41, ..., Yk As-
sume that & (i =1,2,...,k) are independent uncertain variables with regular uncertainty
distributions ®;(t) (i = 1,2,...,k), respectively. If both F(X,y) and its gradient VyF(X,y) are
continuous on R" x RX, then

f(x) = E[F(x,§)]

1
:/ F(x &7 @), .., &1 (@), &%, (1 - o)., D7 (1 - ) der
0

is continuous on R" and, moreover,

m+1

1
fo(x)zf ViF(x, @71 (@), ..., D, (), @, (1 - @),..., P (1 - ) dav,
0

where Vyf (x) is the gradient of f (x) with respect to x.

Proof From Theorem 1 and Corollary 1, in view of Lemma 4, it is easy to derive Theo-
rem 2. O

While Theorem 1 and Theorem 2 concern real-valued functions, it is natural for us to
extend them to a vector function. Before we start to present the extension, it is necessary
to introduce the expected value of an uncertain vector. We give it as follows.

Definition 11 Let & = (§,&,,...,&) be a k-dimensional uncertain vector. Then we define
the expected value of & by

E[£] = (El&1), El&2), .., E[&]).

That is, the expected value of an uncertain vector is the vector consisting of the expected
value of each component.
Now we are in the position to extend Theorem 2 to vector functions.

Theorem 3 Let & = (&,&,...,&) be a k-dimensional uncertain vector whose compo-
nents are all independent uncertain variables with regular uncertainty distributions ®;(t)
(i =1,2,...,k). Let x be a vector in R", y = (y1,92,...,yx) be a vector in R*, F(x,y) : R" x
RK — R* be a vector-valued function whose components can be expressed as F(x,y) =
(F1(x,¥), F2(X,Y), ..., Fs(X,Y)). Assume that each F(X,y1,...,yx) (j=1,2,...,s) is strictly in-
creasing with respect to yi, ...,y and strictly decreasing with respect t0 Y41, - . ., Yi. If both
Fi(x,91,¥2,...,yx) and its Jacobian matrix V. F;(X, y1,¥2,...,¥) (j = 1,2,...,5) are continuous
on R" x R¥, then

S0 =E[Fx.9)] = (E[Fx )} E[Fa00.8)).-.. E[Fx. D))
= (), £(X),....£(X),
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where f(x) = fol Fi(x, o7 (), ..., PN (@), D, 1 —),..., D (1 - «)) do is continuous on R"
and, moreover,

Vaf (%) = (Vafi (%), Vo (), ..., Vifs (X)),

where Vyfi(x) = fol ViFj(x, 7M@), ..., D, (), D, (L—a),..., P (1 —a))da (=1,2,...,5)
is the gradient of Vfj(x) with respect to X.

Proof 1t is easy to derive the results from Theorem 2 in conjunction with Definition 11.
O

Remark 3 By introducing the expected value of an uncertain variable (vector), from The-
orem 3, after transforming a UVIP into a deterministic VIP, the underlying mapping of the
reformulation one is continuous and its Jacobian matrix Vyf(x) can be detected whether
positive definite or not. As long as Vyf(x) is positive definite for all x € S, we can com-
pute the descent direction by Lemma 6. Then we set x**! = x* + t*d*, k = 0,1,2,..., where
d{; are given by d§ = H,(x*) - x¥ and t* € [0,1] which are determined from f(x* + tkd{;) =
ming<,<1 f(x* + td¥). Thus we can find a solution to the UVIP by iterations. For more de-
tails, please refer to [22]. In fact, Facchinei and Pang [1] presented more algorithms to find
a solution to a finite dimensional variational inequality problem on the basis of gap (merit)

functions.

4 An application

As an application of the preceding results, let us present an example from economics in
this section. We develop a supply model of newsvendors who are involved in the produc-
tion of the same kind of products.

Suppose there are n players in the market who produce the same kind of products. Let
p;i and ¢; be the unit price and unit production cost of newsvendor i, respectively. Assume
that the number of customers who prefer to buy the products from newsvendor i is D;,
which is an uncertain variable. Customers always purchase the products from their unique
preferred newsvendor provided that the products are available. However, a proportion, say
0jj, of the customers of newsvendor j will purchase the products from newsvendor i if they
find that newsvendor j does not have any product left unsold. Let g; denote the nonnega-
tive production level of newsvendor i. We group the production level of all newsvendors
into the column vector g € R”. We assume that each newsvendor is faced with a product
cost ¢;q;. Give the production level g_; for all other newsvendors. Then, for newsvendor
i, his revenue is equal to the price he charges for the newspaper times the total quantity
which is the minimum of the quantity he produced and the uncertain demand from cus-
tomers. If we give each newsvendor a limit production level, say M; for newsvendor i, we

can express the criterion of profit maximization for newsvendor i as

max u;(q;,q_;) £ p;min(q;, D; + >z 05max(D; - g;,0)) - ciqi, Vi
s.t.q; € K; £ [0,M;].

Note that max(D; — gj,0) has an economic interpretation which is that for newsvendor j,
his supply cannot meet the demand of the market.
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Since the profit function u;(g;,g-;) contains uncertain variables, it cannot be directly

maximized. We may maximize its expected value, i.e.,

max U;(qi,q-i) = p:E[min(g;, D; + 3, ; 0ymax(D; - g, 0))] - ciqi, Vi
s.t.q; € K; 2 [0,M;].

We assume that all newsvendors compete in a noncooperative fashion, namely play an
oligopolistic game by choosing their product level appropriately. Also, we assume that for
newsvendor i, his/her uncertain demand is D; = %Ei, where &,&,,...,§, are independent
with E[&;] = e; fori=1,2,...,nand m is a constant. It makes sense that when the newsven-
dor charges more, his/her uncertain demand will decline, and vice versa. Hence, it follows
from uncertainty theory that the expected value of the uncertain demand D; is E[D;] = %
for all i. Then the underlying expected profit function is

Uigi,q-i) = pzmm<ql, +Zol,maX<——q,,0>>—ciqi, Vi,

PG

For convenience, we suppose that for newsvendor j, his/her supply cannot meet his/her
customers’ demand, that is, D; > g;, then max(D; — g;,0) = D; — g;; furthermore, the ex-

pected profit is

Ui(%, z) pz mln(qw + Zoz](— - 6];)) —Ciq;.

J#i

An optimal solution for the newsvendor’s model is a Nash equilibrium. Given that the
governing equilibrium, which states that each newsvendor will determine his/her opti-
mal production quantity, given the optimal ones of the competitors, the optimality con-
ditions for all newsvendors simultaneously can be expressed as a variational inequality
problem. That is, the equilibrium governing newsvendors’ model with competition is
equivalent to the solution to the variational inequality problem given as follows: deter-
mine g* = (¢}, 45, ...,q}) € K =[], K; satisfying

(a- q*)T(—Vq,- Ui(qi»q-1)) =0, VqeK, (10)

where V,,(-, ) is the gradient of U; with respect to g; for i = 1,2,...,n. We now discuss two
special cases for the problem.
Casel: If g; > % + s 0,,( - qj), then Ui(q;, q_;) = me; — Zm ol,( ; - piq)) — ¢iqi.
oU;(gig-i) _
aq;

Hence —¢;. Furthermore, for the expected profit maximization problem, it

follows from (10) that determine g* € K satisfying

(q—q*)TcZO, Vq €K,

Z(%‘ -qf)ci >0, Vg €K
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Case 2:If g; < % + Z,'#,- O;j(%? - q)), then Ui(gi,q-i) = (pi - ¢i)qi.

Hence %{;Lf‘“) = p; — ¢;. Similarly, we can convert the underlying expected profit max-
imization problem into the following variational inequality problem: determine g* € K

satisfying

n

Z(%‘ —q;)(ci-p) =0, Vg €K, (11)

i=1

The optimal condition as expressed in (11) has a nice economic interpretation, which is
that a newsvendor will distribute a positive amount of products to the market if the price
which the customers are willing to pay is precisely equal to his/her marginal production
cost. Note that the production cost function is c;q; and its marginal production cost is
¢;, which is the partial derivative of c;q; with respect to g;. If the newsvendor’s marginal
production cost exceeds what the customers are willing to pay, then he/she will transact
none with the demand market.

After finishing the procedure of transformation, we can solve variational inequality

problems above by line search algorithm which is stated in Section 3.

Remark 4 We just apply our results in the newsvendor’s model. As a matter of fact, there
are many problems in practice that can be casted as uncertain variational inequality prob-
lems when there exist uncertain variables (vector) such as in electricity supply network
[1], user equilibrium [19] and wireless networks [20].

5 Conclusions

In this paper, we discussed a new class of variational inequality problems, namely uncer-
tain variational inequality problems based on the uncertainty theory. It can be regarded as
another extension of the classical variational inequality problems besides stochastic varia-
tional inequality problems. By introducing the expected value model of uncertain variables
(vector), we converted one class of uncertain variational inequality problems into a class
of deterministic variational inequality problems, which can be solved by many classical
methods such as those presented in [1, 22]. Finally, we applied our results in an economic
example.
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