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In this paper, we present optimal control for movement and trajectory planning of a various degrees-of-
freedom robots using fuzzy logic (FL) and genetic algorithms (GAs). We have evaluated and shown 
comparative analysis for three degree-of-freedom (3 DOF) and four degree-of-freedom (4 DOF) robotics 
arm to compensate the uncertainties like; Movement, friction and settling time in robotic arm 
movement. This paper describes genetic algorithms, which is designed to optimize robot movement 
and trajectory. Though the model represents is a general model for redundant structures and could 
represent any n-link structures. Results shows optimal angular movement of joints, it converges too 
quickly even if the population is very large. The result also shows the complete trajectory planning with 
FL and GAs and also demonstrating the flexibility of this technique. 
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INTRODUCTION 
 
Automation has become an extremely fast growing 
phenomenon, impacting all engineering applications. The 
robots and robotic arms have become the major part of 
this trend. Autonomous navigating robots have become 
increasingly important. Motion planning is one of the 
important tasks in intelligent control of an autonomous 
mobile robot. Optimal movement is critical for efficient 
autonomous mobile robot. Many proposed approaches 
used fuzzy logic (FL) or genetic algorithms (GAs) or 
neural networks. Path conditions can be modeled using 
fuzzy linguistic variables so as to allow for imprecision 
and uncertainties of path data. Many new methods have 
been proposed that are appropriate for dynamic 
environment or provide response in real-time. 

The kinematics of two collaborating robot arms 
handling an object, such a task is much more difficult, 
both kinematically and dynamically (Hemami and Cheng, 
1992). The obstacles have always been a source of 
malfunctioning of the robot and robotic arm, various 
efforts have been made to develop efficient arm 
movement trajectories for  eluding  obstacles.  Probability 
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goes along with the real time process and their control for 
better performance (Olson et al., 2000) have developed 
model and techniques for probabilistic self-localization for 
mobile robot. A basic and general framework for robot 
control has been developed (Gillespie et al., 2001). 

Genetic algorithms (GAs) have been used as the 
optimization techniques for energy minimization in 
robotics. The GA identifies the optimal trajectory based 
on minimum joint torque requirements (Garg and Manish, 
2002). In the path planning problem, without obstacles for 
closed kinematics chains with n- links connected by 
spherical joints in space or revolute joints in the plane. 
The configuration space of such systems is a real 
algebraic variety whose structure is fully determined 
using techniques from algebraic geometry and differential 
topology (Trinkle and Milgram, 2002).  

Uncertainties in robotic arm movement have been 
compensated using genetic algorithms, the nature of 
these parameters is not to be deterministic in nature. 
Optimal control is concerned with control policies that can 
be deduced using optimization algorithms. It deals with 
the problem of finding a control law for a given system 
such that a certain optimality criterion is achieved. A 
Genetic algorithm based path-planning software for 
mobile robot systems focusing on energy consumption. 
This algorithm is executed within two different  phases  of 



 
 
 
 
the optimization process. For each obstacle within the 
environment regarded a path circumventing it is 
computed in a preparation phase. In the execution phase 
of the GA itself, the results of the preparation phase are 
used to find optimum paths. Genetic algorithms are often 
viewed as function optimizers, although the range of 
problems to which GAs have been applied is quite broad 
(Gemeinder and Gerke, 2003; Nguyen and Morris, 2007). 
Industrial robots should perform complex tasks in the 
minimum possible cycle time in order to obtain high 
productivity. The problem of determining the optimum 
route of a manipulator’s end effector reaching a number 
of task points is similar (Zacharia and Aspragathos, 
2005). The difficulty in a robotic system is that the desired 
features, that is, the speed, energy efficiency and 
accuracy are often contradictory. If robotic arm moves 
very quickly it also requires a great deal of energy and if it 
moves too quickly then this could have a negative impact 
on stability and accuracy. The multiple solutions of the 
inverse kinematics problem should be taken into 
consideration to meet the objective. 

Ho
 
et al. (2007) have developed a stable adaptive 

fuzzy-based tracking control for robot systems with 
parameter uncertainties and external disturbance. Fuzzy 
logic system is introduced to approximate the unknown 
robotic dynamics by using adaptive algorithm. Hybrid 
fuzzy adaptive robust controller is developed for 
trajectory tracking problem. 

Machine learning techniques, such as evolutionary 
algorithms or artificial neural networks for the learning of 
fuzzy controllers to incorporate behaviours in mobile 
robots are widely used (Mucientes et al., 2007). Many 
recent contributions on robotic arms to solve path 
tracking and vibration damping problems are reported. To 
improve the system performance by applying GAs to tune 
the membership function parameters of a FL controller for 
the robotic manipulator. 

Intelligent methods can also be used in optimization of 
movement and trajectory planning of manipulators (Ho et 
al., 2007). These methods can be used for solving 
redundancy resolution problems. Genetic algorithms are 
viewed as function optimizers. The range of problems to 
which GAs can be applied is quite broad. GAs are tools 
on probabilistic and causality, not necessarily they will 
have the same type of evolution when applied to the 
same problem. ANN and FL techniques required more 
information regarding system and more mathematics as 
compare to GA. The great advantage observed in this 
work is that the GAs are tools of easy application and in 
robotics they could be thoroughly used to do several 
tasks, needing for that only small description of the 
problem. Another advantage is that present algorithm, 
without any much alteration could be used for more 
degree-of-freedom robots. 

GAs tuned fuzzy logic controllers were successfully 
implemented for a robot arm movement. Many recent 
contributions on flexible link and elastic joint robotic  arms 
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focus on how to solve path tracking and vibration 
damping problems both in slow and fast mode control. As 
a result, system performances are often tiresome and 
intractable. The system with the new controller is 
simulated and its behaviour is compared with that 
provided by conventional and expert-designed fuzzy logic 
controllers (Nguyen and Morris, 2007; Alam and Tokhi, 
2008). In order to solve the simultaneous localization and 
mapping (SLAM) problem of mobile robots, using FL and 
GAs. The core of the proposed SLAM algorithm is based 
on an island model GA (IGA) that searches for the most 
probable map(s), which provide robot with the best 
localization information. Prior knowledge about the 
problem domain is transferred to GA in order to speed up 
the convergence. FL is employed to serve this purpose 
and allows the IGA to conduct the search starting from a 
potential region of the pose space (Momotaz et al., 
2008). 

Fuzzy logic (FL) and genetic algorithms (GAs) have 
been successfully implemented on mobile robots 
navigation. In the genetic algorithms, selection of the 
fitness function parameters are task specified and the 
results dependent on fitness function (Doitsidis et al., 
2009). FL was also implemented on robot manipulator 
actuated by pneumatic artificial muscles to address the 
position and velocity control problem. The difficulty in the 
design of controllers due to modeling uncertainty and 
disturbances of unknown origin can be reduced 
significantly by using FL (Boudoua et al., 2009).  

In this paper, genetic optimization is employed to find 
optimum joint angles for various degree-of-freedom 
robotic systems. The genetic optimization replaces the 
tedious process of trial and error for a better combination 
of joint angles, which is valid as per inverse kinematics 
for robotic arm movement. The cost function in genetic 
algorithm as implemented in this case is augmented by 
three attributes viz. joint movement, fiction and least 
settling time. At any time the values of these three 
attributes is found with the help of FL.  In a given case of 
cost function the weightages for these three attributes are 
determined through fuzzy reasoning. FL models have 
been developed for the above said three attributes as its 
input and the weightages as required for these three 
attributes in the cost function as three outputs. The 
developed fuzzy genetic optimal control architectures 
have been implemented on three and four degree-of-
freedom (DOF) robotic systems. The results for optimized 
joint angles are presented and discussed and a new 
paradigm of fuzzy-GA control architecture has been 
contemplated. The method proposed in this paper is 
robust, allowing optimal robotic arm movement and 
adaptation to be dynamic conditions in the environment. 
 
 
Robotic systems 
 
Robotic   systems  are  characterized  by  their  degree-of 
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freedom (DOF). A very simple robotic system may have 
two degree-of-freedom, whereas a complex a robotic 
system may have more degree-of-freedoms (DOFs). 
Robotic arm movement is effected by various joint 
movement parameters like friction, settling time and 
orientation etc. In this research work, we have considered 
only three major parameters that is, friction, settling time 
and joint movement (minimum energy). 

The robotic arm movement depends upon the angular 
movement of the joint. Joint movement determines the 
power required. The joint movement must be adjusted to 
stay within the power available on the robotic system to 
be used. Friction must also be considered in relation to 
robotic arm movement. The actual angular arm 
movement is defined as theoretical angular movement, 
which is provided by the controller minus the movement 
lost due to friction. Settling time is the most important 
factor in the case of any real time system. It refers to the 
transient response, which contains dam pings (vibrations) 
for a given change in the input (step function). High-
speed robots must have least settling time thus exhibiting 
minimum physical vibrations in the movement of robotic 
arm. 
 
 
Mathematical model of three degree-of-freedom (3 
DOF) robotic system 
 
To calculate movements in dynamic systems made up of 
several parts, the main approach is to calculate possible 
movements with the aid of mathematical models. At the 
same time it is necessary to understand both the 
mechanics and the physical aspects. A vertical 
articulated robotic arm with 3 links (Figure 1) having 
length l1, l2 and l3 respectively, is considered which has a 
three degree-of- freedom. 

In three degree-of-freedom robotic arm the inverse 
kinematics equations are as below: 
 

x = l1 cos θ1 + l2 cos (θ1 + θ2) +  
       l3 cos (θ1 + θ2 + θ3)                                          (1)  
 

y = l1 sin θ1 + l2 sin (θ1 + θ2) +  
      l3 sin (θ1 + θ2 + θ3)                                               (2) 
 

φ = θ1 + θ2 + θ3                                               (3) 
 
Knowing the arm link lengths l1, l2 and l3 for position (x, y) 
we had calculated the values of joint angles θ1, θ2 and θ3. 
 
 

Mathematical model of four degree-of-freedom (4 
DOF) robotic system 
 
In Four degree-of-freedom of the robotic arm the inverse 
kinematics equations are as below (Figure 2):  
 

 x=cos θ (L cos φ + L4cos ψ )                                 (4) 

 
 
 
 

y = sin θ (L cos φ +L4 cos ψ )              (5) 
 

z = L1 + L sin φ + L4 sin ψ                                            (6) 
 

where ψ: Pitch angle  
Let the position of fourth joint “P4” be (x4, y4, z4). Also,  

  

x4  = x – cos θ ( L4 cos ψ )                                (7) 
 

y 4  =  y  –  s in  θ  (  L 4  c o s  ψ  )                        (8) 
 

z4 = z – L4 sin ψ                                                                                (9) 
 
The manipulator has four degree-of-freedom: joint 1 (J1) 
allows rotation about the z-axis; joint 2 (J2) allows rotation 
about an axis that is perpendicular to the z-axis; joint 3 
(J3) is a linear joint which is capable of sliding over a 
certain angle; and joint 4 (J4) which allows rotation about 
an axis that is parallel to the joint 2 (J2) axis. Rotation 

along joint 1 (J1) to the base rotation θ; the angle of 

rotation of joint 2 (J2), elevation angle φ; the length of 
linear joint 3 (J3), extension L (L represents a combination 
of link 2 and 3); and the angle that joint 4 (J4) makes with 

x-y plane, pitch angle ψ. 
Knowing the arm link lengths L1, L and L4 for position 

(x, y, z) we had calculated the values of joint angles θ, φ 

and ψ. 

 
 
Problem formulation 
 
Conventional methods of optimization require an accurate 
mathematical model. In robot manipulator any mathematical 
modeling inaccuracy will hamper the mathematical optimization 
process. Also, as the configuration is changed, the optimization 
needs to be redefined. GAs is an intelligent optimization method 
(Gemeinder and Gerke, 2003; Nguyen and Morris, 2007; Mucientes 
et al., 2007). Here in this work, genetic algorithms are proposed to 
search the optimal angular displacement of robot arms. 

The genetic algorithm for generating the population of 
chromosomes having optimized values. The proposed algorithm is 
as follows: 

 
[Start] Generate random population of n chromosomes (suitable 
solutions for the problem).  
[Fitness] Evaluate the fitness f(x) of each chromosome x in the 
population. 
[New population] Create a new population by repeating following 
steps until the new population is complete. 

 
a. Selection: Select two parent chromosomes from a population 
according to their fitness (the better fitness, the bigger chance to be 
selected). 
b. Crossover: Crossover the parents to form new offspring 
(children), with a crossover probability. If no crossover was 
performed, offspring is the exact copy of parents. 
c. Mutation: With a mutation probability, mutate new offspring at 
each locus (position in chromosome). 
d. Accepting: Place new offspring in the new population. 
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Table 1. Input fuzzy expressions. 
 

1st input (joint movement) 

abbreviation expression 

2nd input (friction) 

abbreviation expression 

3rd input (settling time) 

abbreviation expression 

Index representation for 

all three inputs 

VS    Very small VS Very small VS   Very small 0.00 

S               Small  S          Small              S              Small 0.25 

M        Medium M Medium M              Medium 0.50 

L               Large    L        Large    L              Large 0.75 

VL    Very Large VL        Very Large VL   Very Large 1.00 

 
 
 

Table 2. Output fuzzy expressions. 
 

1st output (λ1) for       

abbreviation expression 

2nd output (λ2) 

abbreviation expression 

3rd Output (λ3) 

abbreviation  expression 

Index representation 

all three outputs 

EVS Extremely very small EVS Extremely very small EVS Extremely very small 0.00 

ES Extremely small ES Extremely small ES Extremely small 0.10 

VVS Very, very small VVS Very, very small VVS Very, very small 0.20 

VS Very small VS Very small VS Very small 0.30 

S            Small     S             Small      S             Small 0.40 

M            Medium M             Medium M   Medium 0.50 

L    Large     L              Large      L             Large 0.60 

VL Very large VL           Very large VL Very large 0.70 

VVL Very, very large VVL  Very, very large VVL Very, very large 0.80 

EL Extremely large EL  Extremely large EL Extremely large 0.90 

EVL Extremely very large          EVL  Extremely very large EVL Extremely very large 1.00 

 
 
 
[Replace] Use new generated population for a further run of the 
algorithm. 

[Test] If the end condition is satisfied, stop, and return the best 
solution in current population.  
[Loop] go to [Fitness] 

Solutions obtained from inverse kinematics are fed to the genetic 
algorithm for generating the population of chromosomes to be 
optimized. 

In our case fitness of each chromosome depends upon many 
factors. We will consider three mains factors on which the fitness 
function will be calculated by applying fuzzy logic. These three main 
factors are: 
 
1. Joint movement (A1) 
2. Friction (A2) 
3. Least settling time (Min. vibration) (A3) 
 
First we will decide the importance and value of these three 
attributes for the each angle separately.  
The corresponding cost function (ƒc) is given below by Equation 10. 
 

ƒc = A1 × λ1 + A2 × λ2  + A3 × λ2                                 (10) 

 
In case of 3 DOF robotic arm manipulator, inverse kinematics is 
applied on these specifications and two solutions are obtained for 
each link angle. Three links each having two solutions in total gives 
six angles. These six angles are arranged in a way that eight 
combinations are obtained. These eight combinations / solutions 
are fed into a genetic algorithm which generates the new population 
with the help of fuzzy logic. 

If the new population  is  matched  with  the  desired  results,  the 

population is stored in the search space, otherwise the inverse 
kinematics is again applied to the newly obtained population and 
the whole procedure is repeated till the required or desired results 
are obtained. Similarly for 4 DOF robotic arm manipulator, whole 
process has to be repeated as in the case of 3 DOF. 

Attributes joint movement (A1), friction (A2) and settling time (A3) 
are inputs and weights λ1, λ2 and λ3 are outputs of fuzzy models. 
Tables 1 and 2 shows the inputs fuzzy expressions and output 
fuzzy expressions respectively.  

The ranges of fuzzy input membership functions and output 
membership functions are from 0 to 1 (per unit basis). Table 3 
shows fuzzy rules considered in this case. 
 
 
Simulation and testing 
 
Three degree-of-freedom (3 DOF) 
 
A case study has been considered with the following specifications 
for 3 DOF manipulator. 
 
Maximum reach of the robot arm: 915 mm 
Length of first link (l1):      330 mm 
Length of second link (l2):          320 mm 
Length of third link (l3):                 265 mm 
 
Origin or reference 
Point (O) coordinates:                     (0, 0, 0) 
Destination point (P) coordinates: (x, y, ø) 
               x:    50 mm 
               y:    25 mm 



Banga et al.        209 
 
 
 

Table 3. Fuzzy rules. 
 

If A1 is VS and A2 is VS and A3 is VS then λ1 is EVS and λ2 is EVS and λ3 is EVS. 

If A1 is S and A2 is VS and A3 is VS then λ1 is ES and λ2 is EVS and λ3 is EVS. 

If A1 is M and A2 is VS and A3 is VS then λ1 is VVS and λ2 is EVS and λ3 is EVS.              

If A1 is L and A2 is VS and A3 is VS then λ1 is VS and λ2 is ES and λ3 is ES. 

If A1 is VL and A2 is VS and A3 is VS then λ1 is S and λ2 is ES and λ3 is ES. 

If A1 is VS and A2 is S and A3 is VS then λ1 is EVS and λ2 is ES and λ3 is EVS.             

If A1 is S and A2 is S and A3 is VS then λ1 is ES and λ2 is ES and λ3 is EVS.                           

If A1 is M and A2 is S and A3 is VS then λ1 is VVS and λ2 is ES and λ3 is EVS.                            

If A1 is L and A2 is S and A3 is VS then λ1 is VS and λ2 is ES and λ3 is EVS.                            

If A1 is VL and A2 is S and A3 is VS then λ1 is S and λ2 is ES and λ3 is EVS.                           

If A1 is VS and A2 is M and A3 is VL then λ1 is EVS and λ2 is VVS and λ3 is S.             

If A1 is S and A2 is M and A3 is VL then λ1 is ES and λ2 is VVS and λ3 is S.                

If A1 is M and A2 is M and A3 is VL then λ1 is VVS and λ2 is VVS and λ3 is S.              

If A1 is L and A2 is M and A3 is VL then λ1 is VS and λ2 is VVS and λ3 is S.               

If A1 is VL and A2 is M and A3 is VL then λ1 is S and λ2 is VVS and λ3 is S.              

……………………………………………………………………………………………… 

……………………………………………………………………………………………… 

……………………………………………………………………………………………… 

………………………………………………………………………………………………  

If A1 is VL and A2 is L and A3 is VL then λ1 is EVL and λ2 is VL and λ3 is EVL.              

If A1 is VS and A2 is VL and A3 is VL then λ1 is L and λ2 is EVL and λ3 is EVL.            

If A1 is S and A2 is VL and A3 is VL then λ1 is VL and λ2 is EVL and λ3 is EVL.              

If A1 is M and A2 is V L and A3 is VL then λ1 is VVL and λ2 is EVL and λ3 is EVL.             

If A1 is L and A2 is VL and A3 is VL then λ1 is EL and λ2 is EVL and λ3 is EVL.             

If A1 is VL and A2 is VL and A3 is VL then λ1 is EVL and λ2 is EVL and λ3 is EVL. 

 
 
 

Table 4. Population from inverse kinematics. 
 

No. Chromosomes Fitness value 

1. {137.91°, 217.49°, 106.14°} 1377.84 

2. {137.91°, 217.49°, 73.85°} 1281.28 

3. {137.91°, 37.49°, 106.14°} 841.44 

4. {137.91°, 37.49°, 73.85°} 744.88 

5. {84.78°, 37.49°, 106.14°} 682.59 

6. {84.78°, 37.49°, 73.85°} 586.03 

7. (84.78°, 217.49°, 106.14°} 1218.99 

8. {84.78°, 217.49°, 73.85°} 1122.43 

 
 
 
For developing the software code using GA and FL for 3-link robotic 
model. 

Solving these equations we get the following values for the 
angles of the links: 

 
θ1 = 137.9°,   -84.78° 

θ2 = -217.49°, 37.491° 

θ3 = 106.14°, 73.85° 

 
By applying the inverse kinematics initially and then from the three 
runs performed during the design and development for the 
optimization process, we obtain the following population as 
illustrated in Tables 4, 5, 6 and 7. 

Table 5.  Population from first run. 
 

No. Chromosomes Fitness value 

9. {20.84°, 36.95°, 103.84°} 482.90 

10. {20.84°,  36.95°, 76.15°} 400.11 

11. {20.84°, 
 
28.75°, 103.84°} 458.47 

12. {20.84°, 28.75°, 76.15°} 375.68 

13. {40.33°, 36.95°, 103.84°} 541.18 

14. {40.33°, 36.95°, 76.15°} 458.39 

15. {40.33°, 28.75°, 103.84°} 516.75 

16. {40.33°, 28.75°, 76.15°} 433.96 

 
 
 

Table 6.  Population from second run. 

 

No. Chromosomes Fitness value 

17. {137.91°, 26.95°, 84.40°} 742.30 

18. {137.91°, 26.95°, 150.10°} 938.74 

19. {137.91°, 38.75°, 84.40°} 777.47 

20. {137.91°, 38.75°, 150.10°} 973.91 

21. {84.78°,  26.95°, 84.40°} 586.16 

22. {84.78°, 26.95°, 150.10°} 782.6° 

23. {84.78°, 38.75°, 84.40°} 621.31 

24. {84.78°, 38.75°, 150.10°}   817.77 
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Table 7.  Population from third run. 
 

No. Chromosomes Fitness value 

25. {137.91°, 16.75°, 84.40°} 713.43 

26. {137.91°, 16.75°, 172.30°} 977.44 

27. {137.91°, 60.95°, 84.40°} 845.14 

28. {137.91°, 60.95°, 172.30°} 1109.16 

29. {84.78°, 16.75°, 84.40°} 555.57 

30. {84.78°, 16.75°, 172.30°} 818.58 

31. {84.78°, 60.95°, 84.40°} 686.28 

32. {84.78°, 60.95°, 172.30°} 950.30 
 
 
 

Table 8. Population from inverse kinematics. 

 

No. Chromosomes Fitness value 

1. {17.36°, 30.09°, 84.69°} 394.83 

2. {17.36°, 30.09°, 5.26° } 157.35 

3. {17.36°, 26.26°, 84.69°} 383.41 

4. {17.36°, 26.26°, 5.26°} 145.93 
 
 
 

From the above simulation, we obtained optimized result for various 
joints having lowest fitness value: 
 

θ1 = - 20.84°, - 40.33° 

θ2 = - 36.95°, -
 
28.75° 

θ3 = 103.84°, 76.15° 
 
 
Four degree-of-freedom (4 Dof) 
 

A case study has been considered with the following specifications 
for 4 DOF manipulator: 
 

Maximum reach of the robot arm:        915 mm 
Length of first link (l1):      305 mm 
Length of second link (L):          434 mm 
Length of third link (l4):          51 mm 
 

Origin or reference 
Point (O) coordinates:             (0, 0, 0) 
Destination Point (P) coordinates: (x, y, z) 
               x:       406 mm 
                             y:       127 mm 
               z:       533 mm 
 

The system has been considered for developing the software code 
using GA and FL. Solving these equations we get the following 
values for the angles of the links: 
 

θ =17.37° 
φ =30.09°, 26.26° 

ψ =84.69°, 5.26° 
 

By applying the inverse kinematics initially and then from the two 
runs performed during the design and development for the 
optimization process, we obtain the following population as 
illustrated in Tables 8, 9 and 10. 

From the above simulation, we obtained optimized result for 
various joints having lowest fitness value. 
 

θ =17.36° 

φ =20.06° , 36.29°   

ψ =84.69° , 5.26° 

 
 
 
 

Table 9.  Population from first run. 
 

No. Chromosomes Fitness value 

5 {17.36°, 20.06°, 84.69°} 364.93 

6 {17.36°, 20.06°, 5.26° } 127.45 

7 {17.36°, 36.29°, 84.69°} 413.29 

8 {17.36°, 36.29°, 5.26°} 175.82 

 
 
 

Table 10.  Population from second run. 

 

No. Chromosomes Fitness value 

9. {17.36°, 26.26°, 84.69°} 383.40 

10. {17.36°, 26.26°, 5.26° } 145.93 

11. {17.36°, 30.09°, 84.69°} 394.82 

12. {17.36°, 30.09°, 5.26°} 157.34 

 
 
 
RESULTS AND DISCUSSION 
 
In the developed genetic algorithms, in order to obtain the 
optimal angular displacements for the robotic arms in the 
whole workspace, elitism has been retained from the 
previous generation to the next. Simulations, testing and 
comparisons have been carried out. GA does not need 
complete knowledge of system. Evolutionary process 
converges too quickly even if the population is very large. 
Figure 3 illustrates percentage fitness versus generation 
graph for 3 DOF and 4 DOF systems. 

Figure 4 shows the convergence of best of each 
generation for 3 DOF robotic system. It can be seen that 
there is rapid convergence within 30 generations to an 
almost perfect solutions. Where as in the case of only GA 
there is rapid convergence within 50 generations. The 
remaining generation produced minor generations as the 
algorithm continues to optimize over the test cases. 

Figure 5 shows the convergence of best of each 
generation for 4 DOF robotic system. It can be seen that 
there is rapid convergence within 20 generations to an 
almost perfect solutions. Where as in the case of only GA 
there is rapid convergence within 40 generations. The 
performance is good, the robotic arm moves and reaches 
the target position within the simulation time. The 
performance is optimal is over all possible input values as 
the evolution function exhaustively test the possible input 
spaces. There is an improvement from initial average 
fitness of more than 25% error to less than 5% error in 
the first 30 generations. When the solution is near the 
optimum point, only small improvement some time in 
significant is achieved in each later generation. Figure 5 
shows the convergence of best of each generation for 4 
DOF robotic system. 

It is concluded that GA and FL is practical and effective 
method for achieving optimization of robotic arm angular 
displacements. On the other  hand  it  also  requires  very
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Figure 3. Percentage fitness versus no. of generations. 

 
 
 

 
 
Figure 4. Convergences versus generations for 3 DOF robotic system. 

 
 
 

 
 
Figure 5. Convergence versus generation for 4 DOF robotic system.
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less knowledge of the system description to apply this 
technique over other artificial intelligence technique like 
ANN. This algorithm can be extended to more degree-of-
freedom robots with very little modifications. 
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