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Recently, large-scale computations have been used in many real application areas. At the same time, 
there exists more parallel computing technique on cluster in order to meet these demands. In this paper, 
a speedup analysis of Master-Slave application on heterogeneous cluster is investigated. A task 
allocation model is set up and its theoretical analysis of execution time is developed. A more accurate 
upper bound of speedup is derived under some conditions by virtue of the task allocation model. 
Furthermore, this theoretical analysis is verified by a group of experiments and the experimental results 
show that the speedup increases nonlinearly and rapidly which is caused by the task optimization in the 
process. 
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INTRODUCTION 
 
In the recent years, fast and efficient computers are high 
demand in many applications such as scientific, 
engineering, energy resources, medical, military, artificial 
intelligence and some basic research areas. In these 
tasks, the common point is that large-scale computation is 
needed so that parallel processing computers are suitable 
to meet these demands. Among all the models in parallel 
computing, Master-Slave model is one of the most 
popular models. In this model, one or more processes 
which are so-called Master processes generate work and 
allocate it to worker processes. With different evaluations 
of task allocation, it is believed that different computations 
are derived. This is also the main topic of this present 
paper. Before we give details of this paper, we like to 
concern how to evaluate the computing performance first. 
Speedup is always used to evaluate the performance of a 
parallel model. Speedup is a measure by capturing the 
relative benefit  of  solving  a  problem  in  a  parallel  
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environment. Although, there exist different definitions, 
speedup is basically the ratio of sequential and parallel 
execution times on the same problem. The upper bound 
of speedup for a fixed size problem is established by 
Amdahl (1967). Recently, it has been used to evaluate the 
performance of large-scale data processing on multi-core 
machine or cluster Dutta et al. (2011). Then, Gustafson 
(1988) shows that it is possible to increase the size of task 
in order to avoid the strict limits of Amdahl‟s law and then 
the more effective speedup metric can be obtained (Yang 
et al., 2011). Both Amdahl‟s and Gutafson‟s results have a 
far-reaching impact on parallel computing (Snyder and 
Sterling, 2000) in the last millennium or grid computing 
(Gonzalez-Velez and Cole, 2008) recently. There is a rich 
literature (Head and Govindaraju, 2007, 2009; Almeida et 
al., 2006; Williams, 2011; Goswami et al., 2010; Bastian 
et al., 2008; Li et al., 1999; Silva da FAB and Senger, 
2011; Shylo et al., 2011) on study of performance of 
parallel systems. 

In this paper, we study the influence of different task 
allocations to the speedup with the Maser-Slave model on 
heterogeneous clusters which is first considered by Yero 
and Henriques (2007). We aim to find  the  optimal  task  
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allocations by advance testing. In Yero and Henriques 
(2007), they obtained the analytic expression for the 
execution time by constructing the application, cluster and 
execution models. They defined speedup and derived 
speedup bounds based on the inherent parallelism of the 
application and the aggregated computing power of the 
cluster. An analytical expression for efficiency is also 
derived and used to define scalability of the 
algorithm-cluster combination based on the isoefficiency 
metric. Furthermore, they established the necessary and 
sufficient conditions for an algorithm cluster combination 
to be scalable which are easy to verify and use in practice. 
But they did not consider the influence of the task 
allocation to the speedup. We got a more accurate upper 
bound of the speedup under some conditions for the task 
allocation model. Then, we gave a process to find the 
optimal task allocation, so-call advance test. Furthermore, 
we design an experiment to verify the theoretical analysis. 
By analyzing the experiment data we find some nonlinear 
phenomena which show some interesting results of the 
parallel computation. It is also interesting to find a 
phenomenon which we define as super-speedup. 
 
 
MODELS 
 
Definitions and previous work 
 
Here, we are going to recall the heterogeneous clusters 
model which was first given in Yero and Henriques (2007). 
The goal of the present paper is not to form a new model, 
but to find new phenomenon related to this 
heterogeneous cluster model. In order to save the time of 
reader, we summarize some definitions and assumptions 
in here. First, we give some definitions which will be used 
in this paper: 
 

P : The number of computers forming the cluster; 

 1 2, ,..., PC c c c : The set of computers forming the 

cluster. Associated with each computer, there is an 

attribute 
iopt , 1 i P  , including the time spent by 

computer i  to execute an operation. The value of 
iopt  

is given in secs op . Associated with each link between 

computer 1c  and ic
,
 there is an attribute 

ict . The value 

of 
ict  is expressed in sec unit  where unit  may be 

bytes, words or any other data unit. By definition, 
1ct is 0. 

In the application, the computers in the cluster may have 
twin or more cores which can influence on the computing 

ability. Here, it can be reflected on 
iopt , whose value is 

smaller than it in a single core computer. Parallel 
applications are usually based on tasks graphs (Almeida 
et al., 2006; Goswami et al.,  2010;  Yan  et  al.,  1996;  

 
 
 
 
Sanjay and Vadhiyar, 2008) with the nodes representing 
the tasks and the links representing data flow. The 
application model is the base for our study. The marks 
which we used in the present paper are presented as 
follows: 
 
N: A parameter that denotes the size of the problem. 
Master task: The Master task has the function of 
distributing and collecting data from the slaves as well as 
executing whatever serial code is necessary to solve the 
problem at hand. The Master is composed by: 
 

( )aSeq N : An initial sequential code probably used to 

generate or read some data, or to preprocess the data 
before the parallel algorithm starts; 

( )Split N : The code used to divide the data to be 

processed among the slaves; 

( )Gather N : The code used to collect the results from the 

slaves; 

( )bSeq N : A final sequential code, probably used to 

generate the final result and/or output it to its final 
destination. 

Slave tasks: The ( )ST N  slave tasks have the function 

of actually solving the problem. They are defined by: 
 

( , ( ))In N ST N : Size of the input data for each slave; 

( , ( ))Out N ST N : Size of the output produced by each 

slave; 

( , ( ))W N ST N : The amount of work performed by the 

slave. 

iQ : The assigned tasks are executed by each computer 

 sequentially. And it satisfies that: 

 

1

( )
P

i

i

ST N Q



 

 
 
Remark 1 
 

The items ( )aSeq N , ( )bSeq N , ( )Split N , 

( )Gather N  and ( , ( ))W N ST N
 
are expressed in 

number of operations while ( , ( ))In N ST N  and 

( , ( ))Out N ST N  are expressed in number of data units. 

The following assumption appearing in Yero and 
Henriques (2007) are also in force in the discussion of the 
present paper: 
 

H1: ( , ( ))In N ST N , ( , ( ))Out N ST N  and 

( , ( ))W N ST N
 
are equal for all slave tasks, that is, the  



 
 
 
 
work can be perfectly divided among the slaves. 

H2: lim ( , ( ))
N

In N ST N IN


  , that is, the size of the 

input data must not grow indefinitely with N . 

H3: lim ( , ( ))
N

Out N ST N OUT


  . Likewise, the 

size of the output data must be bounded for all values of 

N . 

H4: lim ( , ( ))
N

W N ST N PAR


  . The amount of 

work performed by each slave must also be bounded for 

all values of N . 

H5: lim ( ) ( , ( ))
N

ST N W N ST N


   . The amount of work 

forming the parallelizable part of the problem goes to   

with N . 

H6: ( )ST N P , ,N P . The number of slave tasks 

must be greater than or equal to P  for any P  and any 
problem size, otherwise there would be unused 
processors. 

H7: ( )aSeq N , ( )bSeq N , ( )Split N , ( )Gather N , 

( , ( ))In N ST N , ( , ( ))Out N ST N
 
and ( , ( ))W N ST N

 
are continuous functions of N  and ( )ST N

 
for 

0N  . 

H8: 
iopt , 1 i P   does not depend on N , that is, an 

increase in problem size does not induce an increase in 
the time to execute an operation. 
 

For a task distribution  1 2, ,..., PQ Q Q Q   among 

processors, considering only computer ic , we define the 

execution time iT
 
as: 

 
   

        

   

1 1

1 1

, , ,
i i i

i a op op

i c op c

op b op

T Seq N t Split N t

Q In N ST N t W N ST N t Out N ST N t

Gather N t Seq N t

   

        

   

     (1) 

 
Then the time for the application to execute is given by: 
 

   

      
1

1

max

max , ,

iQ i
i P

i i i
i P

T T Seq N Ov N

Q Par N ST N Comm N ST N

 

 

  

    

   (2) 

 
Where 
 

     
1a b opSeq N Seq N Seq N t      

 

     
1opOv N Split N Gather N t      

 

        , , ,
ii cComm N ST N In N ST N Out N ST N t    
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     , ,
ii opPar N ST N W N ST N t    

 
From Equation 2, we see that the parallel execution time 

TQ  depends on the scheduling Q  used. If Q  is 

defined as the set of all possible scheduling decisions Q  

for ( )ST N
 
slave tasks considering the optimum 

scheduling decision, the minimum execution time 
minT

 
can be presented as: 
 

min min( )Q
Q Q

T T 



         

(3) 

 

Consider the time T 
 defined as: 

 
( )

 ( ) ( ) [ ( ,  ( )) ( , ( ))]
ST N

T Seq N Ov N Par N ST N Comm N ST N
P

       
  

(4) 

 
Where 
 

( )  [ ( )  ( )]a b opSeq N Seq N Seq N t   
 

 

( )  [ ( )  ( )] opOv N Split N Gather N t     

 

( ,  ( )) [ ( ,  ( )) ( ,  ( ))] cComm N ST N In N ST N Out N ST N t   

 
 

( ,  ( ))  ( ,  ( )) opPar N ST N W N ST N t    

 

1
min( )

iop op
i P

t t

 
  and 

1
min( )

ic c
i P

t t

 
  

 
Furthermore, we formally define the relative speedup as: 
 

 ,
seq

min

T
S N P

T
           (5) 

 

Where minT
 
is defined by Equation 3 and 

 

    seqT = Seq (N) +ST N Par N,ST N         (6) 

 
 
The task allocation model 
 
For a given problem, assume that the parallel algorithm 
has been already designed. The main problems are how 
to subdivide the task to each processor and how to carry 
out these tasks on the parallel platform. Obviously, 
different schemes will have different influence on the 
utilization of the computing ability to the parallel system.  
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We will answer the question on how to decrease the 
execution time. Of course, it is easy for the homogeneous 
clusters, but difficult for the heterogeneous cluster. So the 
task allocation scheme has a strong influence for the 
execution time. For the Master-Slave application on large 
heterogeneous clusters, the optimal scheduling have 
been considered by using the Divisible Load Theory 
(known as DLT) (Robertazzi, 2003) as proposed in Shylo 
et al. (2011), Mohamed and Al-Jaroodi (2011) and Yu and 
Robertazzi (2003). For a minimum time solution, all 
processors must stop computing at the same instant, 
otherwise load could be transferred from busy to idle 
processors. Here, optimality is defined in the context of 
the specific interconnection topology and scheduling 
policy used. In divisible load distribution theory, it is 
assumed that computation and communication loads can 
be partitioned arbitrarily among a number of processors 
and links, respectively. Furthermore, the theory of 
divisible load is fundamentally deterministic before the 
implementation. Firstly, the idea of the DLT is that all 
processors must stop computing at the same time by 
pre-partition. Actually, there are a large number of 
unpredictable factors when performing. So the theoretical 
optimal time may not be the optimal time in practice. 

Secondly, according to the theory of DLT, the more 
processors lead to higher efficiency. So the DLT attempts 
to make every processor work at the same time. But in 
practice, the increase of the number of the processors 
may not lead to the improvement of efficiency, because 
assigning the task and data communication may have a 
great influence on the parallel computing. Sometimes, we 
would rather let the sub-task wait for the high-capacity 
processor than send it to the low-capacity processor. 
Thirdly, it is assumed that computation and 
communication load can be partitioned arbitrarily, but in 
practice, there are a large number of problems which 
cannot be partitioned arbitrarily such as the task need the 
pre-results. In order to solve the aforementioned problems, 
we like to consider a new optimal allocation task model in 
another point of view. We aim to let this model help us to 
realize the optimal execution time in practice. In the 
following, we construct this task allocation model to 
realize the real-time task distribution. The main 
procedures are as follows: 
 

i) Let Master 1c  be the Master and ic (1 i P  ) be the 

slaves. First, the Master initializes the data and 

subdivides the task into  ST N
 
sub-tasks that each 

sub-task is equivalent. 
ii) Every slave processor receives a sub-task from the 
Master and executes its assigned task in the parallel way. 

After the first allocation action, there are  ST N P  

sub-tasks left. 
iii) When the slave processor finishes the sub-task, the 
results will be sent back to the Master processor and then 
the slave processor will be added into the waiting  

 
 
 
 
sequence to wait for the assigned task from the Master. 

The waiting sequence denotes as  1 2, ,..., Pc c c c    . If 

there are several Slave processors which finish the 
sub-tasks simultaneously, the element of waiting 

sequence will be more than one, that is, 1P  . In 
addition, the amount of the sub-tasks implemented by 
each Slave processor will be recorded on the Master 

processor, this is,  1 2, ,...,P PN N N N , where iN  

respects the number of the sub-tasks that have been 

implemented by Slave processor ic . Thus, we can rank 

the waiting sequence from high to low according to the 
work they have implemented. 
iv) The Master processor only allocates one sub-task to 
one Slave processor at the same time. So the first 
element of the waiting sequence will get the first sub-task 
from the Master processor. The procedure will be ended 
until all tasks have been implemented. 
 
 
Remark 2 
 
Now, we analyze if the aforementioned allocation 
algorithm can realize the minimum execution time. The 
idea of the aforementioned algorithm is that the best 
computer will perform as more sub-tasks as possible. In 
the macroscopical perspective, the execution time should 
be minimum. The model does not give the optimal 
allocation distribution scheduling before implementation, 
instead it allocates the sub-tasks to the Slave computers 
in the course of implementation according to the 
performance of each computer in practice. Furthermore, 
we can also use the model to solve the problem for which 
the loads can not be partitioned arbitrarily among a 
number of processors and links, respectively. The optimal 

allocation scheme  1 2, ,..., PQ Q Q Q   can be got 

when all the tasks have been performed. 
 
 
THE INFLUENCE OF THE ASSIGNED MODEL TO THE 
SPEEDUP 
 
When evaluating a parallel system, we are often 
interested in how much performance is achieved by 
parallelizing a given application over a sequential 
implementation. Here, we will give another more rigorous 
upper bound of the speedup. Generally, the performance 
characteristics of each computer in the parallel program 
are transparent to the users, that is, it is impossible for us 
to get all the information of each computer used in the 
program. In other words, if the performance 
characteristics of each computer are known, we can have 
a rigorous speedup analysis based on the hardware 
system, but the transplant will be lost. Hence, it is much 
adaptive and practical to investigate the speedup bounds 
independent of the hardware. For the parallel system, the  



 
 
 
 
minimum execution time is defined as: 
 

min min Q
Q Q

T T 



 

 

Where Q  indicates the set of all the tasks allocation 

scheme. Let the optimal allocation scheme 

 1 2, ,..., PQ Q Q Q   and define 
dQ  as: 

 

max mindQ Q Q              (7) 

 

Where max
1
max i

i P
Q Q

 
 

 
and 

min
1
min i

i P
Q Q

 
  . 

Furthermore, it is the difference of the Slave with the most 
sub-tasks and the Slave with the least sub-tasks. 

Obviously, we have max minQ Q 
 
for the homogenous 

cluster system and 0dQ 
 
for the heterogeneous 

cluster system. Before stating the main theorem, we give 
the following lemma firstly. 
 
 
Lemma 
 

Let the number of Slave tasks be  ST N  and the 

number of processors be P . If dQ  is fixed, for a task 

allocation scheme Q , we have that: 

 

max

( ) ( ) ( 1)d dST N Q ST N P Q
Q

P P

    
 

     

 (8) 

 
 
Proof 
 

Firstly, we give the proof of the lower bound. If dQ  is a 

constant, the maximum of  ST N  is 

min max( 1)Q P Q    . Then we have: 

 

min max

min min

min

( ) ( 1)

( 1) ( )

 ( 1)

d

d

ST N Q P Q

Q P Q Q

P Q P Q

    

      

     
 

            (9) 

 
By transposition, we can get: 
 

min

( ) ( 1) dST N P Q
Q

P

  
                (10) 

 

Furthermore, we obtain the lower bound of maxQ , that is: 
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max min

( ) ( 1)

( )

d

d
d

d

Q Q Q

ST N P Q
Q

P

ST N Q

P

   

  
 




       (11) 

 

Similarly, the minimum of  ST N  is 

max min( 1)Q P Q    , then we have that: 

 

max max

max

( ) ( 1) ( )

( ) ( 1)

d

d

ST N P Q Q Q

ST N P Q Q P

      

     
       (12) 

 
So it follows that: 
 

max

( ) ( 1) dST N P Q
Q

P

  
          (13) 

 
Combining Equations 11 and 13, we get the inequality 
(Equation 8). Before, giving the main theorem, we add 
another assumption: 
 

H9:   Ov(N) = Comm N,ST N = 0 . 

 
 
Remark 3 
 

Although, we assume   Ov(N) = Comm N,ST N = 0 , 

but Seq(N)  cannot be neglected. This is because the 

time of data communication between the Master and 
Slaves is very small compared with the whole execution 
time. According to the idea of the parallel algorithm in the 
aforementioned discussion, the parallel algorithm includes 
two parts: sequence computation and parallel 
computation. The proportions of each part are different for 

the different problems in practice. Thus, Seq(N)  should 

not be neglected. But for different problems, the 
proportions of the sequence computation part are different. 
And it is not easy to get the exact value of the proportion. 
In the proof of the following Theorem, we shall show that 
Lemma can help us overcome this difficulty. 
 
 
Theorem 
 

Assume H9 holds for a fixed number of processors P  

and a fixed size problem N , if the number of Slave tasks 

is ST(N)  and the minimum execution time of the task 

allocation scheme Q  is minT , then the speedup of the  
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parallel algorithm satisfies: 

 

( )
( , )

( ) d

ST N P
S N P

ST N Q





       

(14) 

 
 
Proof 
 
According to the definition of the speedup, that is 

min

( , )
seqT

S N P
T

 , substituting the formula of seqT and 

minT
,
 that is Equations 3 and 6 into it, we arrive at: 

 

1

( ) ( ) ( , ( ))
( , )

( ) ( ) max{ [ ( , ( )) ( , ( ))]}i i i
i P

Seq N ST N Par N ST N
S N P

Seq N Ov N Q Par N ST N Comm N ST N

 

 

 


   
   (15) 

 
Using the assumption H9, we have: 
 

1

( ) ( ) ( , ( ))
( , )

( ) max{ ( , ( ))}i i
i P

Seq N ST N Par N ST N
S N P

Seq N Q Par N ST N

 

 

 


 
      (16) 

 

Noting ( , ( )) ( , ( ))Par N ST N Par N ST N  , 

( ) ( )Seq N Seq N 
, 

we get: 

 

1

1

( ) ( ) ( , ( ))
( , )

( ) max{ ( , ( ))}

( ) ( ) ( , ( ))
( , )

( ) max{ } ( , ( ))

i
i P

i
i P

Seq N ST N Par N ST N
S N P

Seq N Q Par N ST N

Seq N ST N Par N ST N
S N P

Seq N Q Par N ST N

 

 

 

 

 

 

 


 

 


 

    (17) 

 

For ( ) 0Seq N  , according to the inequality 

A c A

B c B





( , , 0A B c  ), it follows that: 

 

1

( ) ( , ( ))
( , )

max{ } ( , ( ))i
i P

ST N Par N ST N
S N P

Q Par N ST N





 





       (18) 

 
That is: 
 

1

( )
( , )

max{ }i
i P

ST N
S N P

Q
 

         (19) 

 

By the definition of max
1
max{ }i

i P
Q Q

 
  , it follows that: 

 
 
 
 

max

( )
( , )

ST N
S N P

Q



         (20) 

 

If 
dQ  is known, according to Lemma, we 

have
max

( ) dST N Q
Q

P


  . Substituting this into Equation 

20, we get: 
 

        ( )         
( , )

( ) d

ST N
S N P

ST N Q

P




       (21) 

 

That is 
   ( )    

( , )
( ) d

ST N P
S N P

ST N Q





 

 
Which is what we intend to prove. 
 

Obviously, the Theorem implies ( )ST N P  if and only 

if 0dQ  , which says this heterogeneous cluster system 

transfers to a homogenous cluster system if there is no 

difference between maxQ  and minQ . Here, we rewrite 

Equation 14 as: 
 

( , )S N P P           (22) 

 

Where 
 

  d

ST N

ST N Q
 


. We can find that, the 

homogenous cluster system leads to 0dQ   which 

makes 1  . So the homogenous cluster system 

decreases the lower bound of the speedup of the system. 
And this can be measured by the difference between the 

“best” processor and the “worst” processor, namely dQ . 

 
 
EXAMPLE OF PARALLEL COMPUTATION 
 
There are rich literatures which present the naive parallel 
matrix multiplication algorithm (Beaumont et al., 2001; Li, 
2001, 2010). But in this section, we will present a naive 
parallel implementation of the classical problem; this is 
the prime number searching. The method of sifting the 
prime numbers is popular among the methods to solve 
this problem. The basic idea is as follows: 
 
1) Generate a natural number 

sequence {2,3,  ... , }nA n ; 

2) Delete all multiples of 2, 3, 4, …,
2

n 
 
 

but the number  
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Table 1. Information of the hardware. 
 

Computer CPU EMS memory (M) 

Master Celeron (R), 2.80 GHz 1024M 

S1 AMD Athlon (tm); dual core processor 4000+, 1.8 GHz 512 M 

S2 Intel (R) T2080 1.73 GHz 1024 M 

S3 AMD Athlon (tm); dual core processor 4600+, 2.4 GHz 1.5 GM 

 
 
 

itself, where 
2

n 
 
 

 is the floor of 
2

n
. 

 
Generalizing the idea, we can search the prime number 
from m  to n , where m n . The idea is as follows: 

 
1) Generate a natural number 

sequence { , 1,  ... , }nA m m n  ; 

2) Delete the multiples of 2, 3, 4, …,
2

n 
 
 

, this is, 

generally, generate a sequence: 
 

| , , 2,3,....,
2

i n

n
B i t i t A t N i   
               

 

and obtain its complement 
n i

i

A B . 

To set up the heterogeneous cluster system, we 
consider a system which is composed of one Master 
processor and three Slave processors in the experiment. 
The information of each computer is given in Table 1. 

 
 
Sifting prime number with Matlab 

 
According to the algorithm described earlier, the codes for 
sifting prime numbers are as follows: 
 
1) Function (R, time) = Prime (m, n); 
2) syms time; 
3) Time = cputime; 
4) A = (m: n); 
5) For I = 2:floor (n/2); 
6) mint = max(ceil(m/i),2); 
7) maxt = floor(n/i); 
8) Clear B; 
9) B = i*(mint:maxt); 
10) For j = 1: size (B, 2); 
11) A (find (A==B(j))) = [ ]; 
12) End; 
13) End; 
14) A (find (A==1)) = [ ]; 
15) R = A; 

16) Time = cputime – time. 
 
The next work is to design the main function whose jobs 
are to manage the system, initialize the data, allocate the 
task, communicate the information, etc. Subdivide the 

problem n  into ( )ST N  sub-tasks as: 

 

Prime(1,  )
( )

n

ST N
, 

2
Prime( 1,  )

( ) ( )

n n

ST N ST N
 , …, 

( ( ) 1)
Prime( 1,  )

( )

n ST N
n

ST N


 . 

 

The codes of the main function are as follows: 
 

1) Function ParallelPrime. 
2) tic; 
3) jm = find RESOURCE 
(‟scheduler‟, ‟type‟ ,‟jobmanager‟, ‟name‟, ‟master 
computer‟, ‟LookupURL‟, ‟192.168.0.101‟); 
4) Job = createJob (jm); 
5) Set (job, ‟File Dependencies‟, {‟Prime.m‟}), 
6) MAXNUM = 50000; m (1: 10) = [0]; n (1:10) = [0]; 
7) For I = 1:10, 
8) m (i) = 1 + (I - 1) * (MAXNUM./10); 
9) n (i) = i* (MAXNUM./10); 
10) End; 
11) Create Task (job, @Prime, 1, {m (1), n (1)}); 
12) Create Task (job, @Prime, 1, {m (2), n (2)}); 
13) Create Task (job, @Prime, 1, {m (3), n (3)}); 
14) Create Task (job, @Prime, 1, {m (4), n (4)}); 
15) Create Task (job, @Prime, 1, {m (5), n (5)}); 
16) Create Task (job, @Prime, 1, {m (6), n (6)}); 
17) Create Task (job, @Prime, 1, {m (7), n (7)}); 
18) Create Task (job, @Prime, 1, {m (8), n (8)}); 
19) Create Task (job, @Prime, 1, {m (9), n (9)}); 
20) Create Task (job, @Prime, 1, {m (10), n (10)}); 
21) submit (job); 
22) Wait For State (job, ‟finished‟); 
23) Sub results = get All Output Arguments (job); 
24) Results = [ ]; 
25 For i = 1: size (subresults, 1); 
26) Results = (results, sub results {i}); 
27) End; 
28) Toc; 
 

These are the codes of the parallel algorithm. By definition  
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Table 2. Record of the parallel computation. 
 

Size (N) Time (s) Size (N) Time (s) 

50000 8.39562867 130000 31.0759633 

60000 9.97009067 140000 34.4556117 

70000 12.1911177 150000 38.6891003 

80000 14.7904617 160000 43.33529 

90000 17.455761 170000 47.7182023 

100000 20.016397 180000 53.7299207 

110000 23.4023313 190000 57.8931747 

120000 26.8131993 200000 63.5699997 

 
 
 
of speedup, the experiment needs to be designed with the 
corresponding sequential algorithm. But there are two 
forms about the sequential algorithm, one is to run the 

function (1, )Prime MAXIMUM on one computer 

directly, the other is to subdivide the task into 

( )ST N sub-tasks like the parallel computation and run 

them one by one on one computer. So in this experiment 
we design two sequential algorithms to analyze the 
speedup. For convenience, we call the first sequential 
algorithm the „series algorithm‟ and call the second 
sequential algorithm the „dispersal algorithm‟. Using the 

function ( , )Prime m n , the codes of sequential algorithm 

are as follows: 
 
The codes of the „series algorithm‟: 
 
1) Function SeqPrime; 
2) clc; 
3) tic; 
5) MAXNUM = 50000; 
6) Prime (1, MAXNUM); 
7) toc; 
 
The codes of the „dispersal algorithm‟: 
 

1) Function SeqPrime_2; 
2) clc; 
3) syms Seqtime; 
4) Seqtime = 0; 
5) Results = [ ]; 
6) MAXNUM = 20000; 
7) for I = 0:9; 
8) m = 1 + i* (MAXNUM./10); 
9) n = (I + 1)* (MAXNUM./10); 
10) (R, T) = Prime (m, n); 
11) Results = (Results, R); 
12) Seqtime = Seqtime+T; 
13) End. 
 
We list the experiment records next; then, we analyze and 
discuss the obtained experiment results. 

EXPERIMENT RESULTS 
 
For the comprehensive analysis of the problem, we 
design the following three experiments: parallel 
computation, series computation and dispersal 
computation. 
 
 
Computation of parallel algorithm 
 
This experiment aims to analyze the relation between the 
size of the problem and the execution time (Table 2). If we 
fit the aforementioned data with polynomial, the 

polynomial is
20.1282 0.4958 2.5431y x x   , 

2 0.9998R   which indicates the goodness of fit. The 

results shown in Figure 1 demonstrate that if the size of 
the problem increases, then the execution time increases 
nonlinearly. 
 

 

Computation of dispersal algorithm 
 

In order to compare with the parallel system, the size of 
the problem is the same as the parallel research; so the 
data of the experiment given in Table 3. Similarly, we can 
find a function to fit the 

data
20.2366 3.6926 9.8107y x x   , 

2 1R   which 

indicates the goodness of fit. Furthermore, we also 
observe that the increasing of the execution time is 
nonlinear with the problem scale increasing (Figure 2). 
 
 
Computation of series algorithm 
 

The idea of the series algorithm is to search the prime 

from 0 to N directly. From our experience, the EMS 

memory of the computer has an influence on the 
execution time as the size of the problem increases. The 
experiment data are given in Table 4. To fit the data, we 
find the 

function
3 20.2145 1.5994 3.6621 2.7912y x x x    ,  
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Figure 1. The curve of the parallel algorithm. 

 
 
 

Table 3. Record of the dispersal computation. 
 

Size (N) Time (s) Size (N) Time (s) 

50000 14.0781 130000 62.5 

60000 18.1719 140000 70.3438 

70000 23.0156 150000 78.8594 

80000 28.1719 160000 88.5469 

90000 33.9064 170000 98.2656 

100000 40.1094 180000 107.8438 

110000 47.125 190000 118.3906 

120000 54.6563 200000 129.0938 
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Figure 2. The curve of the dispersal algorithm. 
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Table 4. Record of the series computation. 
 

Size (N) Time (s) Size (N) Time (s) 

10000 3.0156 40000 38.9844 

15000 6.2813 50000 62.1563 

16000 7.0313 60000 94.2813 

17000 7.875 70000 134.7031 

18000 8.6094 80000 190.0781 

20000 10.35945 90000 252.875 

30000 22.375 10000 326.9531 
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Figure 3. The curve of the series algorithm. 

 
 
 

2 0.9997R   which indicates the goodness of fit. Figure 

3 illustrates that this algorithm has a strong nonlinear 
increasing trend which means the algorithm is not very 
stable. That means if the size of the problem is large 
enough, the system may not be able to finish the task in 
finite time. 
 
 

The results 
 
Figure 4 demonstrates that the nonlinear characteristic of 
the series is stronger than the dispersal algorithm. The 
main reasons are that the EMS memory plays an 
important role in the computation. For a large size 
problem, a large proportion of the EMS memory will be 
occupied for data stored and processed. Just very limited 
EMS memory is left for running the algorithm. Thus, the 
execution time will increase rapidly even unpredictably. 
The dispersal algorithm can perform well because the 
EMS memory is enough for every computation. This is 
also the reason; for that its nonlinear characteristic is 

weaker: 
 
1) The execution time of the series algorithm is 
unpredictable as the size of the problem increases, thus, 
the dispersal algorithm is relatively stable. 
2) The efficiency of solving the problem in unite time will 
decrease as the size of the problem increases. 
3) As shown in Figure 4, the resource of the computer will 
have a limit to process the series algorithm, that is, the 
series algorithm is not suitable for the large-scale 
problems. 
4) For a large problem, partitioning the problem is a 
helpful way to optimize the algorithm and will increase the 
efficiency of the sequential algorithm. 
 
 
DISCUSSION 
 
Analysis of the results 
 
From Figure 5a, comparing the nonlinear characteristic of  
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Figure 4. Comparison of the series and dispersal algorithm. 

 
 
 

           

 

 

 

 

Ti
m

e 
(s

) 

Ti
m

e 
(s

) 

 
 
Figure 5. Speedup and the comparison of the dispersal and parallel algorithm. 

 
 
 
the parallel with the sequential algorithm, we conclude 
that the nonlinear characteristic of the parallel algorithm is 
weaker than the sequential algorithm, that is, the parallel 
algorithm is more stable. The reason is that the influence 

of all the negative factors will be assigned to each 
computer in the parallel frame. Figure 5b shows the 
speedup which is the relative speedup defined earlier. We 
see  an  interesting  phenomenon  that  the  speedup 
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Figure 6. Speedup and the comparison of the series and parallel algorithm. 

 
 
 
approaches its maximum rapidly and then decrease to a 
constant slowly as the problem size increases: 
 
1) The proportion of the time for the data communication 
and task partition is relatively large for a small enough 
problem. 
2) The maximum value indicates that at this special 
problem size level, the efficiency of the performance is the 
highest for the parallel system. By simple computation, we 

get the maximum value 2.0381 at 119963N  . This 

implies that however large the problem is, the size of the 
Slave task should be arranged to be 119963 in order to 
get the best efficiency. 
3) The speedup has a limit when the size of the 

problem N  . This is to say the parallel system is 

stable as the size increases. 
4) It verifies that the upper of the speedup is smaller than 
the number of the computers of the cluster, that is, 

Speedup 3P  . This also verifies the conclusion of the 

Theorem. 

 
 
DISCUSSION AND CONCLUSION 

 
Under the classical definition of the speedup, that is the 
ratio of the execution time of parallel algorithm to series 
algorithm, as shown in Figure 6b, we obverse that the 
speedup will increase nonlinearly and rapidly, furthermore, 

it is more than the number of the processors of the cluster. 
We call this phenomenon the super-speedup which is 
different from the existing works in Yero and Henriques 
(2007). Compared with the results in Yero and Henriques 
(2007), the reason of this phenomenon is that the 
necessary partition of the task optimizes the processing 
and in some sense the partition have the signification of 
„speedup‟. In practice, we optimize the processing twice 
including partition of the task and the parallel computing. 
Thus, the speedup is the superposition of these two 
phenomena. Of course, it will exceed the speedup caused 
by single factor which is the parallel computing. This is the 

reason that the speedup is larger than P . But there is no 
contradiction with the main conclusions aforementioned. 
On the contrary, it demonstrates the phenomenon of the 
super-speedup and it is caused by the experiment 
designs. 
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