
Scientific Research and Essays Vol. 7(6), pp. 647-659, 16 February, 2012
Available online at http://www.academicjournals.org/SRE
DOI: 10.5897/SRE11.1024
ISSN 1992-2248 ©2012 Academic Journals

Full Length Research Paper

An analysis of super-linear speedup for master-slave
model

Wu Weining1*, Sihon Crutcher2 and Xu Runzhang3

1
School of Computer Science and Technology, Harbin Institute of Technology, 150001, People's Republic of China.

2
US Army RDECOM AMRDEC Weapons Development and Integration Directorate Huntsville, Alabama USA 35898.

3
College of Science, Harbin Engineering University, 150001, People's Republic of China.

Accepted 10 January, 2012

Recently, large-scale computations have been used in many real application areas. At the same time,
there exists more parallel computing technique on cluster in order to meet these demands. In this paper,
a speedup analysis of Master-Slave application on heterogeneous cluster is investigated. A task
allocation model is set up and its theoretical analysis of execution time is developed. A more accurate
upper bound of speedup is derived under some conditions by virtue of the task allocation model.
Furthermore, this theoretical analysis is verified by a group of experiments and the experimental results
show that the speedup increases nonlinearly and rapidly which is caused by the task optimization in the
process.

Key words: Master-Salve, speedup, cluster computing, heterogeneous cluster, super linear speedup.

INTRODUCTION

In the recent years, fast and efficient computers are high
demand in many applications such as scientific,
engineering, energy resources, medical, military, artificial
intelligence and some basic research areas. In these
tasks, the common point is that large-scale computation is
needed so that parallel processing computers are suitable
to meet these demands. Among all the models in parallel
computing, Master-Slave model is one of the most
popular models. In this model, one or more processes
which are so-called Master processes generate work and
allocate it to worker processes. With different evaluations
of task allocation, it is believed that different computations
are derived. This is also the main topic of this present
paper. Before we give details of this paper, we like to
concern how to evaluate the computing performance first.
Speedup is always used to evaluate the performance of a
parallel model. Speedup is a measure by capturing the
relative benefit of solving a problem in a parallel

*Corresponding author. E-mail: wuweining@yahoo.com.cn. Tel:
86-13936332059.

environment. Although, there exist different definitions,
speedup is basically the ratio of sequential and parallel
execution times on the same problem. The upper bound
of speedup for a fixed size problem is established by
Amdahl (1967). Recently, it has been used to evaluate the
performance of large-scale data processing on multi-core
machine or cluster Dutta et al. (2011). Then, Gustafson
(1988) shows that it is possible to increase the size of task
in order to avoid the strict limits of Amdahl‟s law and then
the more effective speedup metric can be obtained (Yang
et al., 2011). Both Amdahl‟s and Gutafson‟s results have a
far-reaching impact on parallel computing (Snyder and
Sterling, 2000) in the last millennium or grid computing
(Gonzalez-Velez and Cole, 2008) recently. There is a rich
literature (Head and Govindaraju, 2007, 2009; Almeida et
al., 2006; Williams, 2011; Goswami et al., 2010; Bastian
et al., 2008; Li et al., 1999; Silva da FAB and Senger,
2011; Shylo et al., 2011) on study of performance of
parallel systems.

In this paper, we study the influence of different task
allocations to the speedup with the Maser-Slave model on
heterogeneous clusters which is first considered by Yero
and Henriques (2007). We aim to find the optimal task

648 Sci. Res. Essays

allocations by advance testing. In Yero and Henriques
(2007), they obtained the analytic expression for the
execution time by constructing the application, cluster and
execution models. They defined speedup and derived
speedup bounds based on the inherent parallelism of the
application and the aggregated computing power of the
cluster. An analytical expression for efficiency is also
derived and used to define scalability of the
algorithm-cluster combination based on the isoefficiency
metric. Furthermore, they established the necessary and
sufficient conditions for an algorithm cluster combination
to be scalable which are easy to verify and use in practice.
But they did not consider the influence of the task
allocation to the speedup. We got a more accurate upper
bound of the speedup under some conditions for the task
allocation model. Then, we gave a process to find the
optimal task allocation, so-call advance test. Furthermore,
we design an experiment to verify the theoretical analysis.
By analyzing the experiment data we find some nonlinear
phenomena which show some interesting results of the
parallel computation. It is also interesting to find a
phenomenon which we define as super-speedup.

MODELS

Definitions and previous work

Here, we are going to recall the heterogeneous clusters
model which was first given in Yero and Henriques (2007).
The goal of the present paper is not to form a new model,
but to find new phenomenon related to this
heterogeneous cluster model. In order to save the time of
reader, we summarize some definitions and assumptions
in here. First, we give some definitions which will be used
in this paper:

P : The number of computers forming the cluster;

 1 2, ,..., PC c c c : The set of computers forming the

cluster. Associated with each computer, there is an

attribute
iopt , 1 i P  , including the time spent by

computer i to execute an operation. The value of
iopt

is given in secs op . Associated with each link between

computer 1c and ic
,
 there is an attribute

ict . The value

of
ict is expressed in sec unit where unit may be

bytes, words or any other data unit. By definition,
1ct is 0.

In the application, the computers in the cluster may have
twin or more cores which can influence on the computing

ability. Here, it can be reflected on
iopt , whose value is

smaller than it in a single core computer. Parallel
applications are usually based on tasks graphs (Almeida
et al., 2006; Goswami et al., 2010; Yan et al., 1996;

Sanjay and Vadhiyar, 2008) with the nodes representing
the tasks and the links representing data flow. The
application model is the base for our study. The marks
which we used in the present paper are presented as
follows:

N: A parameter that denotes the size of the problem.
Master task: The Master task has the function of
distributing and collecting data from the slaves as well as
executing whatever serial code is necessary to solve the
problem at hand. The Master is composed by:

()aSeq N : An initial sequential code probably used to

generate or read some data, or to preprocess the data
before the parallel algorithm starts;

()Split N : The code used to divide the data to be

processed among the slaves;

()Gather N : The code used to collect the results from the

slaves;

()bSeq N : A final sequential code, probably used to

generate the final result and/or output it to its final
destination.

Slave tasks: The ()ST N slave tasks have the function

of actually solving the problem. They are defined by:

(, ())In N ST N : Size of the input data for each slave;

(, ())Out N ST N : Size of the output produced by each

slave;

(, ())W N ST N : The amount of work performed by the

slave.

iQ : The assigned tasks are executed by each computer

 sequentially. And it satisfies that:

1

()
P

i

i

ST N Q




Remark 1

The items ()aSeq N , ()bSeq N , ()Split N ,

()Gather N and (, ())W N ST N

are expressed in

number of operations while (, ())In N ST N and

(, ())Out N ST N are expressed in number of data units.

The following assumption appearing in Yero and
Henriques (2007) are also in force in the discussion of the
present paper:

H1: (, ())In N ST N , (, ())Out N ST N and

(, ())W N ST N

are equal for all slave tasks, that is, the

work can be perfectly divided among the slaves.

H2: lim (, ())
N

In N ST N IN


  , that is, the size of the

input data must not grow indefinitely with N .

H3: lim (, ())
N

Out N ST N OUT


  . Likewise, the

size of the output data must be bounded for all values of

N .

H4: lim (, ())
N

W N ST N PAR


  . The amount of

work performed by each slave must also be bounded for

all values of N .

H5: lim () (, ())
N

ST N W N ST N


   . The amount of work

forming the parallelizable part of the problem goes to 

with N .

H6: ()ST N P , ,N P . The number of slave tasks

must be greater than or equal to P for any P and any
problem size, otherwise there would be unused
processors.

H7: ()aSeq N , ()bSeq N , ()Split N , ()Gather N ,

(, ())In N ST N , (, ())Out N ST N

and (, ())W N ST N

are continuous functions of N and ()ST N

for

0N  .

H8:
iopt , 1 i P  does not depend on N , that is, an

increase in problem size does not induce an increase in
the time to execute an operation.

For a task distribution  1 2, ,..., PQ Q Q Q  among

processors, considering only computer ic , we define the

execution time iT

as:

   

        

   

1 1

1 1

, , ,
i i i

i a op op

i c op c

op b op

T Seq N t Split N t

Q In N ST N t W N ST N t Out N ST N t

Gather N t Seq N t

   

        

   

 (1)

Then the time for the application to execute is given by:

   

      
1

1

max

max , ,

iQ i
i P

i i i
i P

T T Seq N Ov N

Q Par N ST N Comm N ST N

 

 

  

    

 (2)

Where

     
1a b opSeq N Seq N Seq N t    

     
1opOv N Split N Gather N t    

        , , ,
ii cComm N ST N In N ST N Out N ST N t    

Weining et al. 649

     , ,
ii opPar N ST N W N ST N t 

From Equation 2, we see that the parallel execution time

TQ depends on the scheduling Q used. If Q is

defined as the set of all possible scheduling decisions Q

for ()ST N

slave tasks considering the optimum

scheduling decision, the minimum execution time
minT

can be presented as:

min min()Q
Q Q

T T 




(3)

Consider the time T 
 defined as:

()

 () () [(, ()) (, ())]
ST N

T Seq N Ov N Par N ST N Comm N ST N
P

       

(4)

Where

() [() ()]a b opSeq N Seq N Seq N t   

() [() ()] opOv N Split N Gather N t   

(, ()) [(, ()) (, ())] cComm N ST N In N ST N Out N ST N t   

(, ()) (, ()) opPar N ST N W N ST N t  

1
min()

iop op
i P

t t

 
 and

1
min()

ic c
i P

t t

 


Furthermore, we formally define the relative speedup as:

 ,
seq

min

T
S N P

T
 (5)

Where minT

is defined by Equation 3 and

    seqT = Seq (N) +ST N Par N,ST N  (6)

The task allocation model

For a given problem, assume that the parallel algorithm
has been already designed. The main problems are how
to subdivide the task to each processor and how to carry
out these tasks on the parallel platform. Obviously,
different schemes will have different influence on the
utilization of the computing ability to the parallel system.

650 Sci. Res. Essays

We will answer the question on how to decrease the
execution time. Of course, it is easy for the homogeneous
clusters, but difficult for the heterogeneous cluster. So the
task allocation scheme has a strong influence for the
execution time. For the Master-Slave application on large
heterogeneous clusters, the optimal scheduling have
been considered by using the Divisible Load Theory
(known as DLT) (Robertazzi, 2003) as proposed in Shylo
et al. (2011), Mohamed and Al-Jaroodi (2011) and Yu and
Robertazzi (2003). For a minimum time solution, all
processors must stop computing at the same instant,
otherwise load could be transferred from busy to idle
processors. Here, optimality is defined in the context of
the specific interconnection topology and scheduling
policy used. In divisible load distribution theory, it is
assumed that computation and communication loads can
be partitioned arbitrarily among a number of processors
and links, respectively. Furthermore, the theory of
divisible load is fundamentally deterministic before the
implementation. Firstly, the idea of the DLT is that all
processors must stop computing at the same time by
pre-partition. Actually, there are a large number of
unpredictable factors when performing. So the theoretical
optimal time may not be the optimal time in practice.

Secondly, according to the theory of DLT, the more
processors lead to higher efficiency. So the DLT attempts
to make every processor work at the same time. But in
practice, the increase of the number of the processors
may not lead to the improvement of efficiency, because
assigning the task and data communication may have a
great influence on the parallel computing. Sometimes, we
would rather let the sub-task wait for the high-capacity
processor than send it to the low-capacity processor.
Thirdly, it is assumed that computation and
communication load can be partitioned arbitrarily, but in
practice, there are a large number of problems which
cannot be partitioned arbitrarily such as the task need the
pre-results. In order to solve the aforementioned problems,
we like to consider a new optimal allocation task model in
another point of view. We aim to let this model help us to
realize the optimal execution time in practice. In the
following, we construct this task allocation model to
realize the real-time task distribution. The main
procedures are as follows:

i) Let Master 1c be the Master and ic (1 i P ) be the

slaves. First, the Master initializes the data and

subdivides the task into  ST N

sub-tasks that each

sub-task is equivalent.
ii) Every slave processor receives a sub-task from the
Master and executes its assigned task in the parallel way.

After the first allocation action, there are  ST N P

sub-tasks left.
iii) When the slave processor finishes the sub-task, the
results will be sent back to the Master processor and then
the slave processor will be added into the waiting

sequence to wait for the assigned task from the Master.

The waiting sequence denotes as  1 2, ,..., Pc c c c    . If

there are several Slave processors which finish the
sub-tasks simultaneously, the element of waiting

sequence will be more than one, that is, 1P  . In
addition, the amount of the sub-tasks implemented by
each Slave processor will be recorded on the Master

processor, this is,  1 2, ,...,P PN N N N , where iN

respects the number of the sub-tasks that have been

implemented by Slave processor ic . Thus, we can rank

the waiting sequence from high to low according to the
work they have implemented.
iv) The Master processor only allocates one sub-task to
one Slave processor at the same time. So the first
element of the waiting sequence will get the first sub-task
from the Master processor. The procedure will be ended
until all tasks have been implemented.

Remark 2

Now, we analyze if the aforementioned allocation
algorithm can realize the minimum execution time. The
idea of the aforementioned algorithm is that the best
computer will perform as more sub-tasks as possible. In
the macroscopical perspective, the execution time should
be minimum. The model does not give the optimal
allocation distribution scheduling before implementation,
instead it allocates the sub-tasks to the Slave computers
in the course of implementation according to the
performance of each computer in practice. Furthermore,
we can also use the model to solve the problem for which
the loads can not be partitioned arbitrarily among a
number of processors and links, respectively. The optimal

allocation scheme  1 2, ,..., PQ Q Q Q  can be got

when all the tasks have been performed.

THE INFLUENCE OF THE ASSIGNED MODEL TO THE
SPEEDUP

When evaluating a parallel system, we are often
interested in how much performance is achieved by
parallelizing a given application over a sequential
implementation. Here, we will give another more rigorous
upper bound of the speedup. Generally, the performance
characteristics of each computer in the parallel program
are transparent to the users, that is, it is impossible for us
to get all the information of each computer used in the
program. In other words, if the performance
characteristics of each computer are known, we can have
a rigorous speedup analysis based on the hardware
system, but the transplant will be lost. Hence, it is much
adaptive and practical to investigate the speedup bounds
independent of the hardware. For the parallel system, the

minimum execution time is defined as:

min min Q
Q Q

T T 




Where Q indicates the set of all the tasks allocation

scheme. Let the optimal allocation scheme

 1 2, ,..., PQ Q Q Q  and define
dQ as:

max mindQ Q Q    (7)

Where max
1
max i

i P
Q Q

 
 

and

min
1
min i

i P
Q Q

 
  .

Furthermore, it is the difference of the Slave with the most
sub-tasks and the Slave with the least sub-tasks.

Obviously, we have max minQ Q 

for the homogenous

cluster system and 0dQ 

for the heterogeneous

cluster system. Before stating the main theorem, we give
the following lemma firstly.

Lemma

Let the number of Slave tasks be  ST N and the

number of processors be P . If dQ is fixed, for a task

allocation scheme Q , we have that:

max

() () (1)d dST N Q ST N P Q
Q

P P

    
 

 (8)

Proof

Firstly, we give the proof of the lower bound. If dQ is a

constant, the maximum of  ST N is

min max(1)Q P Q    . Then we have:

min max

min min

min

() (1)

(1) ()

 (1)

d

d

ST N Q P Q

Q P Q Q

P Q P Q

    

      

     

 (9)

By transposition, we can get:

min

() (1) dST N P Q
Q

P

  
  (10)

Furthermore, we obtain the lower bound of maxQ , that is:

Weining et al. 651

max min

() (1)

()

d

d
d

d

Q Q Q

ST N P Q
Q

P

ST N Q

P

   

  
 




 (11)

Similarly, the minimum of  ST N is

max min(1)Q P Q    , then we have that:

max max

max

() (1) ()

() (1)

d

d

ST N P Q Q Q

ST N P Q Q P

      

     
 (12)

So it follows that:

max

() (1) dST N P Q
Q

P

  
  (13)

Combining Equations 11 and 13, we get the inequality
(Equation 8). Before, giving the main theorem, we add
another assumption:

H9:   Ov(N) = Comm N,ST N = 0 .

Remark 3

Although, we assume   Ov(N) = Comm N,ST N = 0 ,

but Seq(N) cannot be neglected. This is because the

time of data communication between the Master and
Slaves is very small compared with the whole execution
time. According to the idea of the parallel algorithm in the
aforementioned discussion, the parallel algorithm includes
two parts: sequence computation and parallel
computation. The proportions of each part are different for

the different problems in practice. Thus, Seq(N) should

not be neglected. But for different problems, the
proportions of the sequence computation part are different.
And it is not easy to get the exact value of the proportion.
In the proof of the following Theorem, we shall show that
Lemma can help us overcome this difficulty.

Theorem

Assume H9 holds for a fixed number of processors P

and a fixed size problem N , if the number of Slave tasks

is ST(N) and the minimum execution time of the task

allocation scheme Q is minT , then the speedup of the

652 Sci. Res. Essays

parallel algorithm satisfies:

()
(,)

() d

ST N P
S N P

ST N Q






(14)

Proof

According to the definition of the speedup, that is

min

(,)
seqT

S N P
T

 , substituting the formula of seqT and

minT
,
 that is Equations 3 and 6 into it, we arrive at:

1

() () (, ())
(,)

() () max{ [(, ()) (, ())]}i i i
i P

Seq N ST N Par N ST N
S N P

Seq N Ov N Q Par N ST N Comm N ST N

 

 

 


   
 (15)

Using the assumption H9, we have:

1

() () (, ())
(,)

() max{ (, ())}i i
i P

Seq N ST N Par N ST N
S N P

Seq N Q Par N ST N

 

 

 


 
 (16)

Noting (, ()) (, ())Par N ST N Par N ST N  ,

() ()Seq N Seq N 
,

we get:

1

1

() () (, ())
(,)

() max{ (, ())}

() () (, ())
(,)

() max{ } (, ())

i
i P

i
i P

Seq N ST N Par N ST N
S N P

Seq N Q Par N ST N

Seq N ST N Par N ST N
S N P

Seq N Q Par N ST N

 

 

 

 

 

 

 


 

 


 

 (17)

For () 0Seq N  , according to the inequality

A c A

B c B





(, , 0A B c ), it follows that:

1

() (, ())
(,)

max{ } (, ())i
i P

ST N Par N ST N
S N P

Q Par N ST N





 





 (18)

That is:

1

()
(,)

max{ }i
i P

ST N
S N P

Q
 

 (19)

By the definition of max
1
max{ }i

i P
Q Q

 
  , it follows that:

max

()
(,)

ST N
S N P

Q



 (20)

If
dQ is known, according to Lemma, we

have
max

() dST N Q
Q

P


  . Substituting this into Equation

20, we get:

 ()
(,)

() d

ST N
S N P

ST N Q

P




 (21)

That is
 ()

(,)
() d

ST N P
S N P

ST N Q






Which is what we intend to prove.

Obviously, the Theorem implies ()ST N P if and only

if 0dQ  , which says this heterogeneous cluster system

transfers to a homogenous cluster system if there is no

difference between maxQ and minQ . Here, we rewrite

Equation 14 as:

(,)S N P P  (22)

Where
 

  d

ST N

ST N Q
 


. We can find that, the

homogenous cluster system leads to 0dQ  which

makes 1  . So the homogenous cluster system

decreases the lower bound of the speedup of the system.
And this can be measured by the difference between the

“best” processor and the “worst” processor, namely dQ .

EXAMPLE OF PARALLEL COMPUTATION

There are rich literatures which present the naive parallel
matrix multiplication algorithm (Beaumont et al., 2001; Li,
2001, 2010). But in this section, we will present a naive
parallel implementation of the classical problem; this is
the prime number searching. The method of sifting the
prime numbers is popular among the methods to solve
this problem. The basic idea is as follows:

1) Generate a natural number

sequence {2,3, ... , }nA n ;

2) Delete all multiples of 2, 3, 4, …,
2

n 
 
 

but the number

Weining et al. 653

Table 1. Information of the hardware.

Computer CPU EMS memory (M)

Master Celeron (R), 2.80 GHz 1024M

S1 AMD Athlon (tm); dual core processor 4000+, 1.8 GHz 512 M

S2 Intel (R) T2080 1.73 GHz 1024 M

S3 AMD Athlon (tm); dual core processor 4600+, 2.4 GHz 1.5 GM

itself, where
2

n 
 
 

 is the floor of
2

n
.

Generalizing the idea, we can search the prime number
from m to n , where m n . The idea is as follows:

1) Generate a natural number

sequence { , 1, ... , }nA m m n  ;

2) Delete the multiples of 2, 3, 4, …,
2

n 
 
 

, this is,

generally, generate a sequence:

| , , 2,3,....,
2

i n

n
B i t i t A t N i   
             

and obtain its complement
n i

i

A B .

To set up the heterogeneous cluster system, we
consider a system which is composed of one Master
processor and three Slave processors in the experiment.
The information of each computer is given in Table 1.

Sifting prime number with Matlab

According to the algorithm described earlier, the codes for
sifting prime numbers are as follows:

1) Function (R, time) = Prime (m, n);
2) syms time;
3) Time = cputime;
4) A = (m: n);
5) For I = 2:floor (n/2);
6) mint = max(ceil(m/i),2);
7) maxt = floor(n/i);
8) Clear B;
9) B = i*(mint:maxt);
10) For j = 1: size (B, 2);
11) A (find (A==B(j))) = [];
12) End;
13) End;
14) A (find (A==1)) = [];
15) R = A;

16) Time = cputime – time.

The next work is to design the main function whose jobs
are to manage the system, initialize the data, allocate the
task, communicate the information, etc. Subdivide the

problem n into ()ST N sub-tasks as:

Prime(1,)
()

n

ST N
,

2
Prime(1,)

() ()

n n

ST N ST N
 , …,

(() 1)
Prime(1,)

()

n ST N
n

ST N


 .

The codes of the main function are as follows:

1) Function ParallelPrime.
2) tic;
3) jm = find RESOURCE
(‟scheduler‟, ‟type‟ ,‟jobmanager‟, ‟name‟, ‟master
computer‟, ‟LookupURL‟, ‟192.168.0.101‟);
4) Job = createJob (jm);
5) Set (job, ‟File Dependencies‟, {‟Prime.m‟}),
6) MAXNUM = 50000; m (1: 10) = [0]; n (1:10) = [0];
7) For I = 1:10,
8) m (i) = 1 + (I - 1) * (MAXNUM./10);
9) n (i) = i* (MAXNUM./10);
10) End;
11) Create Task (job, @Prime, 1, {m (1), n (1)});
12) Create Task (job, @Prime, 1, {m (2), n (2)});
13) Create Task (job, @Prime, 1, {m (3), n (3)});
14) Create Task (job, @Prime, 1, {m (4), n (4)});
15) Create Task (job, @Prime, 1, {m (5), n (5)});
16) Create Task (job, @Prime, 1, {m (6), n (6)});
17) Create Task (job, @Prime, 1, {m (7), n (7)});
18) Create Task (job, @Prime, 1, {m (8), n (8)});
19) Create Task (job, @Prime, 1, {m (9), n (9)});
20) Create Task (job, @Prime, 1, {m (10), n (10)});
21) submit (job);
22) Wait For State (job, ‟finished‟);
23) Sub results = get All Output Arguments (job);
24) Results = [];
25 For i = 1: size (subresults, 1);
26) Results = (results, sub results {i});
27) End;
28) Toc;

These are the codes of the parallel algorithm. By definition

654 Sci. Res. Essays

Table 2. Record of the parallel computation.

Size (N) Time (s) Size (N) Time (s)

50000 8.39562867 130000 31.0759633

60000 9.97009067 140000 34.4556117

70000 12.1911177 150000 38.6891003

80000 14.7904617 160000 43.33529

90000 17.455761 170000 47.7182023

100000 20.016397 180000 53.7299207

110000 23.4023313 190000 57.8931747

120000 26.8131993 200000 63.5699997

of speedup, the experiment needs to be designed with the
corresponding sequential algorithm. But there are two
forms about the sequential algorithm, one is to run the

function (1,)Prime MAXIMUM on one computer

directly, the other is to subdivide the task into

()ST N sub-tasks like the parallel computation and run

them one by one on one computer. So in this experiment
we design two sequential algorithms to analyze the
speedup. For convenience, we call the first sequential
algorithm the „series algorithm‟ and call the second
sequential algorithm the „dispersal algorithm‟. Using the

function (,)Prime m n , the codes of sequential algorithm

are as follows:

The codes of the „series algorithm‟:

1) Function SeqPrime;
2) clc;
3) tic;
5) MAXNUM = 50000;
6) Prime (1, MAXNUM);
7) toc;

The codes of the „dispersal algorithm‟:

1) Function SeqPrime_2;
2) clc;
3) syms Seqtime;
4) Seqtime = 0;
5) Results = [];
6) MAXNUM = 20000;
7) for I = 0:9;
8) m = 1 + i* (MAXNUM./10);
9) n = (I + 1)* (MAXNUM./10);
10) (R, T) = Prime (m, n);
11) Results = (Results, R);
12) Seqtime = Seqtime+T;
13) End.

We list the experiment records next; then, we analyze and
discuss the obtained experiment results.

EXPERIMENT RESULTS

For the comprehensive analysis of the problem, we
design the following three experiments: parallel
computation, series computation and dispersal
computation.

Computation of parallel algorithm

This experiment aims to analyze the relation between the
size of the problem and the execution time (Table 2). If we
fit the aforementioned data with polynomial, the

polynomial is
20.1282 0.4958 2.5431y x x   ,

2 0.9998R  which indicates the goodness of fit. The

results shown in Figure 1 demonstrate that if the size of
the problem increases, then the execution time increases
nonlinearly.

Computation of dispersal algorithm

In order to compare with the parallel system, the size of
the problem is the same as the parallel research; so the
data of the experiment given in Table 3. Similarly, we can
find a function to fit the

data
20.2366 3.6926 9.8107y x x   ,

2 1R  which

indicates the goodness of fit. Furthermore, we also
observe that the increasing of the execution time is
nonlinear with the problem scale increasing (Figure 2).

Computation of series algorithm

The idea of the series algorithm is to search the prime

from 0 to N directly. From our experience, the EMS

memory of the computer has an influence on the
execution time as the size of the problem increases. The
experiment data are given in Table 4. To fit the data, we
find the

function
3 20.2145 1.5994 3.6621 2.7912y x x x    ,

Weining et al. 655

Ti
m

e
(s

)

Figure 1. The curve of the parallel algorithm.

Table 3. Record of the dispersal computation.

Size (N) Time (s) Size (N) Time (s)

50000 14.0781 130000 62.5

60000 18.1719 140000 70.3438

70000 23.0156 150000 78.8594

80000 28.1719 160000 88.5469

90000 33.9064 170000 98.2656

100000 40.1094 180000 107.8438

110000 47.125 190000 118.3906

120000 54.6563 200000 129.0938

Ti
m

e
(s

)

Figure 2. The curve of the dispersal algorithm.

656 Sci. Res. Essays

Table 4. Record of the series computation.

Size (N) Time (s) Size (N) Time (s)

10000 3.0156 40000 38.9844

15000 6.2813 50000 62.1563

16000 7.0313 60000 94.2813

17000 7.875 70000 134.7031

18000 8.6094 80000 190.0781

20000 10.35945 90000 252.875

30000 22.375 10000 326.9531

Ti
m

e
(s

)

Figure 3. The curve of the series algorithm.

2 0.9997R  which indicates the goodness of fit. Figure

3 illustrates that this algorithm has a strong nonlinear
increasing trend which means the algorithm is not very
stable. That means if the size of the problem is large
enough, the system may not be able to finish the task in
finite time.

The results

Figure 4 demonstrates that the nonlinear characteristic of
the series is stronger than the dispersal algorithm. The
main reasons are that the EMS memory plays an
important role in the computation. For a large size
problem, a large proportion of the EMS memory will be
occupied for data stored and processed. Just very limited
EMS memory is left for running the algorithm. Thus, the
execution time will increase rapidly even unpredictably.
The dispersal algorithm can perform well because the
EMS memory is enough for every computation. This is
also the reason; for that its nonlinear characteristic is

weaker:

1) The execution time of the series algorithm is
unpredictable as the size of the problem increases, thus,
the dispersal algorithm is relatively stable.
2) The efficiency of solving the problem in unite time will
decrease as the size of the problem increases.
3) As shown in Figure 4, the resource of the computer will
have a limit to process the series algorithm, that is, the
series algorithm is not suitable for the large-scale
problems.
4) For a large problem, partitioning the problem is a
helpful way to optimize the algorithm and will increase the
efficiency of the sequential algorithm.

DISCUSSION

Analysis of the results

From Figure 5a, comparing the nonlinear characteristic of

Weining et al. 657

Ti
m

e
(s

)

Figure 4. Comparison of the series and dispersal algorithm.

Ti
m

e
(s

)

Ti
m

e
(s

)

Figure 5. Speedup and the comparison of the dispersal and parallel algorithm.

the parallel with the sequential algorithm, we conclude
that the nonlinear characteristic of the parallel algorithm is
weaker than the sequential algorithm, that is, the parallel
algorithm is more stable. The reason is that the influence

of all the negative factors will be assigned to each
computer in the parallel frame. Figure 5b shows the
speedup which is the relative speedup defined earlier. We
see an interesting phenomenon that the speedup

658 Sci. Res. Essays

Ti
m

e
(s

)

Ti
m

e
(s

)

Figure 6. Speedup and the comparison of the series and parallel algorithm.

approaches its maximum rapidly and then decrease to a
constant slowly as the problem size increases:

1) The proportion of the time for the data communication
and task partition is relatively large for a small enough
problem.
2) The maximum value indicates that at this special
problem size level, the efficiency of the performance is the
highest for the parallel system. By simple computation, we

get the maximum value 2.0381 at 119963N  . This

implies that however large the problem is, the size of the
Slave task should be arranged to be 119963 in order to
get the best efficiency.
3) The speedup has a limit when the size of the

problem N  . This is to say the parallel system is

stable as the size increases.
4) It verifies that the upper of the speedup is smaller than
the number of the computers of the cluster, that is,

Speedup 3P  . This also verifies the conclusion of the

Theorem.

DISCUSSION AND CONCLUSION

Under the classical definition of the speedup, that is the
ratio of the execution time of parallel algorithm to series
algorithm, as shown in Figure 6b, we obverse that the
speedup will increase nonlinearly and rapidly, furthermore,

it is more than the number of the processors of the cluster.
We call this phenomenon the super-speedup which is
different from the existing works in Yero and Henriques
(2007). Compared with the results in Yero and Henriques
(2007), the reason of this phenomenon is that the
necessary partition of the task optimizes the processing
and in some sense the partition have the signification of
„speedup‟. In practice, we optimize the processing twice
including partition of the task and the parallel computing.
Thus, the speedup is the superposition of these two
phenomena. Of course, it will exceed the speedup caused
by single factor which is the parallel computing. This is the

reason that the speedup is larger than P . But there is no
contradiction with the main conclusions aforementioned.
On the contrary, it demonstrates the phenomenon of the
super-speedup and it is caused by the experiment
designs.

ACKNOWLEDGEMENTS

This work was supported by the National Natural Science
Foundation of China (11101102), Ph.D. Programs
Foundation of Ministry of Education of China
(20102304120022), the Natural Science Foundation of
Heilongjiang Province (A201014), Foundational Science
Foundation of Harbin Engineering University and
Fundamental Research Funds for the Central Universities
(HEUCF20111101).

REFERENCES

Almeida F, González D, Moreno LM (2006). The master-slave paradigm

on heterogeneous systems: a dynamic programming approach for the
optimal mapping. J. Syst. Architecture, 52(2): 105-116.

Amdahl G (1967). Validity of the single-processor approach to achieving

large scale computing capabilities. Proc. AFIPS, pp. 483-485.
Bastian P, Blatt M, Dedner A, Engwer C, Klöfkorn R, Kornhuber

R, Ohlberger M, Sander O (2008). A generic grid interface for parallel

and adaptive scientific computing. Part II: implementation and tests in
DUNE. Comput., 82(2-3): 121-138.

Beaumont O, Boudet V, Rastello F, Robert Y (2001). Maxtri

multiplications on heterogeneous platforms. IEEE Trans. Parallel
Distrib. Syst., 12(10): 1033-1051.

Dutta H, Fiorletta H, Pooleery M, Diab H, German S, Waltz D, Schevon

CA (2011). A case-study on learning from large-scale intracranial
EEG data using multi-core machines and clusters. Proc. LDMTA, pp.
1-8.

Gonzalez-Velez H, Cole M (2008). An adaptive parallel pipeline pattern
for grids. Proc. IPDPS, pp. 1-11.

Goswami P, Makhinya M, Bösch J, Pajarola R (2010). Scalable parallel

out-of-core terrain rendering. Proc. of ESPGV, pp. 63-71.
Gustafson J (1988). Reevaluating Amdahl‟s law. Comm. ACM, 31:

532-533.

Head MR, Govindaraju M (2007). Approaching a parallelized XML
parser optimized for multi-core processors. Proc. SOCP: 17-22.

Head MR, Govindaraju M (2009). Performance enhancement with

speculative execution based parallelism for processing large-scale
xml-based application data. Proc. ACM HPDC: 21-30.

Li K (2001). Scalable parallel matrix multiplication on distributed memory

parallel computers. J. Parallel Distrib. Comput., 61: 1709-1731.
Li K, Pan Y, Shen H, Zheng SQ (1999). A study of average-Case

speedup and scalability of parallel computations on static networks.

Math. Comput. Model, 29: 83-94.

Weining et al. 659

Mohamed N, Al-Jaroodi J (2011). Delay-tolerant dynamic load balancing.

Proc. HPCC: pp. 237-245.
Robertazzi T (2003). Ten reasons to use divisible load theory. Comput.,

36(5): 63-72.
Sanjay HA, Vadhiyar S (2008). Performance modeling of parallel

applications for grid scheduling. J. of Parallel and Distrib. Comput.,

68(8): 1135-1145.
Shylo OV, Middelkoop T, Pardalos PM (2011). Restart strategies in

optimization: parallel and serial cases. Parallel Comput., 37(1): 60-68.

Silva da FAB, Senger H (2011). Scalability limits of Bag-of-Tasks
applications running on hierarchical platforms. J. Parallel Distrib.
Comput., 71(6): 788-801.

Snyder L, Sterling T (2000). Panel: “What are the top ten most influential
parallel and distributed processing concepts of the last millennium?”. J.
Parallel. Distrib. Comput., 61(12): 1827-1841.

Williams R (2011). Parallelizing time with polynomial circuits theory.
Comput. Syst., 48: 150-169.

Yan Y, Zhang X, Song Y (1996). An effective and practical performance

prediction model for parallel computing on nondedicated heterogeous
now. J. Parallel Distrib. Comput., 38(1): 63-80.

Yang XJ, Du J, Wang ZY (2011). An effective speedup metric for

measuring productivity in large-scale parallel computer systems. J.
Supercomput.., 56(2): 164-181.

Yero EJH, Henriques MAA (2007). Speedup and scalability analysis of

Master-Slave appllications on large heterogeneous clusters, J.
Parallel Distrib. Comput., 67: 1155-1167.

Yu D, Robertazzi T (2003). Divisible load scheduling for grid computing.

Proc. PDCS, pp. 1-6.

