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Selecting appropriate weighting matrices for desired linear quadratic regulator (LQR) controller design 
using evolutionary algorithms is presented in this paper. Obviously, it is not easy to determine the 
appropriate weighting matrices for an optimal control system and a suitable systematic method is not 
presented for this goal. In other words, there is no direct relationship between weighting matrices and 
control system characteristics, and selecting these matrices is done by using trial and error based on 
designer’s experience. In this paper, we use the particle swarm optimization (PSO) method which is 
inspired by the social behavior of fish and birds in finding food sources to determine these matrices. 
Stable convergence characteristics and high calculation speed are the advantages of the proposed 
method. Simulation results demonstrate that in comparison with genetic algorithms (GAs), the PSO 
method is very efficient and robust in designing of optimal LQR controller. 
 
Key words: Linear quadratic regulator (LQR), weighting matrices, particle swarm optimization, genetic 
algorithm. 

 
 
INTRODUCTION 
 
In designing of many systems and solving their problems, 
we need to choose a solution between feasible solutions 
as an optimal solution. But, because of the wide range of 
solution, all of them cannot be tested, so the test should 
be performed stochastically. On the other hand, this 
stochastic procedure should lead to the best answer 
(Athens, 1966). 

For the sake of simple implementation of engineering 
problems, special attention has been paid on linear 
quadratic optimal control theory. Linear quadratic optimal 
control is significant for modern control theory and it can 
be implemented easily for engineering applications and it 
is the basic theory of other control techniques. However, 
in a special case which the cost function is a linear 
quadratic function, the optimal answer converges to 
linear quadratic regulator (LQR). LQR has a simple 
process and can achieve the closed loop optimal control 
with linear state or output feedback. This method has a 
spread   application   in   the  aspects  such  as  induction  
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motors control, vehicular drive-shaft control and airplane 
system control (Kirk, 1937; Athens, 1966). 

The selection of LQR weighting matrices is very 
significant and it affects the control input (Neto et al., 
2010). Various methods have been proposed in order to 
select suitable weight matrices in LQR controller design. 
Kalman (1964) proposed a method to determine the 
weight matrices based on given poles for the first time 
and Wang (1992) developed this research. Recently, 
many attempts are performed to design the LQR 
controller using genetic algorithms (GAs) (Bottura and 
Neto, 1999; Bottura and Neto, 2000; Sung and Chen, 
2006). GA is a stochastic search method that helps the 
designer to achieve optimal solution. 

The controller design problem is defined as choosing 
the weighting matrices such that the desired performance 
of control system is satisfied in a minimum possible time. 
In this paper, we propose particle swarm optimization 
(PSO) method for determining weighting matrices and 
illustrating that the achieved results satisfy the control 
system requirements and desired system characteristics. 
Also, the superiorities of the aforementioned method are 
compared with GA. 



 
 
 
 
LINEAR QUADRATIC OPTIMAL CONTROL 
 
The stare space representation of a linear time-invariant 
(LTI) system is as follows (Nguyen and Gajic, 2010): 
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where x  and u  are 1×n  state vector and 1×m  input 

vector, respectively. A  and B  are constant matrices, 

),( BA  is a stabilizable pair and K  is state feedback 

matrix. The linear quadratic cost function is defined as:  
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where Q  is nn×  semi-positive definite matrix and R  is 

mm×  positive definite matrix. The conventional LQ 

optimal control problem is to find the optimal input *
u  

such that the cost function J  is minimized. For ∞=
f

t , 

the state feedback matrix GBRK
T1−=  is obtained by 

solving the following algebraic Riccati equation: 
 

 1 0T TQ GBR B G A G GA−− + + =                                   (3) 
 
When the control objective in optimal control systems is 
assigned, the weighting matrices are chosen and the 
corresponding optimal state feedback matrix is then 
unique (Fisher and Bhattacharya, 2009; Yang, 2011). 
However, there are no suitable systematic techniques yet 
for selecting the weighting matrices. The selection of 
weighting matrices is based on the designer’s experience 
and usually performed by trial and error. In this work, 
according to the importance of weighting matrices 
selection, we employ the PSO method to find the optimal 
weighting matrices in the desired LQR controller design 
and compare it with other evolutionary method, that is, 
GA. 
 
 
OVERVIEW ON GA AND PSO METHODS 

 
In the following, a brief review of GA and PSO algorithms are 
presented. 

 
 
Genetic algorithm (GA) 

 
GA is a search method based on the principles of natural genetics 
and natural selection, and is widely recognized as an effective 
optimization paradigm in various areas (Davis, 1991). This 
algorithm was first described by John Holland (1975) over the 
course of the 1960s and 1970s and was popularized by David 
Goldberg who was able to solve a hard problem such as the 
controlling of gas-pipeline transmission for his thesis (Davis, 1991;  
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Cabral and Melo, 2011). The biological origin of this algorithm is 
Darwinian natural selection. Considering Darwin's original ideas, life 
in all its diverse forms is evolved by natural selection and 
adaptation processes controlled by the survivability of the fittest 
species. GA is an evolutionary optimizer that takes a sample of 
possible individuals and employs selection, crossover and mutation 
as the primary operators for optimization. Binary genetic algorithm 
introduces variables as an encoded binary string, and works with 
the binary strings to arrive at the global best solution and maximize 
the fitness (that is, minimize the cost function). 

The optimization process is performed in cycles entitled genera- 
tions and in each generation, a set of the chromosomes is created 
using the crossover, inversion, and mutation stages and only the 
best chromosomes are allowed to survive to the next cycle of 
reproduction. 
 
 
Particle swarm optimization (PSO) 

 
Considering the social performance of the swarm of fishes, birds, 
bees and other animals, the concept of the PSO method is 
developed. The PSO is a robust stochastic evolutionary 
computation method based on the movement of swarms looking for 
the most fertile feeding location (Eberhart and Kennedy, 1995a, 
1995b). 

From the earlier statements, it is clear that the theoretical basis of 
the two optimization methods rest upon two completely different 
structures. The GA is based on genetic encoding and natural 
selection, and PSO method is based on social swarm behavior. 
PSO is based on the principle that all solutions can be represented 
as particles in a swarm. Each particle has a position and velocity 
vector and each position coordinate, represents a parameter value. 
Similar to GA, PSO method requires a fitness evaluation function 
that takes the particle’s position and assigns a fitness value to it. 

PBX  and 
GB

X  are the personal best position and global best 

position of the 
th

i  particle. Each particle is initialized with a random 

position and velocity. The velocity of each particle is accelerated 
toward the global best and its own personal best according to the 
following equation: 
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Here, ()rand  and ()Rand  are the random numbers in the range 

between 0 and 1, 
1c  and 

2c  are the acceleration constants and w  

is the inertia weight factor. The parameter w  helps the particles 

converge to global best, rather than oscillating around it. Suitable 
selection of w  provides a balance between global and local 

searches. In general, w  is set according to the following equation 

(Eberhart and Kennedy, 1995a): 
 

 0.5(1 (0,1))w rand= +
                                                               

(5) 

 
The positions are updated based on particles movement over 

discrete time interval ( t∆ ) as follows: 

 

 
i i i

X X V t= + ×∆
                                                                    

(6) 

 
Therefore, the fitness at each position is re-evaluated. If any fitness 
is greater than the global best value, then the new position 
becomes global best and the particles are accelerated toward this 
new  point. If  the  particle’s  fitness value  is greater  than  personal  
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Figure 1. Aircraft landing system. 

 
 
 
best value, then the personal best is replaced by the current 
position.  
 
 
DETERMINATION OF WEIGHTING MATRICES  
 
PSO algorithm stages for searching proper weighting matrices are 
as follows: 
 
First, specify the lower and upper bounds of the parameters and 
initialize the particles of the population (weighting matrices 
elements) randomly. The controller gains are then calculated using 
LQR command in Matlab

®
 software. It is important to note that two 

conditions 0)det( ≥R  and 0)det( >Q  must be satisfied. After 

that, the control energy matrix ( u ) and state variable ( x ) are 

calculated. Then, the linear quadratic cost function ( J ) is evaluated 

for each particle. If the cost for local best solution is less than cost 
of the current global best solution, the global solution is replaced 
with the local solution. In each stage, the program saves the cost 
value and minimum error value and according to the following 

equation, the velocity of each particle K  is modified:  

 

 ( 1) ( ) ( 1)t t t
i i i

k k v
+ += +

                                                                  (7) 

 

where 
)(t

i
K  is the position of 

th
i  particle in time t  (Marinaki et al., 

2011; Xiong and Wan, 2010). At the end of each iteration, the 
algorithm checks the stopping criterion. If the number of iterations 
reaches the maximum designated by the user, the latest global best 
solution is recorded and the algorithm comes to the end. In order to 
investigate the performance of PSO algorithm for determination of 
proper weighting matrices in LQR controller design, the simulations 
are run on landing flare system and compared with the results 
obtained by GA.  
 
 
SIMULATION RESULTS 

 
An aircraft landing system illustrated in Figure 1 is used 
for simulation purpose. This system is a high dimensional 
system and has 6 state variables. The state-space 
modeling of this system is presented in Equation 8. 
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where u  is the aircraft forward speed ( sm / ), w  is the 

velocity downwards at right angles ( sm / ), q  is the 

angular velocity of pitch with respect to the ground 
(rad/s), θ  is the pitch with respect to the ground (deg ), h  

is the height with respect to the ground ( m ), e  is the 

forward acceleration ( 2
/ sm ), µ  is the elevator angle 

( deg ), γ  is the throttle value ( 2
/ sm ) and δ  is the spoiler 

angle (deg ). 

The input ( )Tµ γ δ  is designed such that the aircraft 

comes into land in the following exponential path:  
 

 02.0 =+ hh&                                                                (9) 
 
The control criterion is to minimize the integral of 

absolute error (IAE), that is, ∫=
ft

dteIAE
0

, (for tf = 30 s   

in this paper). The system states initial values are as 
follows: 
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From Equation 8, we have θ133.1+−= wh& . Substituting 

this equation into Equation 9, we can obtain: 
 

 30 30

2 4 5

0 0

1.133 0.2 1.133 0.2w h dt x x x dtθ− + + = − + +∫ ∫
                 

(10)
 

 

where 
2xw = , 

4x=θ  and 
5xh = . 

The design method first is to select the matrices Q  and 

R . In second step, Equations 1 and 3 are solved using 
computer computations, and the simulation results reveal 
whether any of the system constraints exceed or not. If 
the constraints are not satisfied, weighting matrices are 
reselected and  this procedure is  repeated. According  to  
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Figure 2. Landing system time response. 

 
 
 
this algorithm, the weighting matrices selection is difficult 
and longer time for simulation is needed using trial and 
error. One of the obtained results using trial and error 
method is: 

 

0.618 0 0 0 0 0

0 0.073 0 0.129 0.8 0
0.621 0 0

0 0 0.484 0 0 0
, 0 0.421 0

0 0.129 0 0.055 0.667 0
0 0 0.143

0 0.8 0 0.667 0.054 0

0 0 0 0 0.798 0

Q R
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, 

 
and the state feedback matrix is calculated as follows: 
 

0.3477 0.805 0.8403 1.6266   -0.1734   0.1620

1.0778 0.2552 0.1345 0.4379 0.1669 1.5443

1.0942 0.4669 0.0395 0.8032 0.4046 0.679

K

− − − − 
 

= − 
 − − − − − 

. 

 
Simulation results of airplane landing trajectory is shown 
in Figure 2. The IAE value using trial and error method is 
32.448. 
 
 

PSO and GA methods simulation results 
 

The optimal weighting matrices Q  and R  and the state 

feedback matrix K  obtained by GA method are as follow: 

  
0.8576 0 0 0 0 0

0 0.2632 0 0.5673 0.9422 0

0 0 0.3183 0 0 0

0 0.5673 0 0.1033 0.248 0

0 0.9422 0 0.248 0.3585 0

0 0 0 0 0 0.9617

Q
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where the necessary parameters used in GA are 
population size = 50 chromosomes, crossover rate = 
0.96, mutation rate = 0.1, search interval = [0, 20] and 
generation number = 60. 

Also, the weighting matrices and state feedback matrix 
obtained by PSO method are as follows:  

 
0.7568 0 0 0 0 0

0 0.4415 0 0.7114 0.9582 0

0 0 0.2555 0 0 0

0 0.7114 0 0.1109 0.3899 0
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where the parameters used in PSO algorithm are 
population size = 50 particles, search interval = [0, 20], 
generation number = 60 and acceleration constants: 

5.11 =c , 5.12 =c .  
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Table 1. Integral of absolute error (IAE) for airplane trajectory using different methods.  
 

Trajectory following Trial and error GA + LQ PSO + LQ 

IAE 32.448 22.214 10.406 

 
 
 

0 5 10 15 20 25 30
-25

-20

-15

-10

-5

0

t(sec)

A
ir
c
ra

ft
 s

p
o
ile

r 
a
n
g
le

 

 

GA+LQ

PSO+LQ

Trial and error

t (s) 
 

 
Figure 3. Landing system elevator angle. 
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Figure 4. Landing system spoiler angle. 

 
 
 

The Integral of absolute error (IAE) values using the 
proposed methods are indicated in Table 1. Figure 2 
shows that the aircraft comes into land in a specified 
trajectory by determining weighting matrices obtained by 
PSO algorithm. The system input vector for  elevator  and  

spoiler angle are shown in Figures 3 and 4, respectively. 
These figures show that the proposed PSO method 
works better in improving the control system performance 
when compared with GA algorithm. 

Also, Table 2 illustrates that the IAE values are strongly
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Table 2. Integral of absolute error (IAE) for control inputs using various methods.  
 

IAE Elevator angle Throttle value Spoiler angle 

Trial and error 28.305 71.235 124.598 

GA + LQ 27.2 62.236 64.189 

PSO + LQ 11.852 39.824 22.621 
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Figure 5. Throttle value control. 

 
 
 
decreased using the PSO algorithm. Figure 5 shows the 
throttle value control. 
 
 
Robustness analysis  
 
The absolute value of matrices A  and B  element are 
increased by 10% in order to analyze the control system 
robustness against parameters variations. 

The performances of the designed controllers are 

studied. The new A  and B  matrices are as follows:  
 

0.0638 0.0715 0 0.188 0 1.1

0.334 0.72 1.22 0 0 0

0.079 0.753 1.0417 0 0 0
,
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The simulation results of aircraft landing trajectory, 
elevator angle, spoiler angle and throttle value using new 
matrices are shown in Figures 6 to 9, respectively. The 
IAE values for aircraft landing trajectory and control 
inputs are compared in Tables 3 and 4. According to the 
simulation results, we can observe that the designed 
system is very robust versus parameters variations. 
 
 

CONCLUSION 
 

In this paper, a new method for determining weighting 

matrices R   and  Q   for  optimal  control  system  design
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Figure 6. Landing system time response using new matrices (robustness 
analysis). 
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Figure 7. Landing system elevator angle using new matrices (robustness 
analysis). 
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Figure 8. Spoiler angle using new matrices (robustness analysis). 
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Figure 9. Throttle value control using new matrices (robustness analysis). 

 
 
 

Table 3. Integral of absolute error (IAE) for airplane trajectory following (in the new 

situation).  
 

Trajectory following Trial and error GA + LQ PSO + LQ 

IAE 29.463 12.776 14.544 

 
 
 

Table 4. Integral of absolute error (IAE) for control inputs using various methods (in 

the new situation). 
 

IAE Elevator angle Throttle value Spoiler angle 

Trial and error 35.243 74.067 65.71 

GA + LQ 34.052 69.324 147.326 

PSO + LQ 35.129 37.694 60.792 

 
 
 
using PSO algorithm is proposed. High promising results 
demonstrate that the proposed method is very flexible, 
efficient and robust against changes in parameters, and 
can obtain higher quality solution with better comput-
ational efficiency and fast convergence. The simulation 
results are very satisfactory in comparison with previous 
experiments, that is, GA. 
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