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CONVERGENCE RATES FOR REGULARIZATION WITH SPARSITY
CONSTRAINTS∗

RONNY RAMLAU†‡AND ELENA RESMERITA†

Abstract. Tikhonov regularization withp-powers of the weightedℓp norms as penalties, withp ∈ (1, 2),
have been employed recently in reconstruction of sparse solutions of ill-posed inverse problems. This paper shows
convergence rates for such a regularization with respect tothe norm of the weighted spaces by assuming that the
solutions satisfy a certain smoothness (source) condition. The meaning of the latter is analyzed in some detail.
Moreover, converse results are established: Linear convergence rates for the residual, together with convergence
of the approximations to the solution, can be achieved only if the solution satisfies a source condition. Further
insights for the particular case of a convolution equation are provided by analyzing the equation both theoretically
and numerically.
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1. Introduction. In this paper, we consider linear ill-posed operator equations

Ãũ = ỹ(1.1)

Ã : Xp,ω → L2(Ω) .

Here,Xp,ω denotes a Banach space which is a subspace ofL2(Ω), with parametersp ∈ (1, 2)
andω = {ωλ}λ∈Λ, whereΩ is a bounded open subset ofR

d, with d ≥ 1, andΛ is a set
of (possibly tuples of) integer indices. Although one couldemploy more general separable
Hilbert spaces thanL2(Ω), we consider here the Lebesgue space case for simplicity.

We are in particular interested in the reconstruction of solutions of (1.1) that admit a
sparse structure with respect to a given basis in the Banach spaceXp,ω, that is, only a finite
number of the solution coefficients do not vanish. In these cases it is desirable to choose
a regularization method that also promotes a sparse reconstruction. For instance, suitable
choices for the spacesXp,ω are the Besov spacesBs

p,p with p ∈ (1, 2) in case of a sufficiently
smooth wavelet basis and properly chosen weights; see, e.g., [6, 19] for detailed discussions.

Instead of solving the above equation in a function space setting, we will transform it into
a sequential setting. More precisely, we will work with weightedℓp spaces, wherep ∈ (1, 2).
We will consider weights that are bounded away from zero, which ensures that the spacesℓp

and the weightedℓp spaces are isomorphic.
Convergence of Tikhonov type regularization methods with Besov norm constraints

(which can be transformed into a weightedℓp constraint) has been shown with respect to the
ℓ2 norm in [9]. With respect to the weightedℓp strong topologies withp ∈ [1, 2], convergence
has been established in [20, 19, 12]. Error estimates for regularization have been achieved re-
cently via Bregman distances associated to the penalties; see, for instance, [4, 21, 22, 13, 5].
Note that error estimates for regularization with weightedℓp norms have been obtained in
[14] with respect to theℓ2 norm. In parallel with our work, interesting quantitative results
have been shown also in the Hilbert space norm by [12] in the case that the solution is known
to be sparse; see a related discussion at the end of the next section. Our study focuses on
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convergence rates in terms of weightedℓp space norms which are stronger than theℓ2 norm
whenp ∈ (1, 2), with emphasis on some kind of necessary and sufficient conditions. We
dwell on the realization of the error estimates, rather thanon the results themselves, which
follow via convexity arguments characterizing the specificBanach spaces we work with.

Due to the useful topological properties of theℓp spaces,p ∈ (1, 2), which transfer to
the weightedℓp spaces, error estimates can be established also in terms of the norms of these
Banach spaces.

Recall that error estimates are usually obtained under smoothness assumptions on the
solutions. For instance, classical assumptions of this kind in case of quadratic Tikhonov sta-
bilization (i.e.,f = ‖ · ‖2) in Hilbert spaces are as follows: A solution̄x of the equation
Ax = y to be solved is in the range of the operator(A∗A)ν , ν > 0, whereA∗ is the adjoint
operator. The role of spectral theory is known to be essential in that Hilbert space context.
We limit our study in the non-Hilbert space framework to the smoothness assumptions al-
ready analyzed in [4, 22], where general convex penaltiesf were considered. More precisely,
we will assume that the derivative of the penaltyf at the solution̄x belongs either to the
range of the Banach space adjoint operatorA∗ or, in particular, to the range of the operator
A∗A. By focusing on this specific sparsity framework, we will obtain the convergence rate
O(δ1/2) in case the first source condition holds andO(δp/(p+1)) under the second condition.
We will also show that linear convergence rates for the residual, together with convergence
of the approximations to the solution, can be achieved only if the solution satisfies a source
condition. An interpretation of the basic source conditionwill be discussed in some detail, by
allowing the domain of the operator to be a larger weighted Lebesgue space than the domain
of the penalty function. We will consider a convolution problem and present necessary and
sufficient conditions for a source condition, pointing out the case of sparse solutions which
satisfy a source condition with sparse source elements. Thenumerical results on the recon-
struction of a function from its noisy convolution data confirm the derived convergence rates.
Our study is done for linear operators, although it can be extended to nonlinear ones, as is
briefly discussed.

The paper is organized as follows. Section2 states the notation and general assumptions.
The error estimates and the a priori convergence rates are shown in Section3, while Section4
presents some type of converse results for those rates. Section 5 consists of a discussion of the
basic source condition. Possible extensions to nonlinear operator equations are considered in
Section6. A convolution problem is analyzed both theoretically and numerically in Section7.

2. Notation and assumptions.By choosing a suitable orthonormal basis{Φλ}λ∈Λ of
the spaceL2(Ω), bothũ andÃũ can be expressed with respect toΦλ. Thus,

(2.1) Ãũ =
∑

λ′

∑

λ

〈ũ, Φλ〉〈ÃΦλ, Φλ′〉 Φλ′ .

Defining the infinite-dimensional matrixA and vectorsu, y by

(2.2) A = (〈ÃΦλ, Φλ′〉)λ,λ′∈Λ, u = (〈ũ, Φλ〉)λ∈Λ, y = (〈ỹ, Φλ〉)λ∈Λ ,

equation (1.1) can be reformulated as an (infinite) matrix-vector multiplication

(2.3) Au = y.

Now let us specify the spacesXp,ω. For a given orthonormal basis{Φλ}λ∈Λ and positive
weightsω = {ωλ}λ∈Λ, we define

ũ ∈ Xp,ω ⇐⇒
∑

λ

ωλ|〈ũ, Φλ〉|p < ∞ ,
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i.e.,u = {〈ũ, Φλ〉}λ∈Λ belongs to the weighted sequence spaceℓp,ω. From now on, let

uλ = 〈ũ, Φλ〉,

ℓp,ω =







u = {uλ}λ∈Λ : ‖u‖p,ω =

(

∑

λ

ωλ|uλ|p
)

1
p

< ∞







.

Sinceℓp ⊂ ℓq with ‖u‖q ≤ ‖u‖p for p ≤ q, one also hasℓp,ω ⊂ ℓq,ω′ for p ≤ q andω′ ≤ ω.
In particular, if the sequence of weights is positive and bounded from below, i.e.,0 < ρ ≤ ωλ

for someρ > 0, thenℓp,ω ⊂ ℓ2 for p ≤ 2.
Using the above discretization, we now consider the operator equation

Au = y(2.4)

A : ℓp,ω −→ ℓ2,

whereA is a linear and bounded operator.
We are interested in investigating convergence rates for Tikhonov regularization with

sparsity constraints, where the approximation of the solution is obtained as a solution of the
problem

(2.5) min

{

1

2
‖Au − yδ‖2 + αf(u)

}

,

with regularization parameterα > 0 and penalty

(2.6) f(u) = ‖u‖p
p,ω =

∑

λ

ωλ|uλ|p.

Throughout this paper, we assume thatp ∈ (1, 2) and the weightω is bounded away from
zero, i.e., there isρ > 0 such that

0 < ρ ≤ ωλ .

Moreover, we assume that (2.4) has solutions and that the available noisy datayδ satisfy

(2.7) ‖yδ − y‖ ≤ δ

for some noise levelδ > 0.
Note that the functionf is strictly convex since thep powers of the norms are strictly

convex. In addition, the functionf is Fréchet differentiable.
Denote bȳu the unique solution of the equation that minimizes the penalty functionalf

and byDf (z, x) the Bregman distance defined with respect tof , that is,

Df (z, x) = f(z) − f(x) − 〈f ′(x), z − x〉 .

The reader is referred to [3], for more information on Bregman distances.

3. Error estimation. As mentioned in the introduction, we would like to estimate the
distance between the minimizersuδ

α of (2.5) and the solution̄u of equation (2.4) which min-
imizes the penaltyf . Let A∗ denote the Banach space adjoint operator which mapsℓ2 into
the dual ofℓp,ω, i.e.,

A∗ : ℓ2 → (ℓp,ω)∗
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with

〈A∗g, u〉 = 〈g, Au〉

for u ∈ ℓp,ω, g ∈ ℓ2.
PROPOSITION3.1. The dual space ofℓp,ω is given by

(ℓp,ω)∗ =

{

ℓ∞,ω−1 for p = 1,
ℓq,ω−q/p for p > 1,

whereq fulfills the equation1/q + 1/p = 1.
Proof. See [17, Corollary 13.14].

Note that〈v, u〉 =
∑

λ uλvλ, wheneveru ∈ ℓp,ω andv ∈ (ℓp,ω)∗. In order to obtain
convergence rates we will need the source conditions (SC) and (SC I), given by

(SC)f ′(ū) = A∗v, for somev ∈ ℓ2.

(SC I)f ′(ū) = A∗Av̂, for somev̂ ∈ ℓp,ω.

The error estimates established by [4, 21, 22] for regularization with a general convex
functional read in our framework as follows: If (SC) is fulfilled, then

(3.1) Df (uδ
α, ū) ≤ α‖v‖2

2
+

δ2

2α
, ‖Auδ

α − Aū‖ ≤ α‖v‖ + δ.

If (SC I) is fulfilled, then

(3.2) Df (uδ
α, ū) ≤ Df (ū − αv, ū) +

δ2

2α
,

‖Auδ
α − Aū‖ ≤ α‖Av‖ +

√
2α[Df (ū − αv, ū)]1/2 + cδ,

wherec is a positive number.
We are further interested in obtaining error estimates withrespect to the norm of theℓp,ω

spaces withp ∈ (1, 2). Foru ∈ ℓp,ω consider the sequencẽu =
{

ω
1/p
λ · uλ

}

λ∈Λ
. Then

‖ũ‖p
p =

∑

λ

|ω1/p
λ uλ|p = ‖u‖p

p,ω < ∞ ,

i.e., ũ ∈ ℓp. By definingf̃(ũ) = ‖ũ‖p
p, one gets

(3.3) f(u) = f̃(ũ).

Moreover, for anyh ∈ ℓp,ω and forh̃ =
{

ω
1/p
λ · hλ

}

λ∈Λ
, one has

〈f̃ ′(ũ), h̃〉 = 〈f ′(u), h〉.

We point out below several inequalities inℓp; see, e.g., [23, Corollary 2] and [2, Lemma 1.4.8
and proof of Cor. 3.5.9(ii)], respectively.
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PROPOSITION3.2. If p ∈ (1, 2], then one has for allx, z ∈ ℓp

(3.4)
〈

f̃ ′(z) − f̃ ′(x), z − x
〉

≤ c̃p‖z − x‖p
p,

(3.5) Df̃ (z, x) ≥ cp‖z − x‖2
p, for ‖z − x‖p small enough,

wherec̃p andcp = cp(x) are some positive numbers.
The symmetric Bregman distance has the following expression,

Df̃ (z, x) + Df̃(x, z) =
〈

f̃ ′(z) − f̃ ′(x), z − x
〉

.

Thus, inequality (3.4) can be rewritten as

(3.6) Df̃ (z, x) + Df̃ (x, z) ≤ c̃p‖z − x‖p
p.

For our purposes, these results have to be extended to theℓp,ω spaces.
LEMMA 3.3. If p ∈ (1, 2) andf is defined by(2.6), then the following inequality holds

for anyu, v ∈ ℓp,ω and for some positive numbersc̃p andcp = cp(u),

(3.7) Df (v, u) ≤ c̃p‖v − u‖p
p,ω,

(3.8) Df (v, u) ≥ cp‖v − u‖2
p,ω, for ‖v − u‖p,ω small enough.

Proof. We can use the equality shown previously〈f ′(u), h〉 = 〈f̃ ′(ũ), h̃〉, for all
u, h ∈ ℓp,ω and corresponding̃u, h̃ ∈ ℓp. Thus, one obtains

Df (v, u) = f(v) − f(u) − 〈f ′(u), v − u〉 = f̃(ṽ) − f̃(ũ) − 〈f̃ ′(ũ), ṽ − ũ〉 = Df̃(ṽ, ũ).

By using further (3.5), (3.6), and (3.3), inequalities (3.7) and (3.8) follow immediately.

Based on the previous result, we can now state the error estimates for the above regular-
ization method in terms of the norm ofℓp,ω.

PROPOSITION3.4. Assume that noisy datayδ fulfilling ‖y − yδ‖ ≤ δ are given.
i) If f ′(ū) = A∗v for somev ∈ ℓ2, then the following error estimates hold for the

minimizer of(2.5), when‖uδ
α − ū‖p,ω is small enough:

‖uδ
α − ū‖p,ω ≤ 1

c
1/2
p

(√
α‖v‖√

2
+

δ√
2α

)

, ‖Auδ
α − Aū‖ ≤ α‖v‖ + δ.

ii) If f ′(ū) = A∗Av̂ for somev̂ ∈ ℓp,ω, then the following error estimates hold for the
minimizer of(2.5), when‖uδ

α − ū‖p,ω is small enough:

‖uδ
α − ū‖p,ω ≤ mpα

p
2 +

δ
√

2cpα
, ‖Auδ

α − Aū‖ ≤ α‖Av̂‖ + δ,

wheremp =
c̃p

cp
‖v̂‖

p
2
p,ω.

Proof. i) Follows immediately from (3.1) and (3.8).
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ii) Inequalities (3.2), (3.8), and (3.7) imply

‖uδ
α − ū‖2

p,ω ≤ 1

cp
Df (ū − αv̂, ū) +

δ2

2cpα

≤ c̃p

cp
αp‖v̂‖p

p,ω +
δ2

2cpα
,

which, together with the inequality
√

a2 + b2 ≤ a + b for a, b > 0 yields the result.

COROLLARY 3.5. i’) If the assumptions of Proposition3.4, part i), hold andα ∼ δ, then

‖uδ
α − ū‖p,ω = O(δ

1
2 ), ‖Auδ

α − y‖ = O(δ),

for δ small enough.
ii’) If the assumptions of Proposition3.4, part ii), hold andα ∼ δ

2
p+1 , then

‖uδ
α − ū‖p,ω = O(δ

p
p+1 ), ‖Auδ

α − y‖ = O(δ),

for δ small enough.
The recent work [12] shows the convergence rateO(δ

1
p ) for p ∈ [1, 2) (thus, up toO(δ))

with respect to theℓ2 norm ofuδ
α − ū (which is weaker than theℓp,ω norm forp < 2), in the

case that̄u is sparse and (SC) holds. These rates are already higher, when p < 1.5, than the
“superior limit” of O(δ

2
3 ) established for quadratic regularization. This also showsthat the

assumption of sparsity is a very strong source condition. Itwould be interesting to find out
whether these rates could be further improved if the stronger assumption (SC I) is fulfilled.
We remark that the numerical experiment we perform under theassumption (SC I) and which
is described at the end of the last section shows that better rates thanO(δ

p
p+1 ) for uδ

α − ū in
the strongerℓp,ω norm seem to be achieved—that is, at leastO(δ

1
p )—even if the solution is

not sparse.

4. Converse results.Next we prove some kinds of converse results regarding the first
type of source condition. To this end, one needs even less than strong convergence of the
approximantsuδ

α to ū. More precisely, one can show that a linear convergence ratefor the
residual and (even weak) convergence of the approximants tothe solution̄u ensure thatf ′(ū)
is in the range of the adjoint operator, no matter how fast theapproximants converge to the
solution. This interesting fact is due, as we will see below,to a special property of the duality
mappingJp in ℓp (the derivative of thep-th power of theℓp norm).

We first deal with the noiseless data case, whereuα is the minimizer of (2.5) correspond-
ing to exact datay.

PROPOSITION4.1. If ‖Auα − y‖ = O(α) anduα converges tōu, asα → 0, in theℓp,ω

weak topology, thenf ′(ū) belongs to the range of the adjoint operatorA∗.

Proof. We use a technique from [10]. Let {αn} be a positive sequence which converges
to zero asn → ∞. Let

vn =
1

αn
(y − Auαn).

This sequence is bounded inℓ2, so there exists a subsequence{vk} which converges weakly
to somev ∈ ℓ2, ask → ∞. Since the Banach space adjoint operatorA∗ is linear and
bounded, it maps weakly convergent sequences into weakly convergent sequences; see, e.g.,
[1, Propositions 2.8-2.9, p. 37]. It follows thatA∗vk converges weakly toA∗v in (ℓp,ω)∗, as
k → ∞.
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On one hand, the first order optimality condition for the minimization problem (2.5) is

A∗(Auα − y) + αf ′(uα) = 0,

which implies thatA∗vk = f ′(uk) with uk = uαk
. Consequently, one obtains thatf ′(uk)

converges weakly toA∗v in (ℓp,ω)∗ ask → ∞. On the other hand,uk converges weakly tōu
by the above assumption. Since any duality mapping onℓp is weakly sequentially continuous
(see [7], p. 73), this property is inherited also by the derivativef ′ on ℓp,ω with respect to the
corresponding weak topologies. Thus, one gets thatf ′(uk) = A∗vk converges also weakly
to f ′(ū) ask → ∞. Therefore,f ′(ū) = A∗v.

Consider now the case of noisy datayδ which satisfy (2.7).
PROPOSITION4.2. If ‖y−yδ‖ ≤ δ, the rate‖Auδ

α−y‖ = O(δ) holds anduδ
α converges

to ū in theℓp,ω weak topology asδ → 0 andα ∼ δ, thenf ′(ū) belongs to the range of the
adjoint operatorA∗.

Proof. The first order optimality condition for the optimization problem (2.5) now reads
as

A∗(Auδ
α − yδ) + αf ′(uδ

α) = 0.

One can proceed as in the previous proposition, by using the additional assumption (2.7).

5. Interpretation of the source condition (SC). The aim of this section is to derive
conditions on sequences fulfilling (SC). We will use the notation,

ωt = {ωt
λ}λ∈Λ, t ∈ R.

Now let us assume that

(5.1) A : ℓp′,ω′ → ℓ2 ,

and as penalty we take the functionalf given by (2.6). Note thatp, p′ andω, ω′ are allowed
to be different, respectively. This, however, makes sense only if the penalty enforces the
solution to belong to a smaller space thanD(A) = ℓp′,ω′ , i.e., if ℓp,ω ⊂ ℓp′,ω′ . This is the
case, e.g., for

(5.2) p ≤ p′ , ω′ ≤ ω .

We will assume that the weightsω′ are also bounded away from zero,ω′

λ ≥ ρ > 0. In the
sequel, the dual exponents to the givenp, p′ will be denoted byq, q′. Consider first the case
p, p′ > 1.

PROPOSITION5.1. Let p, p′ > 1, the operatorA and the penaltyf be given by(5.1),
(2.6), and assume that(5.2) holds. Then a solution̄u of Au = y fulfilling A∗v = f ′(ū)
satisfies

(5.3) ū ∈ ℓ(p−1)q′,(ω′)−q′/p′
·ωq′ .

Proof. Forp, p′ > 1, the source condition reads

A∗v = {pωλ sgn(ūλ)|ūλ|p−1}λ∈Λ.

SinceA∗ : ℓ2 → ℓq′,ω′−q′/p′ we haveA∗v ∈ ℓq′,ω′−q′/p′ and thus the condition

∑

λ

ω′−q′/p′

λ ωq′

λ |ūλ|(p−1)q′

< ∞
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has to be fulfilled, i.e.,̄u ∈ ℓ(p−1)q′,(ω′)−q′/p′
·ωq′ .

The previous result states only a necessary condition; e.g., for the special case
p = p′, q = q′, ωλ = ω′

λ one gets no additional information:
REMARK 5.2. For the casep = p′, q = q′, ωλ = ω′

λ, condition (5.3) reduces to

ū ∈ ℓp,ω = D(A) .

In order to characterize the smoothness condition in terms of spaces of sequences, we
relate the spaces toR(A∗).

PROPOSITION5.3. Let p, p′ > 1, the operatorA and the penaltyf be given by(5.1),
(2.6), and assume that(5.2) holds. Moreover, assume that

R(A∗) = ℓq̃,ω̃−q̃/p̃ ⊂ ℓq′,ω′−q′/p′

for somep̃, q̃ > 1. Then each sequence

(5.4) ū ∈ ℓ(p−1)q̃,ω̃−q̃/p̃·ωq̃

fulfills the smoothness condition (SC).
Proof. Based on (5.4), one can verify that

{

pωλ sgn(ūλ)|ūλ|p−1
}

λ∈Λ
∈ ℓq̃,ω̃−q̃/p̃ ,

which implies that̄u satisfies (SC) due to the equalityR(A∗) = ℓq̃,ω̃−q̃/p̃ .

Let us now consider the (special) casep′ > 1, p = 1, i.e., the case when the penalty
is neither differentiable nor strictly convex. In this situation, a solution̄u which minimizes the
penalty might not be unique. Moreover, the source conditionreads asA∗v = {ωλ sgn(ūλ)}λ∈Λ,
wheresgn(ūλ) equals1 if ūλ > 0, equals−1 if ūλ < 0, and belongs to[−1, 1] otherwise;
see, e.g., [5].

PROPOSITION5.4. Let p′ > 1, p = 1, ω′ ≤ ω, and let the operatorA and the penalty
f be given by(5.1), (2.6). Then the source conditionA∗v = {ωλ sgn(ūλ)}λ∈Λ only can be
fulfilled if the solution̄u is sparse.

Proof. LetΛū = {λ : |ūλ| > 0} . Forp′ > 1 one hasR(A∗) ⊂ ℓq′,ω′−q′/p′ , and from the
source condition follows the condition

∑

λ

ω′

λ
−q′/p′

· ωq′

λ | sgn(ūλ)| < ∞ .

Sinceω′ ≤ ω and0 < ρ ≤ ω′

λ, we conclude further that

∑

λ

ω′

λ
−q′/p′

· ωq′

λ | sgn(ūλ)| ≥
∑

λ∈Λū

ω′

λ
−q′/p′

· ω′

λ
q′

=
∑

λ∈Λū

ω′

λ

q′

p′
(p′

−1)

≥
∑

λ∈Λū

ρ
q′

p′
(p′

−1)
,(5.5)

and the sum in (5.5) converges only ifΛū is finite, i.e., if the solution̄u is sparse.

We further note that forp = p′ = 1, ω′ = ω, the source condition reads

A∗v = {ωλ sgn(ūλ)}λ∈Λ ∈ ℓ∞,ω−1 ,
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and, similarly as in Remark5.2, no further conclusions can be drawn.

The above derived conditions on sequences fulfilling a source condition (SC) mean in
principle that the sequence itself has to converge to zero fast enough. They can also be inter-
preted in terms of smoothness of an associated function: If the function system{Φλ}λ∈Λ in
(2.1), (2.2) is formed by a wavelet basis, then the norm of a function in the Besov spaceBs

p,p

coincides with a weightedℓp norm of its wavelet coefficients and properly chosen weights[8].
In this sense, the source condition requires the solution tobelong to a certain Besov space.
The assumption onR(A∗) in Proposition5.3 then means that the range of the dual operator
equals a Besov space. Similar assumptions were used for the analysis of convergence rates
for Tikhonov regularization in Hilbert scales; see [18, 16, 15].

6. Nonlinear operators. A similar analysis as in the linear case can be carried out for
nonlinear operator equationsF (u) = y under several conditions on the operatorF , which
allow reducing the study to the linear operator case. For instance, differentiability ofF on a
ball around the solution, the source conditionsf ′(ū) = F ′(ū)∗v andf ′(ū) = F ′(ū)∗F ′(ū)v̄
with v ∈ ℓ2, v̄ ∈ ℓp,ω, smallness conditions on the source elementsv andv̄, and the inequality

‖F (u) − F (ū) − F ′(ū)(u − ū)‖ ≤ η(u, ū),

for any u sufficiently close tōu, guarantee that estimates similar to those in Corollary3.5
hold also when regularizing the ill-posed problemF (u) = y. A couple of choices that have
been used so far forη(u, ū) are as follows (see, e.g., [11, 4, 22]):

(6.1) η(u, ū) = c‖F (u) − F (ū)‖,

η(u, ū) = cDf (u, ū),

for some numberc > 0. Since working with (6.1) is quite restrictive regarding the nonlinear-
ity of the operatorF (see, for a discussion, [11, Chapter 11]) and sincef is strictly convex
and ensures thatDf(u, ū) 6= 0 if u 6= ū, we believe that the second condition represents a
better choice for the analysis.

We note again that the most recent study of sparse regularization for nonlinear equations,
including convergence and error estimates for the method with respect to theℓ2 norm is [12],
as far as we know.

7. Reconstruction of a function from its convolution data. This section presents a nu-
merical example which illustrates our analytical results on the convergence rates. We intend
to show that the convergence rates established above can be obtained if appropriate source
conditions are fulfilled. Two difficulties arise: The numerics should be accurate enough
so that the numerical errors do not dominate the reconstruction error of the regularization
method asδ → 0 and one should be able to construct functions that fulfill a source condition
exactly. Of course, the operator equation under consideration should not be trivial. All of
these requirements can be met by choosing the convolution operator,

(7.1) y(τ) = (Au)(τ) =

π
∫

−π

r(τ − t)u(t) dt =: (r ∗ u)(τ),

whereu, r andAu are2π-periodic functions belonging toL2((−π, π)).
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7.1. The system matrix and the interpretation of the source condition. In (7.1), the
operatorA is defined between function spaces. Therefore, we have to transform the operator
A to a matrix, such that the application of the operator can be expressed as a matrix-vector
multiplication; cf. (2.1)-(2.3). The appropriate discretization of this linear operator is ap-
parently given by the Fourier coefficients of the periodic functions. It is well known that a
periodic function on[−π, π] can be either expressed via the orthonormal bases formed by

{

1√
2π

eikt

}

k∈Z

or

{

1√
2π

,
1√
π

cos(kt),
1√
π

sin(kt)

}

k∈N

.

It turns out that, by the convolution theorem, a discretization via the exponential basis leads
to a diagonal system matrix. However, by using the exponential basis one has to work with
complex valued matrices and vectors, which is not covered byour theory. Therefore, we have
to use the trigonometric basis, which leads to real valued matrices and vectors. That is,

u(t) = a0 +
∑

k∈N

ak cos(kt) + bk sin(kt)

with coefficients

a0 =
1

2π

π
∫

−π

u(t) dt

ak =
1

π

π
∫

−π

u(t) cos(kt) dt

bk =
1

π

π
∫

−π

u(t) sin(kt) dt .

In the following, the Fourier coefficients of a functionu will be collected in the vector
u = [au

0 , au
1 , bu

1 , · · · , au
k , bu

k , · · · ]. Using the Fourier convolution theorem for the exponen-
tial basis and transformation formulas between the exponential and trigonometric bases, the
Fourier coefficientsy of y = Au can be computed as

y = Au,

with A given by

A = π





















2 · ar
0 0 0 · · · · · · · · · · · · · · ·

0 ar
1 −br

1 0 0 · · · · · · · · ·
0 br

1 ar
1 0 0 · · · · · · · · ·

0 0 0 ar
2 −br

2 0 0 · · ·
0 0 0 br

2 ar
2 0 0 · · ·

· · · · · · · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · · · · · · ·





















,

wherear
0, a

r
k, br

k denote the Fourier coefficients of the kernel functionr.
For givenu, the weightedℓp norm is defined by

‖u‖p
p,ω := ω0|au

0 |p +
∞
∑

k=1

(ωa
k |au

k |p + ωb
k|bu

k |p) .
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Forp = 2 andωk = π, the norm so defined coincides with the usual norm onL2(−π, π). In
order to get convergence rates, the solution needs to fulfilla source condition involving the
(Banach) adjoint ofA. We have

A∗ = AT ,

i.e., the adjoint operator is the transposed matrix. We get the following result.
COROLLARY 7.1. A sequencēu ∈ ℓ2 fulfills the source condition (SC) for

f(ū) = ‖ū‖p
p,ω if there exists a sequencev = {av

0, a
v
1, b

v
1, · · · } ∈ ℓ2 with

(7.2)

[

asc
k

bsc
k

]

=

[

pωa
k sgn(aū

k)|aū
k |p−1

pωb
k sgn(aū

k)|bū
k |p−1

]

= A∗

k

[

av
k

bv
k

]

for eachk > 0 and, fork = 0,

pωa
0 sgn(aū

0 )|aū
0 |p−1 = 2 · π · ar

0 · av
0

holds, whereA∗

k is given by

(7.3) A∗

k = π

[

ar
k br

k

−br
k ar

k

]

.

Proof. The proof is straightforward and follows fromA∗ = AT , the fact thatA can be
formed as a “diagonal” matrix,A = diag [2ar

0,A1,A2, · · · ], and the definition off .

Thus, for a givenv ∈ ℓ2, one can computeA∗v and therefore construct̄u that fulfills
the source condition (SC). On the other hand, one can check ifa given function fulfills the
source condition: For given̄u, the left hand side(asc

k , bsc
k )T of (7.2) can be computed. Thus,

in order to findv, one has to invertA∗

k for eachk. It is easy to see that

(A∗

k)
−1

=
1

π

1

(ar
k)

2
+ (br

k)
2

[

ār
k −br

k

br
k ar

k

]

,

which is well defined as long as(ar
k)

2
+ (br

k)
2 6= 0. AsA∗

k is invertible in this case, a source
condition is formally fulfilled for every given solution, i.e.,u = A∗v. However, the source
condition is only fulfilled ifv ∈ ℓ2, which requires the coefficients ofu to converge to zero
fast enough. We have the following result.

COROLLARY 7.2. Assume that the coefficients of the kernel function fulfill
(ar

k)
2

+ (br
k)

2
> 0 for all k ∈ N. Then each sparse solution̄u fulfills the source condi-

tion (SC) with a sparse source elementv.
Proof. Let ū = {aū

0 , aū
1 , bū

1 , · · · }. AsA∗

k is invertible, one can findv = {av
0, a

v
1, b

v
1, · · · }

with
[

pωa
k sgn(aū

k)|aū
k |p−1

pωb
k sgn(aū

k)|bū
k |p−1

]

= A∗

k

[

av
k

bv
k

]

.

As ū is sparse, there existsk0 ∈ N such that for allk > k0, aū
k = bū

k = 0 holds. By the above
equation this also yieldsav

k = bv
k = 0, i.e.,v is sparse and thus belongs toℓ2.

In the following we will characterize the source condition in terms of the decay rate of
the coefficients of the solution. In order to simplify the notation, we will write a ∼ b if
|a| ≤ C|b| holds for some constantC independent ofa andb.
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FIG. 7.1.Kernel functionr.

COROLLARY 7.3. Assume that the Fourier coefficientsar
k, br

k, k ∈ N, of the kernelr
fulfill

ar
k, br

k ∼ k−s, s > 0 .

Thenu = {au
0 , au

1 , bu
1 , · · · } fulfills the source condition only ifu ∈ ℓ2(p−1),k2sω2

k
.

Proof. As pointed out earlier in this section, every function inD(A) formally fulfills the
source condition. Thus we only have to verify thatv with A∗v = f ′(u) belongs to the space
ℓ2. Denoting the coefficients ofA∗v by {a∗

0, a
∗

1, b
∗

1, . . .}, one obtains from (7.3),

a∗

k ∼ (|av
k| + |bv

k|) k−s,

b∗k ∼ (|av
k| + |bv

k|) k−s.

The source condition yields
∣

∣pωa
k sgn(au

k)|au
k |p−1

∣

∣ ∼ (|av
k| + |bv

k|) k−s,
∣

∣pωb
k sgn(au

k)|bu
k |p−1

∣

∣ ∼ (|av
k| + |bv

k|) k−s,

or

k2s(ωa
k)2|au

k |2(p−1) ∼ (|av
k| + |bv

k|)2 ∼ |av
k|2 + |bv

k|2,
k2s(ωb

k)2|bu
k |2(p−1) ∼ |av

k|2 + |bv
k|2 .

For v ∈ ℓ2, the right-hand side has to be summable, and thus also the left-hand side, which
results inu ∈ ℓ2(p−1),k2sω2

k
.

Thus, the source condition requires the solution to go to zero much faster than would be
the case if the solution only belonged toD(A) = ℓp,ω. In particular, the growth of the factor
k2sωa

k |au
k |p−2 (similar for the coefficientbk) has to be compensated.

7.2. Numerical results. For the numerical realization, the interval[−π, π] was divided
into 212 equidistant intervals, leading to a discretization ofA as 212 × 212 matrix. The
convolution kernelr was defined by its Fourier coefficients(ar

0, a
r
1, b

r
1, a

r
2, b

r
2, · · · ) with

ar
0 = 0,

ar
k = (−1)k · k−2,

br
k = (−1)k+1 · k−2 .
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FIG. 7.2.Example7.4, solution (solid) and reconstruction (dotted) for different error levelsδ = 0.1 (left) and
δ = 0.0005 (right).

FIG. 7.3.Example7.4, log-log plot of the reconstruction error in dependance of the data error for the recon-
struction of a sparse solution.

Notice thatr fulfills the decay condition of Corollary7.3 with s = 2. Moreover, we have
(ar

k)
2

+ (br
k)

2
> 0 for all k ∈ N and thus all matricesA∗

k are invertible and Corollary7.2
applies. A plot of the kernel function can be seen in Figure7.1.

For our numerical tests, we setp = 1.1 in Examples7.4–7.6andp = 1.5 in Example7.7.

7.2.1. Minimization of the Tikhonov functional. In order to verify our analytical con-
vergence rate results, the minimizers of the Tikhonov functionals for given1 < p < 2 have to
be computed. We used an iterative approach based on the minimization of so-called surrogate
functionals, i.e., we computed a sequence{uk} as

uk+1 = argminJs
α(u, uk),

Js
α(u, uk) =

1

2
‖Au − yδ‖2 + αf(u) + C‖u − uk‖2 − ‖A(u − uk)‖2.

For a given penalty termf(x) = ‖x‖p
p,ω the minimizer ofJs

α(u, uk) can be computed ex-
plicitly, and the iterates{uk} converge towards the unique minimizer of the functional. For a
detailed convergence analysis we refer to [9]. We remark that the algorithm is stable, but also
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FIG. 7.4. Example7.5, source termv (solid) and solution̄u (dotted) withf ′(ū) = A
∗
v for a nonsparsev

with a decay of the Fourier coefficients as1/k.

very slowly convergent. In particular, for small data errorδ, many iterations are needed in or-
der to achieve the required convergence rate. Another problem lies in the fact that the updates
computed by the algorithm are rapidly getting rather small and, due to the limited accuracy of
the computer arithmetic, inaccurate. At a certain error level, this leads to a stagnation of the
reconstruction accuracy and convergence rates cannot be observed anymore. The error level
at which this effect occurs depends on the underlying solution. We remark further that New-
ton’s method, applied to the necessary condition for a minimizer of the Tikhonov functional
Jα(u), fails as a reconstruction method. The method involves the second derivative of the
penaltyf(u) = ‖u‖p

p, which is singular at zero forp < 2. This causes problems in particular
for the reconstruction of a sparse solution.

EXAMPLE 7.4. Reconstruction of a sparse solution.Our numerical tests start with a
reconstruction of a sparse solution from the associated noisy data. As solution we chose
ū = {aū

0 , aū
1 , bū

1 , · · · }k∈N with

aū
0 = 0,

aū
k =

{

10−3 for k = 1, · · · , 7,
0 for k > 7,

bū
k =

{

−1 for k = 1, · · · , 7,
0 for k > 7 .

For the reconstruction, the parameters in the penalty were set top = 1.1, while the weights
were set toωa

k = ωb
k = 1 for all k. As ū is sparse, it fulfills the source condition according

to Corollary7.2, and we expect a convergence rate ofO(δ1/2) with respect to theℓ1.1 norm.
Figure7.2 shows the reconstructions for two different error levels, and Figure7.3 shows a
log-log plot of the reconstruction error versus data error.Reconstructions were carried out
for different noise levelsδ ∈ {0.5, 1} · 10−l, l = 1, 2, · · · , 9. Up to a certain error level,
Figure7.3 shows a linear behavior of the log-log plot, whereas, for thesmaller noise levels
only small improvements are visible. This is mainly due to the fact that the regularization
parameter used for small data error is also very small, whichusually yields relatively flat
functionals around the associated minimizers. One of the main problems of the iterative
methods for the minimization of the Tikhonov functional with sparsity constraints is their
slow convergence, which leads to very small updates at the final stages of the iteration. Due
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FIG. 7.5. Example7.5, log-log plot of the reconstruction error in dependance of the data error level for the
reconstruction of a nonsparse solution fulfilling the source condition (SC).

to numerical errors, the computed descent directions are not correct anymore, and the iteration
stalls. Nevertheless, by a linear fitting of the log-log plotover the whole range of the data
errors we obtained a convergence rate ofO(δν ) with ν = 0.4924, which is reasonably close
to the expectedν = 0.5. If we do restrict the fitting process to the almost linear part of the
plot (with smallest error levelδ = 10−6), then we obtain a convergence rate ofO(δν ) with
ν = 0.76, which is well above the expected rate.

EXAMPLE 7.5. A nonsparse solution fulfilling the source condition (SC).In the next
test, we used a nonsparse solution that still fulfills the source condition (SC). Again, the
parameters were set top = 1.1 andωa

k = ωb
k = 1 for all k. The solution was constructed

by choosingv ∈ ℓ2 first and computing the solution̄u with f ′(ū) = A∗v afterwards. The
sourcev = {av

0, a
v
1, b

v
1, · · · } was set to

av
k = αkk−1,

bv
k = βkk−1,

with αk, βk ∈ [−1, 1] randomly chosen. Figure7.4shows both̄u andv. The reconstruction
was carried out again forδ ∈ {0.5, 1} · 10−l, l = 1, 2, · · · , 9. In this case, the minimizers of
the solution were well reconstructed even for small data error, which is reflected in the almost
linear behavior of the log-log plot in Figure7.5. A possible explanation for the good results
of the minimization algorithms might be the structure of thesolution. Although the solution
is not sparse, the coefficients decay rapidly, which leads tofewer significant coefficients as in
Example7.4. We obtained a convergence rate ofO(δν) with ν = 0.7812, which is again well
above the expected rate.

If we compare the log-log plots of the reconstruction for thesparse solution and for the
nonsparse solution, then we observe that, although similarrates are achieved, the absolute
error of the reconstruction for the sparse solution is significantly higher than for the non-
sparse solution. The explanation for this behavior is quitesimple: The source condition reads
f ′(ū) = A∗v and the constant in the convergence rate estimate depends onthe norm ofv.
In Example7.4, the norm of the source element‖v‖ for the sparse solution is approximately
20 times bigger than for the nonsparse solution in Example7.5, and therefore the absolute
reconstruction error is larger in the first case.

EXAMPLE 7.6. A solution fulfilling no source condition.For the third test we setu = v

with v, p andωa
k, ωb

k defined as in Example7.5. Sincev decays only ask−1, we havev ∈ ℓ2
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FIG. 7.6.Example7.6, reconstruction of a solution fulfilling no source condition (left ) and log-log plot of the
reconstruction error in dependance of data error level.

only. Therefore, the solution fulfills no source condition and we do not expect a convergence
rate ofO(δ1/2). Indeed, the reconstructions forδ ∈ {0.5, 1} · 10−l, l = 1, 2, · · · , 9 suggest a
rate of at mostO(δν) with ν = 0.01; see Figure7.6. Even if we assume that the minimizers
were not reconstructed with high accuracy for small error level δ by the iterative method, and
take into account only the reconstructions where the plot inFigure7.6shows linear behavior,
we still obtain a rate ofν = 0.0377 only. Clearly, the convergence is much slower (also in
absolute values) than in the previous cases.

EXAMPLE 7.7. A nonsparse solution fulfilling the source condition (SC I).Finally, we
present a reconstruction from noisy datayδ, where the associated solution̄u fulfills the
source conditionf ′(ū) = A∗Av. In this case, a convergence rate of at leastO(δ

p
p+1 ) is

expected. For the reconstruction, we used a different setting than in the previous cases. First,
we changed the penaltyf by using nowp = 1.5 and weight functionsωa

k = ωb
k = k. Second,

we chose a different source termv = {av
0, a

v
1, b

v
1, · · · } with coefficients,

aw
0 = 0 ,

aw
k = k−1.4 ,

bw
k = −k−1.4 .

It is easy to see that the source element belongs toℓp,ω. The solution was then determined
as ū = A∗Av, Figure7.7 displays bothv and ū. The reconstruction was again carried
out for error levelsδ = {0.5, 1} · 10−l, l = 1, 2, · · · , 9, and the reconstruction accuracy
was measured in theℓp,ω norm; see Figure7.8 for the results. From the reconstructions
we obtained a convergence rate ofO(δ0.66) which is slightly higher than the theoretically
expected rate ofO(δ0.6).

The observed convergence rates for the reconstructions in Examples7.4-7.7are summa-
rized in Table7.1.
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FIG. 7.7.Example7.7, source elementv (left) and solution̄u with f ′(ū) = A∗Av (right).

FIG. 7.8.Example7.7, plot of ū − uδ
α for δ = 5 · 10−5 (left) and log-log plot of the reconstruction error in

dependence of the data error (right).
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