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CONVERGENCE RATES FOR REGULARIZATION WITH SPARSITY
CONSTRAINTS*

RONNY RAMLAU " AND ELENA RESMERITA!

Abstract. Tikhonov regularization withp-powers of the weighted,, norms as penalties, with € (1,2),
have been employed recently in reconstruction of sparsaiso$ of ill-posed inverse problems. This paper shows
convergence rates for such a regularization with respetiieanorm of the weighted spaces by assuming that the
solutions satisfy a certain smoothness (source) conditibne meaning of the latter is analyzed in some detail.
Moreover, converse results are established: Linear cgavee rates for the residual, together with convergence
of the approximations to the solution, can be achieved dntizeé solution satisfies a source condition. Further
insights for the particular case of a convolution equatiom@rovided by analyzing the equation both theoretically
and numerically.
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1. Introduction. In this paper, we consider linear ill-posed operator eaunati

<3}

(1.1) Ai =g
A Xy — La(9Q).

Here, X, ., denotes a Banach space which is a subspafe(®f), with parameterp € (1,2)
andw = {wy}rea, WhereQ is a bounded open subsetf, with d > 1, andA is a set
of (possibly tuples of) integer indices. Although one coetdploy more general separable
Hilbert spaces thah,(2), we consider here the Lebesgue space case for simplicity.

We are in particular interested in the reconstruction ofisohs of (L.1) that admit a
sparse structure with respect to a given basis in the Banzates(, .., that is, only a finite
number of the solution coefficients do not vanish. In thesesat is desirable to choose
a regularization method that also promotes a sparse recctish. For instance, suitable
choices for the spaces, ., are the Besov spacés; , with p € (1,2) in case of a sufficiently
smooth wavelet basis and properly chosen weights; see[@&.49] for detailed discussions.

Instead of solving the above equation in a function spadmgetve will transform it into
a sequential setting. More precisely, we will work with weigd/,, spaces, wherg € (1,2).
We will consider weights that are bounded away from zeroclleginsures that the spadgs
and the weighted, spaces are isomorphic.

Convergence of Tikhonov type regularization methods witss@®/ norm constraints
(which can be transformed into a weightggdconstraint) has been shown with respect to the
£5 norm in [9]. With respect to the weightet) strong topologies witly € [1, 2], convergence
has been established ia(, 19, 12]. Error estimates for regularization have been achieved re
cently via Bregman distances associated to the penaléesfar instance 4] 21, 22, 13, 5].
Note that error estimates for regularization with weightgchorms have been obtained in
[14] with respect to thés norm. In parallel with our work, interesting quantitativesults
have been shown also in the Hilbert space normit®ip the case that the solution is known
to be sparse; see a related discussion at the end of the réxinseOur study focuses on
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convergence rates in terms of weightgdspace norms which are stronger than th&orm
whenp € (1,2), with emphasis on some kind of necessary and sufficient tondi We
dwell on the realization of the error estimates, rather tbarthe results themselves, which
follow via convexity arguments characterizing the spedsf@mach spaces we work with.

Due to the useful topological properties of thespacesp € (1,2), which transfer to
the weighted’,, spaces, error estimates can be established also in terims 0btms of these
Banach spaces.

Recall that error estimates are usually obtained under #mess assumptions on the
solutions. For instance, classical assumptions of thid kircase of quadratic Tikhonov sta-
bilization (i.e., f = | - ||?) in Hilbert spaces are as follows: A solutianof the equation
Az = y to be solved is in the range of the operatd* A)”, v > 0, whereA* is the adjoint
operator. The role of spectral theory is known to be esskintidnat Hilbert space context.
We limit our study in the non-Hilbert space framework to tmeo®thness assumptions al-
ready analyzed ird, 22], where general convex penaltigsvere considered. More precisely,
we will assume that the derivative of the penajtyat the solutionz belongs either to the
range of the Banach space adjoint operatbror, in particular, to the range of the operator
A*A. By focusing on this specific sparsity framework, we will aiot the convergence rate
O(6"/?) in case the first source condition holds ang?/ (1)) under the second condition.
We will also show that linear convergence rates for the residtogether with convergence
of the approximations to the solution, can be achieved drtlye solution satisfies a source
condition. An interpretation of the basic source conditialh be discussed in some detalil, by
allowing the domain of the operator to be a larger weightelldsgue space than the domain
of the penalty function. We will consider a convolution plerin and present necessary and
sufficient conditions for a source condition, pointing du¢ tase of sparse solutions which
satisfy a source condition with sparse source elements.niheerical results on the recon-
struction of a function from its noisy convolution data comfithe derived convergence rates.
Our study is done for linear operators, although it can berkéd to nonlinear ones, as is
briefly discussed.

The paper is organized as follows. Sectibstates the notation and general assumptions.
The error estimates and the a priori convergence rates aversin Sectior, while Sectiort
presents some type of converse results for those ratesoB8cionsists of a discussion of the
basic source condition. Possible extensions to nonlingarator equations are considered in
Section6. A convolution problem is analyzed both theoretically andwrically in Sectiory.

2. Notation and assumptions.By choosing a suitable orthonormal bagiB, }rca Of
the spacd.(Q2), botha and Aa can be expressed with respectliQ. Thus,

(2.1) A= (i, ®)) (AR, D) Oy
A

Defining the infinite-dimensional matrix and vectors:, y by

(2.2) A= ((ADx, D0 ))rnven, u= (@ Pr)rens ¥ = (7, Pr))ren ,
equation {.1) can be reformulated as an (infinite) matrix-vector muitation
(2.3) Au=y.

Now let us specify the spacés, ... For a given orthonormal bas{®  } »c 4 and positive
weightsw = {wx }rea, We define

i€ Xpuw == _wl(ll, ®1)[P < o0,
A
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i.e.,u = {(a, ®»)}ren belongs to the weighted sequence space From now on, let
Uy = <ﬁ7 q))\>a

1

bpw = qu={urhrea: [ullpw = (Z wA|uA|p> <00
A

Sincel,, C {4 with |lul|; < ||ul|, for p < ¢, one also has, ., C ¢, for p < g andw’ < w.
In particular, if the sequence of weights is positive andrizted from below, i.e) < p < wy
for somep > 0, thent,, ,, C ¢ forp < 2.

Using the above discretization, we now consider the opeeafoation

(2.4) Au=y
Al — o,
whereA is a linear and bounded operator.
We are interested in investigating convergence rates fiindnov regularization with

sparsity constraints, where the approximation of the gmius obtained as a solution of the
problem

1
(2.5) min{§||Au—y5|2+af(u)},
with regularization parameter > 0 and penalty

(2.6) flu) = Jlullb, anwp

Throughout this paper, we assume that (1,2) and the weightv is bounded away from
zero, i.e., there ip > 0 such that

0<p<uwy.
Moreover, we assume that.@) has solutions and that the available noisy ddtaatisfy
(2.7) ly* —yll <o

for some noise level > 0.

Note that the functiory is strictly convex since the powers of the norms are strictly
convex. In addition, the functiofiis Fréchet differentiable.

Denote byu the unique solution of the equation that minimizes the pggriahctional f
and byD¢(z, x) the Bregman distance defined with respecf tthat is,

Dy(z,2) = f(z) = f(z) = (f'(x),2 — 7).
The reader is referred t&], for more information on Bregman distances.

3. Error estimation. As mentioned in the introduction, we would like to estimdte t
distance between the minimizer$ of (2.5 and the solution: of equation 2.4) which min-
imizes the penalt)f Let A* denote the Banach space adjoint operator which niajigto

the dual of,, .,

A" by — (Uy0)”
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with
(A%g,u) = (g, Au)

foru ey, g € lo.
PropPoOsITION3.1. The dual space df, , is given by

v b forp=1,
(lpo)” = { lywarw fOrp>1,

whereg fulfills the equation /¢ + 1/p = 1.
Proof. See [L7, Corollary 13.14].0

Note that(v, u) = >, usvx, Wwheneven € ¢, ., andv € (¢,.,)*. In order to obtain
convergence rates we will need the source conditions (S€{%@ 1), given by

(SC) f'(u) = A*v, for somev € (5.
(SC1) f'(u) = A* Ao, for somed € £, .

The error estimates established By 21, 22] for regularization with a general convex
functional read in our framework as follows: If (SC) is fuléitl, then

afjol* | 62

. o 1) < - o Aull < .
(3.1) Dy(uh ) < T+ 5= || Auf, — Auf < allol| +
If (SC 1) is fulfilled, then

52
(3.2 Dj'(ui,ﬂ)SDf(ﬂ—av,ﬂ)—i—?—,

(0%

| Aug, — Aal| < of|Av|| + v2a[Df(u — av, w)]"/? + 3,

wherec is a positive number.
We are further interested in obtaining error estimates vapect to the norm of thg, ,

spaces withp € (1,2). Foru € ¢, ,, consider the sequence= {w/l\/p . uA} K Then
’ AE
~ 1
lallp = i/ Pual? = Jullp,, < oo,
A

i.e.,@ € £,. By definingf (i) = ||a/%, one gets
(3.3) f(u) = f(a).

Moreover, for any € ¢, ,, and forh = {wi/” - Im}A R one has
S

(f' (@), h) = (f'(u), D).

We point out below several inequalitiesfy see, e.g.,43, Corollary 2] and §, Lemma 1.4.8
and proof of Cor. 3.5.9(ii)], respectively.
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PrOPOSITION3.2.1f p € (1,2], then one has for alt, z € ¢,

(3.4) (F) = Fl@),z =) <llz -l

(3.5) D(z,2) > ¢z — 2|3, for||z — |, small enough

where¢, andc, = ¢,(z) are some positive numbers.
The symmetric Bregman distance has the following expressio

Di(z,2) + Df(w,2) = <f'(z) — f(x), 2z — :v> )
Thus, inequality 8.4) can be rewritten as

(3.6) Di(z,2) + D(z, 2) < G|z — ||}

For our purposes, these results have to be extended g thepaces.
LEMMA 3.3.1f p € (1,2) and f is defined by(2.6), then the following inequality holds
for anyu,v € ¢, ., and for some positive numbetsandc, = c¢,(u),

3.7) Dy(v,u) <&pllv—ullf

(3.8) Dy(v,u) > cpllo —ull? ,, for|v —ul|,. small enough

Proof. We can use the equality shown previouslf/(u),h) = (f'(a),h), for all
u, h € £, ,, and corresponding, . € £,. Thus, one obtains

Dy(v,u) = f(v) = f(u) = (f'(u),v —u) = f(8) = f(@) = (f'(@),0 — &) = D5, 7).

By using further 8.5), (3.6), and @.3), inequalities 8.7) and 3.8) follow immediately. O
Based on the previous result, we can now state the errora&stinfior the above regular-
ization method in terms of the norm 6éf .

PROPOSITION3.4. Assume that noisy daig fulfilling ||y — ¢°|| < ¢ are given.
i) If f/(u) = A*v for somev € /5, then the following error estimates hold for the
minimizer of(2.5), when||u$, — il|,., is small enough:

_ 1 Valv|| o ) _
g g
Uy — Ulp,w < + , [AuS, — Aul| < aflv|| + 9.
” Hpa 011)/2 ( \/5 /—2 H H ” H

i) If f'(au) = A*Ad for somev € ¢, ., then the following error estimates hold for the
minimizer of(2.5), when||u?, — il|, ., is small enough:

o

1/201[,047

0

o=

| Aug, — Aull < o Ad| + 4,

[ud, = llpw < mpat +

wherem,, = i—iHﬁHﬁw.
Proof. i) Follows immediately from3.1) and @.8).



ETNA

Kent State University
http://etna.math.kent.edu

92 R. RAMLAU AND E. RESMERITA

i) Inequalities 8.2), (3.8), and @.7) imply

1 52
) —112 _ ~ _
- < —Dy(a— av,u) +
llug —all;,, < o F(u —ab,u) 2o
¢ 52
<z

)

£ AP H||IP

2ol + 5

which, together with the inequality'a? + 02 < a + b for a, b > 0 yields the result.0
COROLLARY 3.5.1") If the assumptions of Propositio®14, part i), hold anda ~ §, then

[ud, = allpw = O(62), || Aul, —yl| = O@),
for 6 small enough.

ii") If the assumptions of Propositiod.4, part ii), hold anda ~ 5,)—11, then

lug — @l

pw = O(07T), [ Aud, —y|| = O(9),

for 6 small enough.

The recent work12] shows the convergence raﬁ(d%) forp € [1,2) (thus, up toO(0))
with respect to thé, norm ofu?, — u (which is weaker than the, ., norm forp < 2), in the
case thati is sparse and (SC) holds. These rates are already highem,pvkel .5, than the
“superior limit” of 0(5%) established for quadratic regularization. This also shihas the
assumption of sparsity is a very strong source conditiomvoltild be interesting to find out
whether these rates could be further improved if the stroageumption (SC 1) is fulfilled.
We remark that the numerical experiment we perform undeasisamption (SC I) and which
is described at the end of the last section shows that beties tharO((Sp%l) for ud —ain

the stronge¥,, ., norm seem to be achieved—that is, at Ie@eﬁ)—even if the solution is
not sparse.

4. Converse results.Next we prove some kinds of converse results regarding the fir
type of source condition. To this end, one needs even lessdinang convergence of the
approximants:®, to @. More precisely, one can show that a linear convergencefoatibe
residual and (even weak) convergence of the approximaitetsolutioni ensure thaf’ (i)
is in the range of the adjoint operator, no matter how fastahygroximants converge to the
solution. This interesting fact is due, as we will see betovg special property of the duality
mappingJ, in ¢, (the derivative of the-th power of the/,, norm).

We first deal with the noiseless data case, whegrés the minimizer of 2.5 correspond-
ing to exact datg.

PROPOSITION4.1. If || Au,, — y|| = O() andu,, converges tai, asa — 0, in thel,, ,
weak topology, theyf’(u) belongs to the range of the adjoint operatéf.

Proof. We use a technique from.()]. Let {«,, } be a positive sequence which converges
to zero a1 — oo. Let

1

Up = —
Qp

(y - Auan)'

This sequence is boundedds, so there exists a subsequereg} which converges weakly
to somev € ¢, ask — oo. Since the Banach space adjoint operatdris linear and
bounded, it maps weakly convergent sequences into weaklyecgent sequences; see, e.g.,
[1, Propositions 2.8-2.9, p. 37]. It follows that v, converges weakly tel*v in (¢, .,)*, as

k — oo.
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On one hand, the first order optimality condition for the miigation problemZ2.5) is
A (Aug —y) + af' (uq) = 0,

which implies thatA*v, = f'(uy) with ux = u,,. Consequently, one obtains thé{(uy,)
converges weakly tel*v in (¢, .,)* ask — oo. On the other hand,;, converges weakly ta
by the above assumption. Since any duality mapping,as weakly sequentially continuous
(see [1], p. 73), this property is inherited also by the derivatjffeon ¢, ., with respect to the
corresponding weak topologies. Thus, one gets fhat,) = A*v, converges also weakly
to f'(u) ask — oo. Therefore,f'(u) = A*v. O

Consider now the case of noisy datawhich satisfy 2.7).

PROPOSITION4.2.If ||y —y°| < 6, the rate|| Aud, —y|| = O(J) holds andud, converges
to u in the ¢, ., weak topology ag — 0 anda ~ ¢, then f’(u) belongs to the range of the
adjoint operatorA*.

Proof. The first order optimality condition for the optimizationgblem .5 now reads
as

A (Aug, = %) + af'(ug) = 0.
One can proceed as in the previous proposition, by usingdtigi@anal assumption7). O

5. Interpretation of the source condition (SC). The aim of this section is to derive
conditions on sequences fulfilling (SC). We will use the tiota

wh= {wi},\e/\, teR.
Now let us assume that
(51) A: gp/,w/ — éQ 5

and as penalty we take the functiorfagjiven by @.6). Note thatp, p’ andw, w’ are allowed
to be different, respectively. This, however, makes semdg i6 the penalty enforces the
solution to belong to a smaller space thagA) = ¢, ., i.e., if £, C ly . Thisis the
case, e.g., for

(5.2) p<p, W <w.

We will assume that the weights' are also bounded away from zetd, > p > 0. In the
sequel, the dual exponents to the giyep’ will be denoted by, ¢’. Consider first the case

p,p > 1.
PROPOSITIONS.1. Letp,p’ > 1, the operatorA and the penalty be given by(5.1),

(2.6), and assume thg6.2) holds. Then a solutiom of Au = y fulfilling A*v = f'(a)
satisfies

(5.3) 1_/4 6 é(p—l)q,,(w’)*q,/Pl.wq/ .

Proof. Forp, p’ > 1, the source condition reads
A*v = {pwxsgn(ia)|ur[P~" Frea.

SinceA* : o — Eq, o —a' /v We haved*v € Eq, —a'/» @and thus the condition

7 /
1=4'/p = |(p—1)q
E w'y w§\|u>\|(p )4 < o0
A
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has to be fulfilled, i.e4 € €, 1),/ (r)-a'/s’ - O

The previous result states only a necessary condition;, éay.the special case
p=19p', g=q, wyx=w one gets no additional information:
REMARK 5.2. Forthe casp = p’, ¢ = ¢/,w) = W'y, condition 6.3) reduces to

w€ly,=D(A).

In order to characterize the smoothness condition in terhspaces of sequences, we
relate the spaces t®(A*).

PROPOSITIONS.3. Letp,p’ > 1, the operatorA and the penalty’ be given by5.1),
(2.6), and assume thgb.2) holds. Moreover, assume that

R(A™) =Llg a5 Cly r-atsv
for somep, ¢ > 1. Then each sequence
(54) u € ﬂ(pfl)q,d)*q/iwq

fulfills the smoothness condition (SC).
Proof. Based on%.4), one can verify that

{pwoxsgn(@y)|arP~'} € lio-a/s,

which implies that satisfies (SC) due to the equall®(A*) = (; ;-a/5. O

Let us now consider the (special) case> 1, p = 1, i.e., the case when the penalty
is neither differentiable nor strictly convex. In this sition, a solutior: which minimizes the
penalty might not be unique. Moreover, the source condials ast*v = {wx sgn(ua)}ca,
wheresgn (@, ) equalsl if ) > 0, equals—1 if @, < 0, and belongs t¢—1, 1] otherwise;
see, e.g. 9.

PrROPOSITIONS.4. Letp’ > 1, p =1, w’ < w, and let the operatorl and the penalty
[ be given by(5.1), (2.6). Then the source conditiod*v = {wx sgn(ux)},c, Only can be
fulfilled if the solutionu is sparse.

Proof. LetAz = {\: |uy| > 0}. Forp’ > 1 one has(A*) C £, v/, and fromthe
source condition follows the condition

ng\fq /P w | sgn(uy)| < oo .
A
Sincew’ < w and0 < p < w), we conclude further that

1 =4/ 4 V> r=4' /0" sd
Zw,\ -wy [sgn(un)| = Z Wx TWx
A AEAG

a
_ E wg\p/(p 1)

AEAG

(5.5) > 3 pEEn

AEAG

and the sum ing.5) converges only if\; is finite, i.e., if the solutior: is sparse.d
We further note that fop = p’ = 1, w’ = w, the source condition reads

A*v = {wrsgn(tn) fyep € loow1
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and, similarly as in Remark.2, no further conclusions can be drawn.

The above derived conditions on sequences fulfilling a soaondition (SC) mean in
principle that the sequence itself has to converge to zesteefaough. They can also be inter-
preted in terms of smoothness of an associated functiohelfunction systerd®,} xca Iin
(2.1), (2.2 is formed by a wavelet basis, then the norm of a function @Rbesov spacé&, ,
coincides with a weighte€], norm of its wavelet coefficients and properly chosen weifflts
In this sense, the source condition requires the solutidretong to a certain Besov space.
The assumption oR(A*) in Proposition5.3then means that the range of the dual operator
equals a Besov space. Similar assumptions were used fon#igses of convergence rates
for Tikhonov regularization in Hilbert scales; se€le3[ 16, 15].

6. Nonlinear operators. A similar analysis as in the linear case can be carried out for
nonlinear operator equatiorf3(u) = y under several conditions on the operatgrwhich
allow reducing the study to the linear operator case. Fdamt®, differentiability ofF’ on a
ball around the solution, the source conditigii§i) = F’(u)*v andf'(a) = F'(u)*F'(u)v
withv € £, v € ¢, ,, smallness conditions on the source elemeratsdv, and the inequality

1F(w) = F(u) - F'(w)(u - w)l| < n(u, ),

for any u sufficiently close tou, guarantee that estimates similar to those in Coroltagy
hold also when regularizing the ill-posed probléftu) = y. A couple of choices that have
been used so far foy(u, u) are as follows (see, e.g11, 4, 22)):

(6.1) n(u, ) = c||[F(u) = Fu)],

n(u,u) = CDf(uv ),

for some numbet > 0. Since working with §.1) is quite restrictive regarding the nonlinear-
ity of the operator’ (see, for a discussionl], Chapter 11]) and sincg is strictly convex
and ensures thdD,(u, w) # 0 if u # u, we believe that the second condition represents a
better choice for the analysis.

We note again that the most recent study of sparse reguiarnar nonlinear equations,
including convergence and error estimates for the methdti nespect to thé; normiis [L2],
as far as we know.

7. Reconstruction of a function from its convolution data. This section presents a nu-
merical example which illustrates our analytical resulistioe convergence rates. We intend
to show that the convergence rates established above cabt&ieex if appropriate source
conditions are fulfilled. Two difficulties arise: The nunmeishould be accurate enough
so that the numerical errors do not dominate the reconsruetrror of the regularization
method a® — 0 and one should be able to construct functions that fulfilleree condition
exactly. Of course, the operator equation under considerahould not be trivial. All of
these requirements can be met by choosing the convolutieraty,

T

(7.2) y(1) = (Au) (1) = /T(T —tu(t)dt =: (r * u)(1),

—T

whereu, r and Au are2r-periodic functions belonging th, ((—m, 7)).
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7.1. The system matrix and the interpretation of the source andition. In (7.1), the
operatorA is defined between function spaces. Therefore, we havertsftnan the operator
A to a matrix, such that the application of the operator canXpeessed as a matrix-vector
multiplication; cf. @.1)-(2.3. The appropriate discretization of this linear operatap-
parently given by the Fourier coefficients of the periodindtions. It is well known that a
periodic function off—m, 7] can be either expressed via the orthonormal bases formed by

1 } { 1 L

—c or { ——, — cos(kt), — sin(kt)
{ V2 kez Vor T LS
It turns out that, by the convolution theorem, a discrettratia the exponential basis leads
to a diagonal system matrix. However, by using the expoakbésis one has to work with
complex valued matrices and vectors, which is not coverealinyheory. Therefore, we have
to use the trigonometric basis, which leads to real valuetlices and vectors. That s,

keN

u(t) =ao+ Y _ aycos(kt) + by sin(kt)
keN

with coefficients

a0 = 5 u(t) dt
ar = — /u(t) cos(kt) dt
7T

—T

s

1

b, = — /u(t) sin(kt) dt .
e
—T

In the following, the Fourier coefficients of a functianwill be collected in the vector
u = [af,a}, b}, ,a},bj,---]. Using the Fourier convolution theorem for the exponen-
tial basis and transformation formulas between the expisieand trigonometric bases, the
Fourier coefficients of y = Au can be computed as

y = Au,
with A given by
[ 2-a5 0 0
0 af =b, 0 0
0 by aj 0 0
A=x| 0 0 0 a5 b5 0 0 --- |,
0 0 0O b5 ay O 0 .-

whereag, a;;, bj, denote the Fourier coefficients of the kernel function
For givenu, the weighted’,, norm is defined by

oo
lallf, = wolag|” + ) (wilai|” +wi[bl?) -
k=1
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Forp = 2 andw;, = w, the norm so defined coincides with the usual nornLeft7, 7). In
order to get convergence rates, the solution needs to faltburce condition involving the
(Banach) adjoint ofA. We have

A*:AT,

i.e., the adjoint operator is the transposed matrix. Welgetdllowing result.
COROLLARY 7.1. A sequenceu € /{5 fulfills the source condition (SC) for
f(u) = [[u|b , if there exists a sequenee= {ag,af, by, -} € {2 with

ai 1 _ [ pegsmn(aplafr ] _ . [ af
72 i = L | A

for eachk > 0 and, fork = 0,
pwi sgn(ag)agP~" =27 - af - ag

holds, whereA; is given by

* ap by
(7.3) Aj —7T|: b al ] .

Proof. The proof is straightforward and follows from* = A7 the fact thatA can be
formed as a “diagonal” matrixA = diag [2a{, A1, As, - - -], and the definition of. O

Thus, for a giverv € ¢, one can computd *v and therefore construét that fulfills
the source condition (SC). On the other hand, one can chexlgifen function fulfills the
source condition: For gived, the left hand sidéa;¢, b;)" of (7.2) can be computed. Thus,
in order to findv, one has to inverAA; for eachk. It is easy to see that

e — 1 1 dr _bT
(A7) 1——ﬁ[bf ark]’
T (az)” + (b}) ko Pk

which is well defined as long dg;)* + (b;)” # 0. As A} is invertible in this case, a source
condition is formally fulfilled for every given solution,g.,u = A*v. However, the source

condition is only fulfilled ifv € ¢5, which requires the coefficients afto converge to zero

fast enough. We have the following result.

COROLLARY 7.2. Assume that the coefficients of the kernel function fulfill
(a;)* + (b;)* > 0 for all k € N. Then each sparse solutianfulfills the source condi-
tion (SC) with a sparse source element

Proof. Leta = {a{,a}, by, - }. AsAj isinvertible, one can fing = {a{,ay, by, -}
with

pwisgn(ap)ap P~ ] 4o [ 6
pwpsgn(ag)[bplP~t |

Asu is sparse, there exists € N such that for alk > ko, a}} = bj: = 0 holds. By the above
equation this also yields] = by = 0, i.e., v is sparse and thus belongs/to O

In the following we will characterize the source conditionterms of the decay rate of
the coefficients of the solution. In order to simplify the ation, we will writea ~ b if
|a| < C|b| holds for some constaidt independent of andb.
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FiG. 7.1.Kernel functionr.

COROLLARY 7.3. Assume that the Fourier coefficients, b), k € N, of the kernel

fulfill
ayp, by, ~ k™%, s>0.
Thenu = {af, af, b, - - - } fulfills the source condition only i € (5, 1) j2:2.

Proof. As pointed out earlier in this section, every functionA ) formally fulfills the
source condition. Thus we only have to verify thaith A*v = f’(u) belongs to the space
¢5. Denoting the coefficients A *v by {af, a3, b7, ...}, one obtains from7.3),

ag ~ (lag] +[bp]) k77,
by ~ (lag| + [bE[) k~°.
The source condition yields
|pwit sgn(ag)lag P~ | ~ (|ag] + [bR]) &,
|pwi sgn(ai) b [P~ ~ (lag] + bR k™2,
or
K2 (@f)?|af P ~ (Jag] + [0}])” ~ [af | + [b§ 1,
K2 (@) P b PO~ fag | + b
Forv € {5, the right-hand side has to be summable, and thus also thledeél side, which
results inu € lo(, 1) p2s2. O

Thus, the source condition requires the solution to go to rauich faster than would be
the case if the solution only belongedf{A) = ¢, ... In particular, the growth of the factor
k*we|ak[P~2 (similar for the coefficienb,) has to be compensated.

7.2. Numerical results. For the numerical realization, the interjalr, 7] was divided
into 2'2 equidistant intervals, leading to a discretizationffas 2'2 x 2'2 matrix. The
convolution kernet was defined by its Fourier coefficients),, af, by, ab, b5, - - - ) with



ETNA

Kent State University
http://etna.math.kent.edu

CONVERGENCE RATES FOR REGULARIZATION WITH SPARSITY CONSARNTS 99

FiG. 7.2.Example7 .4, solution (solid) and reconstruction (dotted) for diffetesrror levelss = 0.1 (left) and
6 = 0.0005 (right).

FiG. 7.3.Example7.4, log-log plot of the reconstruction error in dependanceld tlata error for the recon-
struction of a sparse solution.

Notice thatr fulfills the decay condition of Corollary.3with s = 2. Moreover, we have
(ap)?* + (b)* > 0forall k € N and thus all matriced; are invertible and Corollary.2
applies. A plot of the kernel function can be seen in Figude

For our numerical tests, we set= 1.1 in Examples’.4-7.6andp = 1.5 in Example7.7.

7.2.1. Minimization of the Tikhonov functional. In order to verify our analytical con-
vergence rate results, the minimizers of the Tikhonov fiometls for givenl < p < 2 have to
be computed. We used an iterative approach based on the iatiom of so-called surrogate
functionals, i.e., we computed a sequefiag} as

Up1 = argmin J? (u, ug),

1
Ja(u, ur) = 5[l Au — Y11+ af (u) + Cllu — ugl* — | Alu — ur)||.

For a given penalty ternf(z) = [|z|[5 ., the minimizer ofJ(u, u;) can be computed ex-
plicitly, and the iterategu,, } converge towards the unique minimizer of the functionat. &o
detailed convergence analysis we referdp We remark that the algorithm is stable, but also
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L L L L L L L
5 2 il 1] 1 2 3

FIG. 7.4. Example7.5, source termv (solid) and solutiona (dotted) withf’ () = A*v for a nonsparses
with a decay of the Fourier coefficients agk.

very slowly convergent. In particular, for small data erffpmany iterations are needed in or-
der to achieve the required convergence rate. Another enobés in the fact that the updates
computed by the algorithm are rapidly getting rather smadl,alue to the limited accuracy of
the computer arithmetic, inaccurate. At a certain erroelgthis leads to a stagnation of the
reconstruction accuracy and convergence rates cannotdsevaal anymore. The error level
at which this effect occurs depends on the underlying smutiVe remark further that New-
ton’s method, applied to the necessary condition for a mirenof the Tikhonov functional
Jo(u), fails as a reconstruction method. The method involves ¢eersd derivative of the
penaltyf(u) = |lul[5, which is singular at zero fgr < 2. This causes problems in particular
for the reconstruction of a sparse solution.

EXAMPLE 7.4. Reconstruction of a sparse solutio@ur numerical tests start with a
reconstruction of a sparse solution from the associategyndéata. As solution we chose
u= {ag, aqli, bqll, -+ }ren With

0,
103 fork=1,---,7,
0fork > 17,

(=]

Qa

e
Il

a

bi —1fork=1,---,7,
= ofork >7.

For the reconstruction, the parameters in the penalty wetreop = 1.1, while the weights
were set tav¢ = w? = 1 for all k. Asa is sparse, it fulfills the source condition according
to Corollary7.2, and we expect a convergence ratexh'/2) with respect to the; ; norm.
Figure 7.2 shows the reconstructions for two different error levelsd &igure7.3 shows a
log-log plot of the reconstruction error versus data erfi®econstructions were carried out
for different noise level$ € {0.5,1} - 1071 = 1,2,---,9. Up to a certain error level,
Figure7.3shows a linear behavior of the log-log plot, whereas, forgimaller noise levels
only small improvements are visible. This is mainly due te fact that the regularization
parameter used for small data error is also very small, whilhally yields relatively flat
functionals around the associated minimizers. One of thim mpeoblems of the iterative
methods for the minimization of the Tikhonov functional vgparsity constraints is their
slow convergence, which leads to very small updates at thédtages of the iteration. Due
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KT

FiG. 7.5. Example7.5, log-log plot of the reconstruction error in dependance teé tlata error level for the
reconstruction of a nonsparse solution fulfilling the seucondition (SC).

to numerical errors, the computed descent directions areamcect anymore, and the iteration
stalls. Nevertheless, by a linear fitting of the log-log meer the whole range of the data
errors we obtained a convergence rategd” ) with v = 0.4924, which is reasonably close
to the expectedr = 0.5. If we do restrict the fitting process to the almost lineart pdithe
plot (with smallest error level = 10~), then we obtain a convergence rate((f") with

v = 0.76, which is well above the expected rate.

EXAMPLE 7.5. A nonsparse solution fulfilling the source condition (Si@)the next
test, we used a nonsparse solution that still fulfills therswcondition (SC). Again, the
parameters were set o= 1.1 andw{ = w? = 1 for all k. The solution was constructed
by choosingv € ¢, first and computing the solutiom with f'(u) = A*v afterwards. The
sourcev = {a§,a},by,---} was setto

ay = agk™?,

by = Bk,
with a, Bk € [—1, 1] randomly chosen. Figurg4shows botha andv. The reconstruction
was carried out again far € {0.5,1} - 107!,/ = 1,2,---,9. In this case, the minimizers of

the solution were well reconstructed even for small datarewhich is reflected in the almost
linear behavior of the log-log plot in Figuré5. A possible explanation for the good results
of the minimization algorithms might be the structure of #rdution. Although the solution
is not sparse, the coefficients decay rapidly, which leadewer significant coefficients as in
Example7.4. We obtained a convergence rate") with » = 0.7812, which is again well
above the expected rate.

If we compare the log-log plots of the reconstruction for iparse solution and for the
nonsparse solution, then we observe that, although simgdtas are achieved, the absolute
error of the reconstruction for the sparse solution is digantly higher than for the non-
sparse solution. The explanation for this behavior is ggiitgple: The source condition reads
/() = A*v and the constant in the convergence rate estimate deperitie oorm ofv.

In Example7.4, the norm of the source eleméi|| for the sparse solution is approximately
20 times bigger than for the nonsparse solution in Exarmigieand therefore the absolute
reconstruction error is larger in the first case.

EXAMPLE 7.6. A solution fulfilling no source conditioror the third test we sat = v
with v, p andw{, w? defined as in Example5. Sincev decays only ag !, we havev € /5
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FIG. 7.6.Example7.6, reconstruction of a solution fulfilling no source conditifleft ) and log-log plot of the
reconstruction error in dependance of data error level.

only. Therefore, the solution fulfills no source conditiordave do not expect a convergence
rate ofO(6'/?). Indeed, the reconstructions fér= {0.5,1}-107%,1=1,2,---,9 suggest a
rate of at mosO(6”) with v = 0.01; see Figure/.6. Even if we assume that the minimizers
were not reconstructed with high accuracy for small erreelé by the iterative method, and
take into account only the reconstructions where the pl&iguire7.6 shows linear behavior,
we still obtain a rate of7 = 0.0377 only. Clearly, the convergence is much slower (also in
absolute values) than in the previous cases.

EXAMPLE 7.7. A nonsparse solution fulfilling the source condition (SC-ipally, we
present a reconstruction from noisy datd, where the associated solutianfulfills the
source conditionf’/(i) = A*Av. In this case, a convergence rate of at Ie@&f#) is
expected. For the reconstruction, we used a differentggtitian in the previous cases. First,
we changed the penalfyby using nowp = 1.5 and weight functions{ = w? = k. Second,
we chose a different source tesnm= {a{, a}, b, - - - } with coefficients,

w

ay =0,

af = k14,
w —k_14

It is easy to see that the source element belondg o The solution was then determined
asu = A*Av, Figure7.7 displays bothv anda. The reconstruction was again carried
out for error levelss = {0.5,1} - 107!, = 1,2,---,9, and the reconstruction accuracy
was measured in thg, , norm; see Figur&’.8 for the results. From the reconstructions
we obtained a convergence rate@fs’-®) which is slightly higher than the theoretically
expected rate oD (5%-%).
The observed convergence rates for the reconstructionsamples/.4-7.7 are summa-

rized in Table7.1
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FiG. 7.8.Example7.7, plot ofa — u?, for 6 = 5- 10~> (left) and log-log plot of the reconstruction error in
dependence of the data error (right).
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