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1 Preliminaries and theorems
As the development of singular integral operators and their commutators, multilinear sin-
gular integral operators have been well studied (see [1-5]). In this paper, we study some
vector-valued multilinear integral operators as follows.

Suppose that m; are positive integers (j = 1,...,/), m; + - - - + m; = m and A; are functions
onR" (j=1,...,1). Let F;(x,y) be defined on R" x R" x [0, +00). Set

R = [ FwfO)dy

and

l; Rmv+ (Ar ) )
FMf)(x) = / et By (A% Fi(x,9)f () dy
R Ix—

ym

for every bounded and compactly supported function f, where

1
Ron1(Aji,9) = Aj0) = Y — D A()(x = )"

lat|<m;j

Let H be the Banach space H = {: ||/1|| < oo} such that, for each fixed x € R”, F;(f)(x) and
FA(f)(x) may be viewed as a mapping from [0, +00) to H. For 1 < s < 00, the vector-valued

multilinear operator related to F; is defined by

[ee]

1/s
| T4(N )], = (Z(TA(fi)(x))s> )

i=1
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where

TA(f)) = |F ()

B
and F, satisfies: for fixed & > 0,

|Fix,9)| < Cla—yI™
and

|E:(3, %) = Fy(z,%)| < Cly — 2l |x — 2] ™**

if2|y—z| < |x—z|. Set

| T(f)(x) (me )US and ms=(§ij)|s>l/s.

Suppose that | T'|, is bounded on L?(R") for 1 < p < 0o and weak (L', L!)-bounded.

Note that when m = 0, T4 is just a vector-valued multilinear commutator of T and A
(see [6]). While when 7 > 0, T4 is a non-trivial generalization of the commutator. It is well
known that multilinear operators are of great interest in harmonic analysis and have been
studied by many authors (see [1-5]). In [7], Hu and Yang proved a variant sharp estimate
for the multilinear singular integral operators. In [6], Pérez and Trujillo-Gonzalez proved
a sharp estimate for some multilinear commutator. The main purpose of this paper is to
prove a sharp inequality for the vector-valued multilinear integral operators. As applica-
tions, we obtain the weighted L? (p > 1) norm inequalities and an L log L-type estimate for
the vector-valued multilinear operators.

First, let us introduce some notations. Throughout this paper, Q will denote a cube of
R" with sides parallel to the axes. For any locally integrable function f, the sharp function
of f is defined by

4 )-sup@f[f(y) ~fol dy,

where, and in what follows, f = |Q|™ [, of ) dx. It is well known that (see [8])

f (x)wsuplnéﬁflf(y)—ddy

We say that f belongs to BMO(R") if f* belongs to L*(R") and ||f||zamo = I|f* |z For 0 <
r < 00, we denote f* by

e =1 @]

Let M be the Hardy-Littlewood maximal operator, that is, M(f)(x) = sup,cq QI x
fQ |f ()| dy. For k € N, we denote by M* the operator M iterated k times, i.e., M*(f)(x) =
M(f)(x) and Mk(f)(x) = M(Mk’l(f))(x) for k > 2.
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Let ® be a Young function and ® be the complementary associated to ®, we denote the
d-average by, for a function f,

Iflle.q :inf{/\ >0: ﬁ/{f)(@) dy < 1}

and the maximal function associated to ¢ by
Mo (f)(x) = sup ||fll o,
xeQ

The Young functions to be used in this paper are ®(£) = exp(¢") —1 and W(¢) = tlog" (¢ + e),
the corresponding ®-average and maximal functions are denoted by | - llexpzr,@» Mexprr
and || - | zgog£y,0s Mirgogry - We have the following inequality, for any > 0 and m € N (see

[6])
M(f) < Miaogry (f)s Miogryn (f) = M™(f).

For r > 1, we denote that
”b”osccxpy = SL(;P ”b - bQ“expL’,Q;

the space Osceyp - is defined by
OSCexpL’ = {b € Ll%(Rn> : ”b”oscexer < OO}
It has been known that (see [6])

b- sz”expL’ 2kQ = < Ckl|bllosc

expL”*

It is obvious that Osceyp - coincides with the BMO space if = 1, and OScexprr C BMO if
r>1. We denote the Muckenhoupt weights by A, for 1 < p < oo (see [8]).
Now we state our main results as follows.

Theorem1 Letl<s<oo,r; > 1and D*A; € Osc,, i forall a with |a| = mjandj=1,...,1.
Definel/r =1/r + - - - + 1/r;. Then, for any 0 < p <1, there exists a constant C > 0 such that
forany f ={fi} € C°(R") and x € R”,

(174001, (x) <C l_[< Yo DA, pL,,)MLaogL)“'(lf'S)(")'

|0t1\ mj

Theorem 2 Let 1<s < oo, r; > 1 and D*A; € Osc
1,...,1
(1) Ifl<p<oocandwe Ay, then

expL] Sor all a with |a| = mj and j =

T <cn( DY L2V P [N P

‘0‘1‘ mj
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(2) If we Ay. Definel/r =1/ry + --- + 1/ry and ®(t) = tlog!"(t + e). Then there exists a
constant C > 0 such that for all A > 0,

w({xeR": ‘TA(f)(x)| >1})

§C/Rnd>|: ]‘[( > 104, l_)[f(x)|s:|w(x)dx.

j=1 Najl=m;j
Remark The conditions in Theorems 1 and 2 are satisfied by many operators.
Now we give some examples.

Example 1 Littlewood-Paley operators.

Fix ¢ >0 and p > (37 + 2)/n. Let ¢ be a fixed function which satisfies the following
properties-

D) [en¥(x)dx=0,

(2) Il/f(x)l < C(L+ |x])~0Y,

(3) [¥(x+) — Y @) < Clyl* (1 + [#)"**) when 2y < Jx].

We denote that T'(x) = {(y,£) € R"*! : [x — y| < t} and the characteristic function of I'(x)
by xr()- The Littlewood-Paley multilinear operators are defined by

SNk = (/ 1A )|2””>

) ) ) 2 dydt 2
o[ [ 441

and

t i dydtV?
g00-|[ [ () Hoear 9e]

where

1_[11‘:1 ij+1 Aﬁx,y)
v —yI™

l‘ R, 1(Aj5x,
1_[1:1 j+1\ X Z)f(Z)l//t()/—Z)dZ

FA(f)(x) = fR } Ve - y)f () dy,

FA(f)(x,) =

| —z|™

and Y, (x) = t "y (x/t) for t > 0. Set F,(f)(y) =f = ¥(y). We also define that

2 (D@ = ( / |Ft<f)(x)|2"”>

dvd 1/2
s ([ [ FnoPSE)

and

g"(f)(x)‘</ / <t+|x y|) 7 Wiﬁt)

Page 4 of 13
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which are the Littlewood-Paley operators (see [9]). Let H be the space

0 1/2
={h:||h||=</0 yh(t)yzdm) <oo}

or

1/2
:{h:||h||=(// 1|h(y,t)|2dydt/t”“> <oo}.
R

Then, for each fixed x € R", FA(f)(x) and F£(f)(x, y) may be viewed as the mapping from
[0, +00) to H, and it is clear that

&N = |F
S3N@ = | xrwF (),

gy (f)x) = HFt
Sy(N@) = | xrwF:)]

and

t nu/2
gu(F)x) = ” (m) Ft(f)()’)H

nu/2 N
) = H<t+|x yl) Fe

It is easy to see that g, Sy and g, satisfy the conditions of Theorems 1 and 2 (see [10-12]),
thus Theorems 1 and 2 hold for gf;, S@ and gﬁ.

Example 2 Marcinkiewicz operators.

Fix A > max(l 2n/(n +2)) and 0 < y < 1. Let  be homogeneous of degree zero on R"
with fsn 1 Q) do(x') = 0. Assume that Q € Lip, (§"1). The Marcinkiewicz multilinear
operators are deﬁned by

d
HA(D@) = ( / EA) ) t)

d d 1/2
W) = [ /] B tﬁf]

and

= ¢ " A 2dydt 12
)U /(m) [ (D) t] ,

where

Hl':l Ry (Aji%, ) Q(x — )
A - j j 4
t (f)(x) A—y<t |x _y|m |x _y|n_1f(y) y

and

1_[] 1Rm]+1 ,,y, Qy -
-zl <t ly —z|™ ly —z|n~*

LARIERY

2 () de.

Page 5of 13
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Set

Fw= [ 2o 1)y

lx—y|<t |x - J’|"’1

We also define that

[e%s) 1/2
lmUX@=<£!BVKﬂ2ﬂ> ,

t3

dvd 172
wsw=([ [ EporLy)

and

i ; A L dydt 12
e =([ [ () FO0PSS)

which are the Marcinkiewicz operators (see [13]). Let H be the space

0 1/2
H:{h:||h||=(/0 |h(t)|2dt/t3> <oo}

or

1/2
H:{h:||h||=<// 1yh(y,t)\2dydt/t"+3) <oo}.
R

Then it is clear that

wa(N@ = |EA @], nalN@) = |F()x)
ws () = | xreF ()@ 9)]|» ws() ) = | xreF)0) |

)

and

t
L+ |x—yl

t

nr/2
) #mmw, mmsz;T__

ni/2
) Bmm”
ppy

@mmﬁK

It is easy to see that g, s and u; satisfy the conditions of Theorems 1 and 2 (see [13,
14]), thus Theorems 1 and 2 hold for x4, 14 and u4'.

Example 3 Bochner-Riesz operators.
Let 8 > (n—1)/2, BX(7)(€) = (1 - £2|£]2)°f(£) and Bl (z) = t "B’ (z/t) for t > 0. Set

[Ty R1 (Aji%,)
| —y|™

FL(N@) = fR ) By (x —y)f () dy.

The maximal Bochner-Riesz multilinear operators are defined by

%MWF?W%WWL

Page 6 of 13
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We also define that

B (f)(x) = Stug!B?(f)(x)

which is the maximal Bochner-Riesz operator (see [15]). Let H be the space H = {h: || k| =
SUp,.o [41(2)| < 00}, then

BA(N) = |BS BX(f)(x) = | B) ()]

It is easy to see that Bg‘,* satisfies the conditions of Theorems 1 and 2 (see [16]), thus The-
orems 1 and 2 hold for Bf .

2 Some lemmas

We give some preliminary lemmas.

Lemmal ([3]) Let A be a function on R" and D*A € L1(R") for all o« with |«| = m and some
q > n. Then

(i) : pra@fiaz)
Rm A;x, =Clx- " G o |
[Rn(Ai3)] = Cla=y1" 3 (IQ(x,y)l /om i Z)

|o|=m
where Q is the cube centered at x and having side length 5/n|x — y|.

Lemma 2 ([8, p.485]) Let 0 < p < q < 00 and for any function f > 0, we define that, for
1/r=1/p-1/g,

" 1/
Ifllwza = supA|{x € R : f(x) > A} |7, Np,q(f)=sgp|tfxf||w/||xE||Lr,
A>0

where the sup is taken for all measurable sets E with 0 < |E| < co. Then

I llwze < Nopo(F) < (a/(q = )" If Nwaa-

Lemma 3 ([6]) Letr;>1forj=1,...,m, we denote that 1/r =1/r, + - - - + 1/ry,. Then

1
@/lfl( - frn(x)g(x ‘dx< I lexprri,q - |lf||eprm,Q||g||L(logL)1/r,Q~
Q

3 Proof of the theorem

It is only to prove Theorem 1.

Proof of Theorem 1 It suffices to prove for f € C;°(R") and some constant Cp that the
following inequality holds:

Up !
<|Q| /HTA(f)(x)| - C0|de) = 1_[( Z 1D A1 o, ">ML(logL)1/r(lf|s)(x).
j=1 expL/

\Ol/\ mj
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Without loss of generality, we may assume [ = 2. Fixa cube Q = Q(xg,d) and ¥ € Q. Let Q =

5¢/nQ and A;(x) = =3 aom (DA, then Ryu(Aj;x,9) = Rin(Ajix,y) and D*A; =
D*A;j - (D*A)) for Iotl =m;. We split f = g + h = {g;} + {h;} for g = fixe and h; = fi xpn\ -
Write
H'2= Rm*+l(A';x’y)
FA ) = f ey fw i)y
) .
Ry (A, y) (A %3)
) / [T2 Ry G5 )y + / H/lm/—}y]?t(x,y)gl(y)dy
R" lx — -
m A 3%, ¥)(x — )™ a1 A
Y / , (A2 y)(m D LAV (9)Fi(x,9)gi(y) dy
ey |= Wl1 & =]
m A Wy 2 A
/ (A, 9)(x — )™ D A5(9)Fs(x,9)g: () dy
\012\ mz R - _)/|m
L[ =y ®D"A4,()D A, ()
. / y IVEV 20y Fi(x,9)gi(y) dy.
051!0[2! RN |x_y|

ey |[=my,|az|=mo

Then, by Minkowski’s inequality, we have

[|Q| ] T2, - | T2 (o), m}

m 1 . 1/p
=[G L O]~ [,

[ 1 i : pls 1p
=1l FA(f) (@) - F () (xo) ) dx:|
Gl ol
| ¢ = H?:lRm/(Aj;x,y) s\ PIs 1/p
1l —————F(x, )60 d d
= _|Q|/Q<; /Rn x — | Fy(x, y)gi(y) dy ) X

Z_

Joey [=my

[ak

i=1

DA, (y)F,(x,y)g(y) dy

y / Ryy (A 2,9)(x — )
R | — |

[aks

i=1

s\ 2/s 1/p
s\ 2/s 1/p
5\ P/s 1/p

Z_

g |=mm2

D™ Ay (y)F,(x,)g:(y) dy

x / le(Al;x’y)(x_y)az
Rn % — y|™

30>

i=1

Z 1
oqlasy!
|o1|=my, |y |=m
/ (x = y)1* 2 DM A, (y) D2 Ay (y)
X
Rn o =y

Fi(x,9)g:(y) dy

Page 8 of 13
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pls 1/p
|:|Q|/<ZHFA(h)x) FAh)(xo)”> dx:|

2=Il+12 +13 +14 +15.

Now, let us estimate I, I, I3, I, and I5, respectively. First, forx € Qand y € Q, by Lemma 1,

we get

Ruy(Ai9) = Cla—y1™ 3 [D941] o,

"
L
|01/| mj exp

Thus, by Lemma 2 and the weak type (1,1) of | 7|5, we obtain

1/p
w=cTl( X Pl , ) (5 [ 00t 2)

|otj|=m;
2
o A NT@)lsxell
- Cl_[( Z “D TA; ||Osc >|Q| ! |Q|1/p? z
j=1 Nlajl=m;
2
<cTI( X 14 o, )@@ b
j=1 |a,| mj
2
<c1( Z 1074, )i et
j=1 lejl=m;j
2
<c[( X 104, M)
j=1 “lajl=m;j
2
<1 X 1094, )Msss (1),
j=1 lajl=m;j xp

For I, note that || xgllexpz2,0 < C, similar to the proof of ; and by using Lemma 3, we get

1 B 1/p
e Y il X (g [ T@ Aewl )

loea|=m lory |=mmy
=C Y [P 4sloy, 22 1QTIT(O"A0)@)] xo vy
g |=mm2 Jorq |[=rmy
<C ) DA, al / DA (x)||g ()|, dx
loea | =2 P o 1\ =my
= ¢ Z ”DDQAZ ||Osc xpL'2 ”XQ”‘”‘PU2 Q
lara| =3
X Z ”DalAl - (DalAl)QHexerl,Q ” lf|5HL(logL)1/’,Q
oy |=rmy

= Cl_[< Z 1D 4] oy pL,/>ML(10gL)1/r(lf|s)(56)«

j=1 Clajl=m;

Page9of 13
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For I3, similar to the proof of I, we get

I = CH( Z ||DU[A ||Osc el )ML(]OgL)l/r(lﬂS)(;C)‘

‘0‘1‘ mj

Similarly, for I, by using Lemma 3, we get

1/
hec 2 <IQ| / | T (D" 4,D Ay x)l”d") p

log |=my, |z |=my

<C Y Q|T(DmADAg)| xol i

lay|=my, | |=mp

=c X IQI/ | D Ay (x) D2 Az ()| [g(x) | doe

lay|=my, | |=mp

=C Y [pman- (D4,

expL’1,Q
o=
X Z ||Da2A2 - (DDQAQ)Q”eXerZ,Q” lf"gHL(logL)l/r,Q
lag|=m3
2
= Cl_[< Z 1D 4] oy rv>ML(logL)1/’(If|s)(5&)'
j=1 Najl=m; expL

For I5, we write
FAhs) () = F2A ) (o)

:/ <Ft(x,y) _ Fixo,y )an/(A,,x, Vhi(y) dy
RVI

le =y |xo —y|™

3 ~ RWI (A 3%, )
[ R = Ron Gz ) 222 i, )y
R o — ¥l
rt ~ Rm (A ;%05 )
+ / (Rmz(Az;x,y)—RmZ<A2;xo,y))Wa(xo,y)hi(wdy
R" 0—

Ft(xOry)

/ [ iy (A2 0,9)(x = ) E(a ) B (Az;%0,)(x0 = )
RVI

—y|m —y|m
w = O lx =yl o — 1l

x DA, (y)hi(y) dy

m A; ) —y)* Rm A; ’ -)*
Iazl mz R" lx — 1 1% =1 -
X D"‘Zzzlz(.)’)hi()’) dy
1 (x —y)rre (20 —y)*1e
Fiwy) - S Fi(x,
. Z . /n[ P 4 (%, 7) oy +(%0,%)

o1 |=my, e |=mp

x D*1A;(y)D*2 A, (y)hi(y) dy

=10+ 1P+ 10 + 10+ 1) 4 [
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By Lemma 1, we know that, for x € Q and y € 2¥1Q \ 2¢Q,

Ry (Ajx,9)| < Cle—y1™ Y (| DA ||oScexerj +[(D4) giup) — (DV4)5])

|ogj|=m;

<Ck|x y|WI1 Z ||DQ/A||05L it

L
‘0‘1‘ mj P

Note that |x —y| ~ |xop — y| forx € Qand y € R" \ Q, we obtain, by the condition of F;,

e 2
o <C/ ( lx — %o | — o] ) R, i) )| d
|| 5 || - I N _y|m+n+1 + %o _y|m+n+£ }:1[ ]( ] xy)| (y)| Y

2
<c[1( X Il

j=1 Nlajl=m;

o]

Z o — g e — o |® )
S kz( + i ) d
£k+lé\2ké |x0 —y|”+1 |xo _yll’l+€ V(y ’ y

k=0

<1 Z 174, ) SR 05 [ i

\Ot]\ mj

Thus, by Minkowski’s inequality, we get
00 1/s 2

() <eT1(
i-1 j=1

N A
12QI Jxg )

Tl

Tl

DYA;
> 4o, )

l|= =m;

| /\

S 124, )M

lot|=m;

| /\

> 107456, Lr->ML<logL>“'(lf|s)(’~‘)'
exp

‘Dﬁ‘ mj

For Iéz), by the formula (see [3])

. . 1 .
Ry (A5%,9) = Ry (A520,9) = D == Ry 11 (DP As 6,0 (x = 9)

|B1<m;

and Lemma 1, we have

(R (45,9 = Ry (Asxo ) <€ 30 37 f= ol Ma=y P [DA o,

L
Bl <m; |ot|=rm; P

Page 11 0f 13
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thus
& P e =20l
12 N <C ( DotA ) /
(Ser) (OLATIN oy Ml
=TI 124, L,,)Mmogmms)@.
j=1 Najl=m; exp
Similarly,

00 1/s
(Z11) =TT T 10l Yiiar 716
i=1 expl/

j=1 Nlajl=m;

For 124), similar to the proof of Iél), If) and I, we get

00 1/s
(Z\\Ié‘” HS)
i=1
<c /
Z RMN\Q

oy [=my

(=9 F(x,y) (%0 = y)“1Fi(x0,9) H
lx —y™ %o — y™

X | Ry (A2; %, )| | DL AL () | [ (0)| dy

+C Z /I;n\Q|Rm2 (AZ;xry) _Rmz(AZ;xO:y”

oy [=rmy

o =)™ Fi(xo,y)l

DA )| |f )], dy

%o — y™
SC Z ”DazAZ”OscexpLQ
oz |=rnp
DI NIIREE 2le/ D24 If0)],
lag|=my k=1
= Y Il X Yokt
lag |=mp lap|=my k=1

X ”DalAl - (DalAl) G Hexer1,2kQ” [f|s”L(logL)1/’,2kQ

= CH( Z | D4 ”Osc L,.)ML(logL)llr(lf|s)(5C)~

|Of]| mj

Similarly,

00 1/s
<ZH1§5) ||S) = Cl_[( Yo D4, r,>ML<logL>1/r(lf|s)(5C)-
i-1 expL

j=1 Clajl=m;
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For Iéﬁ), by using Lemma 3, we obtain

/s

SIL

< e

loeq |[=my, | |=1ma

< DA |02 A0 ),

<Cc > i(z-ﬂz—gk)

(x =) 2Fy(x,y) (%0 = )" **2Fy(%0,) H
v —yI™ o — y|™

[ ool oaolro,
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This completes the proof of Theorem 1. d

By Theorem 1 and the LP-boundedness of M| ., v, We may obtain the conclusions (1),
(2) of Theorem 2.
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