
Turk J Phys
26 (2002) , 247 – 250.
c© TÜBİTAK
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Abstract

Off-diagonal matrix elements and sum rules for the Coulomb and isotropic oscillator systems are
obtained from a study of relations between the off-diagonal matrix elements of a general recursion
relation.
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1. Introduction

In a recent paper [1], a general matrix element recursion relation was obtained without recourse to specific
properties of the eigenstates (i.e. the Hamiltonian) involved. This result is as follows:

k(k2 − (2l+ 1)2)
2(k + 1)

< ml|rk−2|nl > −2(p+ 2k+ 2)M
(k + 1)~2

< ml|rkV (r)|nl >

+
2M (Enl +Eml)

~2
< ml|rk|nl > +

2M2(Eml −Enl)2

(k + 1)(k + 2)~4
< ml|rk+2|nl >= 0, (1)

where given a general Hamiltonian H of the form H = T + Arp, H |sl >= Esl|sl >, and the derivation is
valid for diagonal as well as off-diagonal matrix elements. Expression (1) is clearly not valid for k = −1,−2,
for which values one obtains zero denominators. In the present study we use two non-problematic values of
k, namely k = 0, 1. In the derivation of expression (1) the integration by parts procedure followed assumes
that the functions usl(r) = rRsl(r) vanish at the origin and at infinity. This in turn imposes conditions
on V (r) = Arp. In this paper we study the potentials p = −1, 2 and for these two potentials the resulting
bound-state functions usl(r) vanish at both these limits.

2. Sum Rules

We are interested in the off-diagonal matrix elements of Eq. (1). The diagonal matrix elements for the
Coulomb (Kramers’ relations) potential (p = −1), the isotropic oscillator (p = 2), and the bouncer problem
(p = 1), all of which can be solved analytically, have already been extensively discussed in the literature [2-5].
The off-diagonal matrix elements for the bouncer have also been reported [5]. We therefore concentrate in
this note on the Coulomb and isotropic oscillator off-diagonal matrix elements.

If k = 0 Eq. (1) reduces, for m 6= n, to
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< ml|V (r)|nl >=
M

~2

(Enl − Eml)2 < ml|r2|nl >
2(p+ 2)

. (2)

If k = 1, one obtains from Eq. (1) that:

l(l + 1) < ml|r−1|nl >= −M(p + 4)
~2

< ml|rV (r)|nl > +
2M
~2

(Enl + Eml) < ml|r|nl >

+
M2(Eml −Enl)2

3~4
< ml|r3|nl >= 0. (3)

The first of these results is of immediate interest since it involves a two-term relation. Thus, for
the Coulomb system with V (r) = −Ze2/(4πε0r), p = −1, |sl > the Coulomb basis states, and Enl =
−Z2α2Mc2/(2n2), Eq. (2) becomes〈

ml

∣∣∣∣1r
∣∣∣∣nl〉 = −1

8

(
McαZ

~

)3( 1
n2
− 1
m2

)2 〈
ml
∣∣r2
∣∣nl〉 , (4)

where the ratio of the matrix elements 〈
ml
∣∣1
r

∣∣nl〉
〈ml |r2|nl〉

is independent of the angular momentum due to the degeneracy of the energy with respect to l.
If one pre-multiplies Eq. (4) by its complex conjugate, this implies that:
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=
1
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~
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(∆r2)2
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. (5)

Many other sum rules may be obtained for this system. For instance, if one instead premultiplies Eq.
(4) by

〈
nl
∣∣1
r

∣∣ml〉, this leads to:
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nl
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For the isotropic oscillator system, the off-diagonal Eq. (2) yields an identity, namely, with H = T +
1/2Mω2r2, Esl = (2s+ l+ 3/2)~ω, |sl > the isotropic oscillator basis states, and p = 2,

< ml|r
2

2
|nl >=

(m− n)2

2
< ml|r2|nl >, (7)

i.e. either n−m = ±1 or, < ml|r2|nl >= 0.

248



MAVROMATIS

Eq. (3) is, as mentioned above, more complicated since it generally involves four terms. For both the
Coulomb and the isotropic systems it involves only three terms if n 6= m and, for the special case l = 0, it
reduces to two terms. Thus, for the Coulomb system,

〈m0 |r|n0〉 =
1
12

(
McαZ

~

)2 ( 1
n2 − 1

m2

)2(
1
n2 + 1

m2

) 〈m0
∣∣r3
∣∣n0

〉
, (8)

which again leads to sum rules if one premultiplies by appropriate matrix elements and uses closure.
For the isotropic oscillator, the k = 1 expression for l = 0 becomes

< m0|r|n0 >=
Mω

6~
(3− 2m+ 2n)(3 + 2m− 2n)

3 + 2m+ 2n
< m0|r3|n0 > . (9)

One has only discrete states for this system, so for instance, for n = 0 one directly obtains from Eq. (9)
the following sum rules:

〈
00
∣∣r2
∣∣ 00
〉

= − 3~
Mω

∑
m

〈
00
∣∣1
r

∣∣m0
〉
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m− 3
2

, (10)

〈
00
∣∣r4
∣∣ 00
〉

= − 3~
Mω

∑
m

〈00 |r|m0〉 〈m0 |r| 00〉
m− 3

2

, (11)

〈
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∣∣r6
∣∣ 00
〉

= − 3~
Mω

∑
m

〈
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∣∣r3
∣∣m0

〉
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m− 3
2

, (12)

or generally:

〈
00
∣∣r2q+2

∣∣00
〉

= − 3~
Mω

∑
m

〈
00
∣∣r2q−1
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〉
〈m0 |r| 00〉

m− 3
2

, (13)

where q = 0, 1, 2...
If one expands both sides of Eqs. (10), (11), (12) they lead to series for π, namely

π =
16
3
− 8

3
+

2
5

+
1
21

+
1
72

+
1

176
+ · · · (14)

π =
32
15

+
16
15
− 4

75
− 2

525
− 1

1260
− 1

3960
+ · · · (15)

π =
128
105

+
64
35

+
16
175

+
8

3675
+

1
3675

+
1

16170
+ · · · (16)

The sums of the first six terms on the right hand side of Eqs. (14), 15), and (16) are respectively 3.1339,
3.1418, and 3.1416 respectively. This indicates that the convergence improves as q increases in Eq. (13).

3. Conclusions

The off-diagonal results discussed in this paper are Eqs. (2) and (3). For the Coulomb system these
become Eq. (4) for any l and Eq. (8) for l = 0, while for the isotropic oscillator they become Eq. (7) for
any l and Eq. (9) for l = 0. Illustrative sum rules obtained from these expressions by premultiplying by
appropriate matrix elements, and using closure, are Eqs. (5) and (6) and Eqs. (10) - (12).
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