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Abstract

In this paper, we study the complete convergence and complete moment
convergence for negatively associated sequences of random variables with EX =0,
Eexp(In® |X]) < oo, > 1. As a result, we extend some complete convergence and
complete moment convergence theorems for independent random variables to the
case of negatively associated random variables without necessarily imposing any
extra conditions. Our results generalize corresponding results obtained by Gut and
Stadtmuller (Stat. Probab. Lett. 81:1486-1492, 2011) and Qiu and Chen (Stat. Probab.
Lett. 91:76-82, 2014).
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1 Introduction and main results
Definition 1.1 Random variables X3, X5, ..., X, n > 2, are said to be negatively associated
(NA) if for every pair of disjoint subsets A; and A; of {1,2,...,n},

cov(fi(Xisi € A1), (X3 € Az)) <0,

where fi and f; are increasing for every variable (or decreasing for every variable) functions
such that this covariance exists. A sequence of random variables {X;;i > 1} is said to be NA

if its every finite subfamily is NA.
By Joag-Dev and Proschan (1983 [3]), we have the following lemma.

Lemma 1.2 (Joag-Dev and Proschan, 1983 [3]) Let {X;;i > 1} be a sequence of NA random
variables.
(i) If{f;;i > 1} is a sequence of nondecreasing (or nonincreasing) functions, then
{fi(Xi); i > 1} is also a sequence of NA random variables.
(i) Increasing functions defined on disjoint subsets of a set of negatively associated

random variables are negatively associated.
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This definition was introduced by Joag-Dev and Proschan (1983 [3]). Statistical test de-
pends greatly on sampling. The random sampling without replacement from a finite pop-
ulation is NA, but is not independent. NA sampling has wide applications such as in mul-
tivariate statistical analysis and reliability theory. Because of the wide applications of NA
sampling, the limit behaviors of NA random variables have received more and more atten-
tion recently. One can refer to: Joag-Dev and Proschan (1983 [3]) for fundamental prop-
erties, Newman (1984 [4]) for the central limit theorem, Matula (1992 [5]) for the three
series theorem, Shao (2000 [6]) for the moment inequalities.

The concept of complete convergence of a sequence of random variables was introduced
by Hsu and Robbins (1947 [7]). In view of the Borel-Cantelli lemma, complete conver-
gence implies almost sure convergence. Chow (1988 [8]) first investigated the complete
moment convergence, which is more exact than complete convergence. Thus, complete
convergence and complete moment convergence are two of the most important problems
in probability theory. Their recent results can be found in Wu (2012 [9], 2015 [10]), Xu
and Tang (2014 [11]), Guo et al. (2014 [12]), Gut and Stadtmdiiller (2011 [1]), and Qiu and
Chen (2014 [2]). In addition, Gut and Stadtmiiller (2011 [1]) and Qiu and Chen (2014 [2])
obtained, respectively, complete convergence and complete moment convergence theo-
rems for independent identically distributed sequences of random variable with EX = 0,
Eexp(In” |X]) < 00, @ > 1. In this paper, based on Gut and Stadtmiiller (2011 [1]) and Qiu
and Chen (2014 [2]), we extend the complete convergence and complete moment the-
orems for independent random variables to the negatively associated sequences of ran-
dom variables without necessarily imposing any extra conditions, which extend the cor-
responding results of Gut and Stadtmdiller (2011 [1]) and Qiu and Chen (2014 [2]).

In the following, the symbol ¢ stands for a generic positive constant which may differ
from one place to another. Let a, < b, denote that there exists a constant ¢ > 0 such
that a, < c¢b, for sufficiently large #, Inx means In(max(x, e)), and I denotes an indicator

function.

Theorem 1.3 Let o > 1, {X, X,;; n > 1} be a sequence of NA identically distributed random
variables with partial sums S, =Y ;- X;, n > 1. Suppose that

EX =0, Eexp(In® [X]) < 0o, (1.1)

a-1

> In
Z exp (ln"‘ n)
n=1

P(lmkax |Sk| > n,B) <00 forall B>1. (1.2)

Conversely, if (1.2) holds for some B > 0, then Eexp(In® |X/(28)|) < oo; furthermore, if B <
1/2, then Eexp(In® |X|) < 0o, if B > 1/2, then Eexp((1 — 1) In® | X|) < oo for any A > 0.

Theorem 1.4 Assume that the conditions of Theorem 1.3 and (1.1) hold. Then

Z exp ln n

Conversely, if (1.3) holds for some B > 0, then Eexp(In® | X/(28)]) < co.

IE{ max |Sg| — ] <oo  forall>1andallq>0. 1.3)

1<k<n
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Remark 1.5 By mimicking the analogous part in the proof of Theorem 2.1 in Qiu and
Chen (2014 [2]), (1.2) and (1.3) imply, respectively,

1n0t—l

i exp(In® ) nP(sup S
n=1 }’12 k=n k

>ﬂ)<oo forall >1

and

S k

k

In*'n
2

q
E{ sup —ﬁ} <oo forallB>1andallg>0.
1<k=<n +

Remark 1.6 Corresponding results of Gut and Stadtmiiller (2011 [1]) and Qiu and Chen
(2014 [2]) are the special cases of our Theorems 1.3 and 1.4 when {X, X;;;n > 1} is i.i.d.

n

oo
Z exp (ln" n)
n=1

2 Proofs
The following two lemmas will be useful in the proofs of our theorems, and the first is due
to Shao (2000 [6]).

Lemma 2.1 (Shao, 2000 [6], Theorem 3) Let {X;;1 < i < n} be a sequence of negatively
associated random variables with zero means and finite second moments. Let Sy = Zf;l Xi
and B, =Y 1 EX?. Then, forall y >0,a >0 and 0 <6 <1,

P(maxSk>y><P<maxXk>a>+ ! exp| - y0 1+%ln 1+ﬂ .
1<k<n 7/ 7 \i<k=n 1-6 2(ay + B,) 3 B,

Lemma 2.2 For any random variable X and o > 0,

a—-1

Zp(1X1 > 1) < 0.

o0
Eexp(In® |X]) <oco & Zexp(ln"‘ n) In

n=1

Proof Leta, =~ b, denote that there exist constants ¢; > 0 and ¢; > 0 such that ¢ja, < b, <

cya,, for sufficiently large . We have

n*1n

” P(|X| > n)

Z exp (ln“ n)
n=1

= Z exp (ln"‘ n)
n=1

o-1 S
lnn BN P« X1 <j+1)
j=n

a-1 n

j
P(j<1X <j+1) Y exp(in® n) In

n=1

M

~.
I
—_

exp(In®j)EI(j < [X] <j+1)

X
.Mg

~
I
—

X
.Mg

I
—

Eexp(In® |X[)I(j < |X| <j +1)
J

Eexp(In® |X]),

%

it follows that Lemma 2.2 holds. O
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Proof of Theorem 1.3 Let > 1 be arbitrary, set, for n > 1, b, = Bn/(101n” n), define, for

1<k<mn,

Xp = Xl (Xe < bu} + bul{Xe > by}, S, =Y X,
k=1
X =Xe =b )by <Xk <n},  X{'=Xx—b)[{Xg >n}.

Obviously, Xi = X + X} + X} and X] is increasing on X, thus, by Lemma 1.2(i), {X}; k >
1} is also a sequence of NA random variables. Note that

{max Sk>nﬁ}
1<k<n

C {max S >npB and X < b, forallkfn]

1<k<n

U Lmkax Sk > np and b, < Xy, < n for exactly one ky < n and
<k<n

X; < b, forallj 7 ko

U {X,’(’ #0 for at least two k < n}
U {X}" #0 for at least one k < n}

2A,UB,UC,UD,.
Therefore,

P(lmkax S > nﬁ) < P(A,) + P(B,) + P(C,) + P(D,). @.1)
By condition (1.1), EX = 0, and Eexp(In® |X|) < 00, & > 1, we get EXI(X < b,) = -EXI(X >
b,) and EX? < oo. It is well known that EX? < co implies EX2I(|X| > b,) — 0, n — o0, and

weset 21— 871> 0, for sufficiently large n,

max ’ES,'<| < max |kIEXI(X < b,,)| +nb,EI(X > b,)
1<k<n 1<k=<n
< nEIX|I(IX] > b,) + nb,'EX*I(|1X| > by)
- 2nEX21(|X| > b,)  20In*n
—_ bn -
< B8In“n, (2.2)

EX?I(1X| > by)

so that, taking y = (n — 8 In® n) 8, a = 2b,,, 6 = 4/5 in Lemma 2.1, for sufficiently large n, we
get

P4,) < P(max S > n,B)

1<k<n

< P(max (S, —ES;) > (n—381n” n)ﬁ)

1<k<n

4(n - 81n” n)? B>
10(£2n=8nn) g xoy

5In%n

K exp <—
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< 2[32(1_811::‘;4)2 )
exp| — In® n

2 SIn% n 5EX2 In® n
BH(1—=5F) + =

IA

exp(— In® n), (2.3)

201_8In%ny2
28°(1-11)
B8y 5EX2 InY n

In(8/10) — Inln n)"‘7ln°‘ n— 1<1-38/2asn— oo, for sufficiently large n, (Inn + In(8/10) —
alnlnn)* < (1-46/2)1In% n, thus,

from — 2 >1 as n — o0o. By the Markov inequality, (1.1), and (In#n +

Eexp(In® | X|)
exp(In® b,)
1
< exp(lnz + In(B8/10) — « Inln n)*

< exp(-(1-8/2)In® n), (2.4)

P(1X| > by,) <

and, hence, by combining (2.3) and Lemma 1.2(i), maxi<k<n ) _j ;< i, X; and Xi, are NA

random variable, we get

P(B,) < P(Ell < ko < n such that mkax E X, > Bn—nXy, > b,,)
1<k<n
T T 1=<i<k,iko

< ZP(eraan Z X >Bn-n= ﬁén)P(XkO > b,). (2.5)

ko=1 T 7 1<i<k,izko

Similar to the proof of (2.2), we have maxi<k<u |E 3, o;r ;4 Xi| < B31n% 1, s0 that, taking
o 2p25(1- 10 )2

n% n 2(n-1)In® n
ﬂgm_lT)+ 5EX (nzl)ln

y=B8(n—In"n),a = 2b,,0 = 4/5in Lemma 2.1, using the fact that

2 >1as n — oo, for sufficiently large n, we get

P X > B8
(1,3, o)

=K=n
1<i<k,ifko

< P<1r£1151§xn Z (X -EX]) > B8 (n - In® n))
1<i<k,izko

4(n —In* n)* 25> )
10(E28nnnm) | (1 _ 1)EX?)

5In% n
-y
=XP\ 7, W SEXC e O
Bro(1— 1) + ==

n

<K exp (—

<exp(-81n” n).
Substituting the above inequality and (2.4) in (2.5), we obtain

P(B,) < nexp(—81In” n— (1 -8/2)In® n)
n

_ e
= exp( In' ”) (eln,,)(alnﬂfln)/z

IA

exp(~1n“ n). (2.6)
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P(C,) = P(31 < ki <k, < nsuch that X; #0,X;) #0)

= Z P(X/q > mekz > bn) = }12P2(|X| > bn)
1<ki<ko<n
< n? (exp(—(l —-§8/2)In* ;fz))2
= n? exp(—2(1 —-§8/2)In* n) =n? exp(—l -(1-68)In* n)
2

n

_ R T
= exp( In ”) (elnn)a_a)ln"’l”

< exp(-Inn). 2.7)
This, together with (2.1), (2.3), (2.5), and (2.6), shows

P(max Si> ,3n> < exp(=In®n) + nP(IX] > ). (2.8)

1<k<n

Because —Xj is decreasing on X, by Lemma 1.2(i), {—X, —Xj; k > 1} is also a sequence of
NA random variables. Obviously, {—X, —Xj; k > 1} also satisfies the condition (1.1). There-
fore, replacing Xi by —Xj in (2.8), we get

P(max (=Sk) > ﬂn) < exp(— In* n) + nP(|X| > n)

1<k<n

Thus,

P( max |Sk| > ﬁn) < P(max Sk > ﬁn) +P<max (=Sk) > ,Bn)

1<k 1<k<n 1<k=n

< exp(-In“n) + nP(|X| > n). (2.9)

From (1.1) and Lemma 2.2,

-1

In““n
3 P( max |Si| > ,Bn)
1<k<n

n

o0
Z exp (ln"‘ n)
n=1

o]

a-1 o0 -1
< Z lnnz " + Zexp(ln"‘ n) In » nP(|X| > n)
n=1

n=1

< 0.

That is, (1.2) holds.
Conversely, if (1.2) holds, then combining with max;<x<y, |Xx| < 2 max;<x<, |Sk/|, it fol-

lows that
it In*n
Zexp(lna n) 5 P( max | Xx| > 2,3n) < 00, (2.10)
P n 1<k<n

it implies that P(max; <<, | Xk| > 28n) — 0, n — 00, hence, for sufficiently large #,

1
P(max IXe| > 2ﬂn) <= (2.11)
1<k<n 2
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Obviously, NA implies pairwise negative quadrant dependent (PNQD) from their defini-
tions. Thus, by Lemma 1.4 of Wu (2012 [9]),

2 n
(1 - P(lrgl?; [ Xk| > Zﬁn)) ;P(|Xk| > 2/3n) < cP(lr;(aSXn | Xk| > Zﬁn),

from which, combining with (2.11), we have
nP(X| > 28n) < cP( max ;] > 2,3n).
1<k<n

Consequently, by (2.10),

S a-1
Zexp(ln" n)ln nP<@ >n) < 00,
n=1 2ﬂ

n

and, hence, we have Eexp(In* | X/(28)|) < co from Lemma 2.1. Therefore, if 0 < 8 <1/2,
then Eexp(In® |X]) < Eexp(In® | X/(28)]) < oo, if 8 > 1/2, then for any A > 0,

(1-2)In%x
In*(x/(28))

—1-A<1, asx— +00.

This implies that there exists a constant M such that for all x > M, we have (1 - 1) In*x <
In*(x/(28)). Hence,

Eexp((1-2)In%|X]) = Eexp((1-A)In® [X])I(1X]| < M)
+Eexp((1-2)In* [X])I(1X| > M)
< c+Eexp(In®|[X/(28)|)I(1X] > M)
< Eexp(In*|X/(28)|)

< oQ.

This completes the proof of Theorem 1.3. d

Proof of Theorem 1.4 Note that

> a In*1n q
X_l:exp(ln n) e E max. Skl = ﬁ”L

a—-1

S N 7 A
:ﬁq;exp(ln Vl) pore /0 qx? lp(lrél]?;nlSk|—ﬂn>ﬂx>dx

a—-1

S o NI
+ﬁq;exp(ln Vl) oy /n qx? P<1?£;|Sk|—ﬁn>ﬁx> dx

a—-1

> In
< Z exp(In® )

n=1

o0
+ Z exp(In® )
n=1

n
3 P(max |Sk| > ,Bn)
n 1<k<n

In“1tn
2+q

oo
/ xq‘IP(max |Sk| > ,3x> dw.
n n 1<k<n
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Hence, by (1.2), in order to establish (1.3), it suffices to prove that

In“'n
2

+q

o0
Z exp(In® n)
n=1

oo
/ x‘HP(max |Sk| > ,Bx) dx < oco. (2.12)
" 1<k=n
Let 8 > 1 be an arbitrary, set, for x > n, b, = Bx/(101n® x), define, for 1 <k <n,

Yy = Xel{Xe < b} + b (X > b}, U,=)_ Y,
k=1
Y]é/ = (Xk - bx)l{bx < Xk < x}, Y]é” = (Xk - bx)I{Xk > x}
By similar methods to the proof of (2.1), we have

p( max S > x,B) < P(A,) + P(B,) + P(C,) + P(Dy), (2.13)

1<k<n

which leads to

Ay = {max U,’<>x,3],

1<k<n

B, = { max S >xB and b, < Xj, < x for exactly one ko < # and X; < b, for all j 7!/(0},

1<k<n

C, = {Y,é/ #0 for at least two k < n}, D, = {Y,i” #0 for at least one k < n}

Using similar methods to those used in the proof of (2.3)-(2.7), for § 21— 87! > 0 and x > #,

we have max;<x<, |[EU;| < B8 In® x, and
PA,) < exp(— In* x),
P(1X| > b,) < exp(-(1-6/2)In" x),
P(B,) < n exp(—8 In“x — (1 -6/2)In* x)

<exp(-In®x),

:exp(—lnax);aiﬁngg__

P(C,) < n2P2(|X| > bx) < exp(— In“ x)n2 exp(—(l —8)In” x)
< exp(— In® x),

P(Dy) < nP(X > x) < nP(|X| > x),
which, combining with (2.13), shows

P( max Sy > x,B) < exp(— In® x) + nP(|X| > x).

1<k<n

Replacing X by —Xj in the above inequality, we have

P(max (=Sk) > xﬁ) < exp(-In”x) + nP(IX] > x).

1<k<n
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Therefore,

P(lmlflx |Sk| > x,B) < P(lmkalx Sk > x,B) + P(lmlax (=Sx) > x,B)

< exp(=In”x) + nP(|X] > x).

Hence,

/ xq_1P< max |Sk| > xﬂ) dx
n 1<k=<n

oo oo
<</ xq‘lexp(—ln"‘x)dx+/ x'nP(IX| > x) dx

;[1 +12.

By the fact that (a + b)* > a® + b* for any a,b >0 and « > 1,

1

> w I m
Zexp(ln n)Wll
n=1

1 a—-1 [e'e)
1 5 qn / nitd! exp(—(lnn +1In t)“) de
n=t 1

= Z exp (ln"‘ n)
n=1

o0 -1 o)
< Z exp(ln“ n) 11:12+qn nt exp(— In® n) / - exp(— In® t) det
n=1 1

a—-1

& Z exp(In® ) In

2+qn nexp(~1In® n)
n=1 n

o0 —

In*n

= E " < 00.
n=1

By (1.1) and Lemma 2.2,

00 In®-!
Z exp (ln"‘ n)——1I
n=1

n“n
n2+q

-1

= Z exp(In® n) h;“qn / *7'P(1X] > x) dx
n=1 n

o lna—l n o j+1
= Z exp(In® n) —TT Z / x17P(1X| > x) dx
n=1

jon I
e e lna—ln e8] (X S
< XI:GXP(H n) v Z (IX1 > j)j
n= j=n
> 1 / In“n
= ZP(|X| > j)jT Zexp(ln“ H)W
j=1 n=1
i o ln"“lj .
< Zexp(ln j) ; P(1X| > ) < o0,
j=1

from which, combining with (2.14) and (2.15), we see that (1.3) holds.

(2.14)

(2.15)

Page 9 of 10
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Conversely, (1.3) implies (1.2), that is, the conclusion was established. This completes
the proof of Theorem 1.4. O
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