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Abstract

In this paper, we define a generalized modular sequence space by using the
generalized de la Vallée-Poussin mean with a generalized Riesz transformation.
Moreover, we investigate the property (8) and the uniform Opial property which is
equipped with the Luxemburg norm. Finally, we show that this space has the fixed
point property.
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1 Introduction

A number of mathematicians are studying the geometric properties of Banach spaces, be-
cause such properties were identified as an important characteristic of the Banach spaces.
For example, if Banach spaces have some geometric properties such as the uniformly ro-
tund, P-convexity, Q-convexity, Banach-Saks property, then they are reflexive spaces. The
investigations of the metric geometry of Banach spaces date back to 1913, when Radon
[1] introduced the Kadec-Klee property (sometimes called the Radon-Riesz property, or
property (H)), and later, when Riesz [2, 3] showed that the classical L,-spaces, 1 < p < oo,
have the Kadec-Klee property. Although the space L; [0, 1] (with Lebesgue measure) fails to
have the Kadec-Klee property. In 1936, Clarkson [4] introduced the notion of the uniform
convexity property (UC) or the uniform rotund property (UR) of Banach spaces, and it was
shown that L, with 1 < p < 0o are examples of such space. In 1967, Opial [5] introduced a
new property which was called the Opial property and proved that the sequence spaces [,
(1 < p < 00) have this property but L,[0,7] (p #2, 1 < p < 00) do not have it. In 1980, Huff
[6] introduced the nearly uniform convexity for Banach spaces and he also proved that ev-
ery nearly uniformly convex Banach space is reflexive and it has the uniformly Kadec-Klee
property (UKK). In 1987, Rolewicz [7] defined the drop property and property (8) and the
characterization of property (8), which is proved in [8]. In 1991, Kutzarova [8] defined and
studied k-nearly uniformly Banach spaces. In 1992, Prus [9] introduced the notion of the
uniform Opial property. There are many papers about the geometrical properties of se-
quence spaces. In 2003, Suantai [10, 11] defined the generalized Cesaro sequence space
with a bounded sequence p = (px) of positive real numbers. In 2010, Simsek et al. [12] in-
troduced a new modular sequence space which is more general than the Cesaro sequence
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space defined by Shiue [13] and the generalized Cesaro sequence space defined by Suan-
tai. In 2013, Mongkolkeha and Kumam [14] defined the generalized Cesaro sequence space
ces(y)(g) for a bounded sequence p = (px) with py > 1 for all k € N and g = (gx) of positive
real numbers. Recently, Simsek et al. [15, 16] defined it by the modular sequence space
with de la Vallée-Poussin’s mean and studied some geometric properties in these spaces.
Some examples of the geometry of sequence spaces and their generalizations have been
extensively studied in [17-20].

The main purpose of this paper is to investigate the property (8) and the uniform Opial
property equipped with the Luxemburg norm of the new modular sequence space, which
is defined by using the generalized de la Vallée-Poussin mean with generalized Riesz trans-
formation. Furthermore, we show that this space has the fixed point property.

2 Preliminaries and notations
Let I be the space of all real sequences. For 1 < p < 0o, the Cesaro sequence space (ces,,
for short) of Shue is defined by

o] k p
1 ,
ces, = {x el’: Z<% Z|x(z)|> < oo}
k=1 i=0
equipped with the norm
o (1 K N
llxll = (;12(% ;|x(l)|) ) ) (2.1)

The generalized Cesaro sequence space ces(p) for p = (px) a bounded sequence of positive
real numbers with p; > 1 for all k € N of Suantai [10, 11] is defined by

ces(y) = {x €’ p(rx) < oo for some A > O},

where

] 1 k Pk
o3 2o

k=1 i=1

equipped with the Luxemburg norm

[l = inf{e >0: Q(;) < 1}.

In the case when p; = p, 1 < p < 0o for all k € N, the generalized Cesaro sequence space
ces(y) is nothing but the Cesaro sequence space ces, and the Luxemburg norm is expressed
by (2.1).

Let A = (Ax) be a nondecreasing sequence of positive real numbers tending to infinity
and let 41 =1 and Ak < Ag + 1. The generalized de la Vallée-Poussin means of a sequence
x = (x¢) is defined as follows:

1
tr(x) = — ij where I; = [k — Ay + 1, k] for k > 1.
)"k jely
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The modular sequence space V,(A;p) of Simsek et al. [15, 16] is defined by de la Vallée-

Poussin’s mean, namely

Vo(hsp) = {x e’ o(rx) < oo for some T > 0},

where
0 1 Pk
o)=Y (1 Tk
k=1 Nk Ger

equipped with the Luxemburg norm

Nl :inf{r >0:g(f> 51}.
T

Let g = (gqx) be a sequence of positive real numbers and Qi = Zle q;- Then the Riesz trans-

formation of x = (xy) is defined as

k
1
tk = — qiX;. (2.2)

In 2012, Mursaleen et al. [21] has modified the definition of weighted statistical conver-
gence due to Karakaya and Chishti [22], they showed that the definition must be as follows:
A sequence x = (x¢) is weighted statistically convergent (or S5;-convergent) to L if, for every

e>0,

lim ——[{i < Qu: Li>e}|=0
kggo@Hz_Qk.qilxi— |>e}| =0,

where Qi = Zle qi — oo as k — oo. In the same year, Mongkolkeha and Kumam [14]

defined the generalized Cesaro sequence space ces(,)(q) for a bounded sequence p = (px)

with px > 1 for all k € N and g = (gx) of positive real numbers by

ces)(q) = {x € o(Ax) < oo for some A > 0},

where
00 1 k Pk
Q(x)=2<—2qi|x<i>\>
k=1 Q3

and Qg = Zle q; with Qi = ZL q; — 00 as k — 0o. Thus, we see that py =p, 1 < p <
oo for all k € N; then ces(,)(q) reduces to ces,(q) defined by Khan [23]. Recently, Belen
and Mohiuddine [24] generalized the concept of weighted statistical convergence due to
Mursaleen et al. for a nondecreasing sequence (Ax) of positive real numbers tending to

infinity and let Ax =1 and Ary < A + 1. That is, let a sequence g = (gx) of nonnegative
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numbers be such that go > 0 and Q;;, = >_,; g; — 00 as k > oo and

1
e S 2.3)
QAk iely

where I = [k — Ax + 1,k].
A sequence x = (xy) is weighted A-statistically convergent (or Sy, -convergent) to L if for
every ¢ >0,

1
lim —{i<Qy, :qilx;—L| >¢€t|=0.
00 QAk { Mk q }|
Now, we define the new generalized modular sequence space for p = (px) a bounded

sequence of positive real numbers with py > 1 forall k € N and (g ) is a sequence of positive
real numbers such that go > 0. Let Q;, = Zie]k qi — 00 as k — oo by

Vo(Xsp,q) = {x € l°: o(rx) < oo for some T > 0}, (2.4)

where

1 Pk
o) = Z(— qiyxm\)

o \Qu iel

equipped with the Luxemburg norm

x
[l|] :inf{t > 0:Q<—> < 1},
T

when Qy, = Zie[k q; and Iy = [k — Mg + 1,k] for k > 1.

By applying the reasoning of Remark 2.4 in [24], if we take A; = k for all k > 1, then
the weighted generalized modular sequence space V,(%; p,q) becomes the space ces,)(q).
If we take g =1 for all k > 1, then the weighted generalized modular sequence space
Vo(X; p,q) becomes the space V,(%;p). Also, if we take Ay = k and gx =1 for all k > 1, then
the weighted generalized modular sequence space V,(A;p,q) becomes the space ces,).

Let (X, || - ||) be a real Banach space and let B(X) (resp., S(X)) be a closed unit ball (resp.,
the unit sphere) of X. A point x € S(X) is an H-point of B(X) if for any sequence (x,) in
X such that ||x,|| — 1 as n — oo, the weak convergence of (x,) to x implies that |lx, —
x| = 0 as n — oo. If every point in S(X) is an H-point of B(X), then X is said to have
the property (H). A Banach space X has the property (8) if for each ¢ > 0 there exists
8 > 0 such that 1 < |lx|| <1 + 8 implies a(conv(B(X) U {x}) \ B(X)) < &, where w(A) denotes
the Kuratowski measure noncompactness of a subset A of X defined as the infimum of
all ¢ > 0 such that A can be covered by a finite union of sets of diameter less than €. The
following characterization of the property (B) is very useful (see [25]): A Banach space
X has the property () if and only if for each ¢ > 0 there exists § > 0 such that for each
element x € B(X) and for each sequence (x,) in B(X) with sep(x,) > ¢ there is an index
k for which || “% | <1 -8 where sep(x,) = inf{||x, — x| : » # m} > . A Banach space X

is nearly uniformly convex (NUC) if for each ¢ > 0 and every sequence (x,) in B(X) with


http://www.journalofinequalitiesandapplications.com/content/2014/1/375

Latif et al. Journal of Inequalities and Applications 2014, 2014:375 Page 5 of 14
http://www.journalofinequalitiesandapplications.com/content/2014/1/375

sep(x,) > &, there exists § € (0,1) such that conv(x,) N (1 — §)B(X) # @. A Banach space X
is said to have the Opial property (see [5]) if every sequence (x,,) weakly convergent to xq
satisfies

lim inf||x, — x| < lim inf|x, — x|,
n—0oQ n—0Q

for every x € X. Opial proved in [5] that the sequence spaces [, (1 < p < 00) have this
property but L,[0,7] (p #2, 1 < p < 00) do not have it. A Banach space X is said to have
the uniform Opial property (see [9]), if for each ¢ > 0 there exists T > 0 such that for any
weakly null sequence (x,) in S(X) and x € X with || x| > ¢ the following holds:

1+t < lim inf||x, — x].
n—00

For example, the spaces in [19, 20] have the uniform Opial property.
The ball-measure of noncompactness was defined in [26, 27] by

B(A) = inf{e > 0: A can be covered by finitely many balls of diameter < ¢}.

A Banach space X is said to have property (L) if lime_,;- A(e) = 1, where A(e) = inf{l -
inf[||x|| : x € A] : A is closed convex subset of B(X) with 8(A) > ¢}. The function A is
called the modulus of noncompact convexity (see [26]). It has been proved in [9] that
property (L) is a useful tool in fixed point theory and that a Banach space X has property
(L) if and only if it is reflexive and has the uniform Opial property.

Throughout this paper, we assume that limy_, o inf px > 1 and limy_, o sup px < 0o and for
x €l ieN, we denote

i-1

———
e;=(0,0,...,0,1,0,0,0,...),
xl; = (¢(1),%(2),%(3),...,%(1),0,0,0,...),

i = (0,0,0,...,x( + 1), (i + 2),...).

In addition, we put M = sup, py for all k > 1.

First, we start with a brief recollection of basic concepts and facts in modular space.
For a real vector space X, a function p : X — [0, 00] is called a modular if it satisfies the
following conditions:

(i) p(x)=0ifand onlyifx=0;
(if) p(ax) = p(x) for all scalar o with || =1;
(iii) plax+ By) < px)+ p), forallx,ye Xandallo, B >0 witha + B =1.
The modular p is called convex if

(iv) plax+ By) <ap(x) + Bp(y), forallx,y € X and all o, > O with + 8 = 1.

For modular p on X, the space

sz{xeX:p(Ax)—>0asA—>O+}

is called the modular space.
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A sequence (x,) in X, is called modular convergent to x € X,, if there exists a A > 0 such
that p(A(x, —x)) — 0 as n — oo.

A modular p is said to satisfy the A,-condition (p € A,;) if for any € > 0 there exist con-
stants K > 2 and a > 0 such that

pQu) <Kp(u) +¢

for all u € X, with p(u) <a
If p satisfies the Ay-condition for any a > 0 with K > 2 dependent on a, we say that p
has the strong A,-condition (p € A3).

Lemma2.1[28,Lemma2.1] Ifp € AS, thenforanyL > 0ande > 0, there exists § = §(L,¢) >
0 such that

|o(u+v) - p(u)| <,
whenever u,v € X, with p(u) <L, and p(v) < 4.

Lemma 2.2 [28, Lemma 2.3] Convergences in norm and in modular sense are equivalent
inX,if peAs.

Lemma 2.3 [28, Lemma 2.4] If p € A}, then for any € > 0 there exists § = 5(¢) > 0 such
that ||x|| > 1+ 8 whenever p(x) >1+e¢.

3 Main results

In this section, we prove the property (8) and uniform Opial property in a generalized
modular sequence space V,(};p,q). Finally, we show that this space has the fixed point
property. First we shall give some results which are very important for our consideration.

Proposition 3.1 The functional o is a convex modular on V,(A;p, q).
Proof Let x,y € V,(A; p,q). It is obvious that ¢(x) = 0 if and only if x = 0 and o(ax) = 0(x)

for scalar o with |o| =1. Let « > 0, 8 > 0 with o + B = 1. By the convexity of the function
t — |t|Pk, for all k € N, we have

> Pk
olax + By) = Z(QL D Jeqa(i) + ﬁqiy(i)o

k iel

a2
;( Z‘ILW) +/-‘32< thly(l)l)

M iely e iely

)] bol)
qi|x(i +/3— qiy(i)>
kaelk

=ao(x) + Bo(¥). O

Proposition 3.2 For x € V,(};p,q), the modular ¢ on V,(A;p,q) satisfies the following
properties:
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) if0<a<],then aMQ(f) < o(x) and o(ax) < ao(x);
(i) ifa>1, then o(x) < aMo(%);
(ili) ifa > 1, then o(x) < ao(x) < o(ax).

Proof (i) Let 0 < a < 1. Then we have

oo

o) = Z(Qlk Iql|x(z>|>
tek

r

(i)

© a
-;(Q—MZ%

ielj

~ o x(l) Pk
= Zapk< " g i P )
i ( Z x(i) )Pk
k=1 Q)‘k ielj o
x(z)

)

By the convexity of modular o, we have p(ax) < ao(x), so (i) is obtained.
(ii) Let @ > 1. Then

oo

Q(x)—Z(Qlk 1 qux(»\)
iely

ind 1 MOING
-Ee(g, T
<aM 3 ( x(z) )

Hence (ii) is satisfied. (iii) follows from the convexity of o.

Following the line of the proofin [10, 11, 17], we get the following results.

Proposition 3.3 For any x € V,(A;p,q), we have
) if llxll <1, then o(x) < |lx[|;
(ii) if llxll > 1, then o(x) > lx|I;
(ili) ||xll =1 if and only if o(x) = 1;
(iv) |lxll <1 ifand only if o(x) < 1;
V) x|l > 1 if and only if o(x) > 1.

Proposition 3.4 For any x € V,(A; p,q), we have

Page 7 of 14
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(i) if0 <a<1and ||x| > a, then o(x) > a™;
(ii) ifa>1and |x| < a, then o(x) < a™.

Proposition 3.5 Let (x,,) be a sequence in V,(X; p, q).
(i) If %)l = 1 as n — oo, then o(x,) = 1 as n — oo.
(i) Ifo(x,) — 0 asn— oo, then ||x,|| = 0 as n — oo.

Lemma 3.6 For any x € V,(;p,q), there exist jo € N and y € (0,1) such that Q(%) <
I‘Tyg(x/)for all j € N with j > jo, where

j-1
. e e :
# =(0,0,...,0, Sp_s41i<|x ()

,x( +1),x( + 2),...)
and ,i corresponding to Iy for k > 1.

Proof Letj € N be fixed. So there exist k; € N such thatj € [i;. Let o be a real number such
that 1 < o < limy_, o inf py, then there exists j, € N such that « <pi; for all j > j,. Choose

x(i)

y € (0,1) to be a real such that (%)“ < I’Ty Then for each x € V,(A; p,q) and j > jo, we have
x nd ( 1
o(5)-X 5Tl

>pk
k=/<j iely

S0V (& gl

k=kj kel
) (5 )
<) D+ ql|x(l)|)
(2 k:kj Q)Lk iely
<Y o(). 0

Lemma3.7 Foranyx e V,(A;p,q) and ¢ € (0,1) there exists § € (0,1) such that o(x) <1-¢
implies ||x|| <1-34.

Proof For a proof of this lemma, we apply and follow the line of the proof of Theo-
rem 1.39(4) in [29]. Suppose that the lemma does not hold, then there exist ¢ > 0 and x,, €
Vo (X p,q) such that o(x,,) <1-¢ and % <|lx.ll /1. Leta, = Hxlﬂ —1.Thena, - Oasn —

0o. Let L = sup{o(2x,,) : n € N}. By sup; px < 00, i.e., 0 € A}, there exists K > 2 such that
o(2u) < Ko(u) +1, (3.1)

for every u € l(p,6) with o(u) < 1. By (3.1), we have 0(2x,) < Ko(x,) +1 < K + 1 for all
n € N. Hence 0 < L < 0co. By Proposition 3.1 and Proposition 3.2(iii), we have

1= Q( ”z"”) = 0(2anxn + (1 — an)xn) < an0(2%,) + (1 — ay)o(x,)

<a,L+(1-¢g)—1-g¢,

which is a contradiction. O
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Theorem 3.8 The space V,(A; p, q) is a Banach space with respect to the Luxemburg norm.

Proof Let (x,) = (x,(i)) be a Cauchy sequence in V,(%; p,q) and ¢ € (0,1). Thus there exists
N e N such that ||x,, — x,,|| < & for all n,m > N. By Proposition 3.3(i), we have

oy — %) < oy —xll <€ forallm,m>N. (3.2)
That is,
o 1 Pk
Z(Q—Az%hn(i)—xm(iﬂ) <e forallmm>N. (3.3)
k=1 k iel;

For fixed k, we see that

|qi%n(i) — qixm()| <& forallm,m > N.
Thus, let (g;x,(i)) be a Cauchy sequence in R for all i € N. Since R is complete, for each
i > 1, there exists x(i) € R such that g;x,,(i) = qx(i) as m — oo. Thus for fixed k and for

each i € Iy, we have

qlffx,,(i) —x(i)| <& asm—> oo, forallm > N.

This implies that
o, —x,,) = o(x, —x) asm — oo. (3.4)
That is,
ol 1 Pk o 1 Pk
Z(— D ailxa) —xm(i>|> — Z(— D ailxa) —x(i)|) (3.5)
o \ Qi iely o \ Qi iely

as m — 00. By (3.3), we have
ox, —x) <|lx,—x| <& forallm>N,

and hence x,, — x as n — 00. So we have x,, —x € V,(A; p,q). Since (x,,) € V,(A; p,q) and the
linearity of the sequence space V,(A;p,q), we get x = x,, — (x, — x) € V,(}; p,q). Therefore
the sequence space V,(X; p, q) is a Banach space, with respect to the Luxemburg norm, and
the proof is complete. O

Theorem 3.9 The space V,(A; p,q) has property (B).

Proof Let e >0 and (x,) C B(V,(A; p,q)) with sep(x,,) > e. For each j € N, there exist k; € N
such thatj € ij. Let

j-1
. ——— i
xl = (O: 01 e 07 E/(—Ak+1§i§j |x1’l(l)

n

(G +1),2,( + 2),.. .),
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where A; corresponds to I for k > 1. This is so since for each i € N, (x,,(i))52; is bounded.
By using the diagonal method, we see that for each j € N we can find a subsequence (x,,)
of (x,) such that (x,,(i)) converges for each i € N. Therefore, for any j € N there exists
an increasing sequence (¢;) such that sep((x’,,l)btj) > ¢. Hence for each ] € N there exists
a sequence of positive integers (sj);?fl with s; < 53 <83 < --- such that IIx’sj Il Z,% and, since
0 € A}, by Lemma 2.2 we may assume that there exists > 0 such that Q(xjs/.) > n for all
jeN, thatis,

o0

Z(Ql gl (l)|) > (3.6)
Mk iely

k=kj

for all j € N. On the other hand, by Lemma 3.6, there exist jo € N and y € (0,1) such that

7 1-y .
)< J 3.7
Q( 2) =——o() (37)
for all u € V,(A;p,q) and j > jo. From Lemma 3.7, there exists § > 0 such that for any
y € Vohip,q)
vn
e =1-7 = Il=1-35 (3.8)

Since again ¢ € A§, by Lemma 2.1, there exists §, such that
vn
loGu+v) - 0| < 7 (3.9)

whenever o(u) <1 and o(v) < &. Since x € B(V,(A;p,q)), we have o(x) < 1. Then there
exists j > jo such that o) < 8y. We putu = x/sj andv=«,

u i 1 xS'(i) Pk
Q(—)=Z(— qi| 2 ) <1 and
2 /<=k1' Q)Lk iel 2
x(i)

2

Q(%) =i<Q%k Zqi )pk<80.

k:kj iely

From (3.7) and (3.9), we have

=/ 1 (@) + x5, (@) ) (u+v) <u> ¥n
qi =0 =o\z )+t —
%(QM - 2 2 2) " 4
1-
= 57 (ew) + 5L (3.10)

By (3.6), (3.9), (3.10), and convexity of the function f(t) = |£|P%, for all k € N, we have

Q<x +2x51.) _ i(i . >Pk

x(0) + x;(i)

k=1 Qi iel; 2

x(z)+x3 ONPE /1 x(0) + x5, (i) [\ Px
z( a5 ) (g D )
PR k=k; Qi iel 2
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ki1
1/ 1 A\
55<2<Qk,€,kqi|x(’ ) +Z(Qk,e,kq"|x5’(’)|> )

l—_y S L | (')| . Yn
+ 5 qi|xs; (i + )
k=k;

Q M iely
ki-1 kj-1
1 J ( Pk 1 1 Pk
.2 als0]) "+ 5 (5 Sl 01)
2 21: Qi iely l 2 kX; Qi iely Y
Llov < . )’”k ¥
qi|xs, (i) + —
Z Q Ak iely l| ’ | 4
) k-1
3 (5 Sakol) Z( Sl 0])
k=1 An iely M iely

Yo 1 L
— §Z<Q_Ak o~ ql|xsj l |) + T

k=k;
1 1

2 2 2 4
1=,
4

So it follows from (3.8) that

x + g,

<1-6.

Therefore, the space V,(};p,q) has property (8). O
By the facts that property (8) implies (NUC), and (NUC) implies property (UKK), prop-

erty (H), and reflexivity (see [29-31]). The following results are obtained directly from

Theorem 3.9.

Corollary 3.10 The space V,(A;p) has property (B).

Corollary 3.11 The space V,(X; p,q) is nearly uniform convexity and reflexive.

Corollary 3.12 The space V,(X; p,q) has property (UKK) and property (H).

Corollary 3.13 The space V,(A; p) is nearly uniform convexity and reflexive.

Corollary 3.14 The space V,(A; p) has property (UKK) and (H).
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Next, we will prove the uniform Opial property for the space V,(%;p,g).
Theorem 3.15 The space V,(X; p,q) has the uniform Opial property.

Proof Takeany e >0andx € V,(}; p,q) with |x|| > &. Let (x,) be a weakly null sequence in
S(Vo(A;p,q)). By 0 € AY, hence by Lemma 2.2 there exists § € (0,1) independent of x such
that o(x) > é. Also, by ¢ € A%, and Lemma 2.1, one may assert that there exists §; € (0,6)
such that

loy+2) - 0(y)| <2 (3.11)

whenever o(y) <1 and o(z) < é;. Choose ko € N such that

D (l q,~|x(i)|>pk < %. (3.12)

k=ko+1 Qi il

So, we have

3<§( Zqzlx@)I) Z( qu|x(z>|)

Ak iely k=ko+1 M i€ly
Pk 31
< Z( qi|x(i)|) Ay (3.13)
Q)‘k iely

which implies that

ko
Z(l qi{x(i)|)pk 8- %

k=1 Qi icly

= —. (3.14)

Since x,, — 0, there exists 19 € N such that

35 _ ko

( Zq,‘xn +x(i )pk (3.15)

M iely

for all n > ny, since weak convergence implies coordinatewise convergence. Again, by

Xy X 0, there exists n; € N such that

S\ M
(1%, Il < 1= (1 - 1) (3.16)

for all # > ;. Hence, by the triangle inequality of the norm, we get

s\ M
%01, |I><1—1> . (3.17)
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It follows from Proposition 3.3(ii) that

X
1< Q(—nNakol )
(1-g)m

_ i (ékk Z,’g[in|xn(i)|)pk

ea\ a=hm

()" £ 3, B -

<(——— — gilxni 318
A-Dm/ Lo Qs icl

implies that
(1 P 8
> (5, Takol) =1-5 (319)
k=ko+1 N <M el
for all # > n;. By inequality (3.11), (3.12), (3.15), and (3.19), we have for any n > m;

ko 1 Pk 0 1 Pk
a(xn+x>=2(5 Zqi|xn(i)+x(i)|) * 2(6 Zq,»|xn(i)+x(i)|)
s

k=1 k il k=ko+1 k i€l

ko 1 Pk o 1 Pk
> Z(é il (0) +x<i)|> £y (5 il i) +x(z‘)|)
k=1 M iely k=ko+1 N <M jely
38 (1 J)E8
= > (5 Zqi|xn(l)|) “a
k=kotl N <Mk el
38 8\ &
> 4l1-=)=-=
~ 4 4) 4
8
>1+-—.
4

Since ¢ € A} and by Lemma 2.3 there exists 7 depending on § only such that |x, + x| >
1+ 7, which implies that lim,,_, , inf ||x,, + x|| > 1 + 7, hence the proof is complete. O

Corollary 3.16 The space V,(X; p) has the uniform Opial property.
Corollary 3.17 [20, Theorem 2.6] The space ces,) has the uniform Opial property.

Corollary 3.18 [19, Theorem 2] For any 1 < p < 00, the space ces, has the uniform Opial
property.

Corollary 3.19 The space V,(A;p,q) has property (L) and the fixed point property.
Corollary 3.20 The space V,(A; p) has property (L) and the fixed point property.
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