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Abstract

This article is concerned with mean square robust stability of stochastic switched
discrete time-delay systems with convex polytopic uncertainties. The system to be
considered is subject to interval time-varying delays, which allows the delay to be a
fast time-varying function and the lower bound is not restricted to zero. Based on
the discrete Lyapunov functional, a switching rule for the mean square robust
stability for the stochastic switched system with convex polytopic uncertainties is
designed via linear matrix inequalities. Numerical examples are included to illustrate
the effectiveness of the results.
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1 Introduction
Since the time delay is frequently viewed as a source of instability and encountered in

various engineering systems such as chemical processes, long transmission lines in

pneumatic systems, networked control systems, etc., the study of delay systems has

received much attention and various topics have been discussed over the past years.

A switched system is a hybrid dynamical system consisting of a finite number of sub-

systems and a logical rule that manages switching between these subsystems. Switched

systems have drawn a great deal of attention in recent years, see [1-19] and references

therein. The motivation for studying switched systems comes partly from the fact that

switched systems and switched multi-controller systems have numerous applications in

control of mechanical systems, process control, automotive industry, power systems,

aircraft and traffic control, and many other fields. On the other hand, time-delay phe-

nomena are very common in practical systems. A switched system with time-delay

individual subsystems is called a switched time-delay system; in particular, when the

subsystems are linear, it is then called a switched time-delay linear system. During the

last decades, the stability analysis of switched linear continuous/discrete time-delay sys-

tems has attracted a lot of attention [4-8]. The main approach for stability analysis

relies on the use of Lyapunov-Krasovskii functionals and linear matrix inequlity (LMI)

approach for constructing a common Lyapunov function [8-10]. Although many

important results have been obtained for switched linear continuous-time systems,
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there are few results concerning the stability of switched linear discrete systems with

time-varying delays. It was shown in [5,7,11,12] that when all subsystems are asympto-

tically stable, the switching system is asymptotically stable under an arbitrary switching

rule. The asymptotic stability for switching linear discrete time-delay systems has been

studied in [10], but the result was limited to constant delays. In [11,12], a class of

switching signals has been identified for the considered switched discrete-time delay

systems to be stable under the average dwell time scheme.

This article studies mean square robust stability problem for stochastic switched lin-

ear discrete systems with convex polytopic uncertainties with interval time-varying

delays. Specifically, our goal is to develop a constructive way to design switching rule

to mean square robustly stable the system. By using improved Lyapunov-Krasovskii

functionals combined with LMIs technique, we propose new criteria for the mean

square robust stability of the system. Compared to the existing results, our result has

its own advantages. First, the time delay is assumed to be a time-varying function

belonging to a given interval, which means that the lower and upper bounds for the

time-varying delay are available, the delay function is bounded but not restricted to

zero. Second, the approach allows us to design the switching rule for mean square

robust stability in terms of LMIs, which can be solvable by utilizing Matlab’s LMI Con-

trol Toolbox available in the literature to date.

The article is organized as follows: Section 2 presents definitions and some well-

known technical propositions needed for the proof of the main results. Switching rule

for the mean square robust stability is presented in Section 3. Numerical example is

provided to illustrate the theoretical results in Section 4, and the conclusions are

drawn in Section 5.

2 Preliminaries
The following notations will be used throughout this article. R+ denotes the set of all

real non-negative numbers; Rn denotes the n-dimensional space with the scalar pro-

duct of two vectors 〈x, y〉 or xTy; Rn×r denotes the space of all matrices of (n × r) -

dimension. AT denotes the transpose of A; a matrix A is symmetric if A = AT , I is the

identity matrix of appropriate dimention.

Matrix A is semi-positive definite (A ≥ 0) if 〈Ax, x〉 ≥ 0, for all x Î Rn; A is positive

definite (A > 0) if 〈Ax, x〉 > 0 for all x ≠ 0; A ≥ B means A - B ≥ 0. l(A) denotes the
set of all eigenvalues of A; lmin(A) = min{Rel: l Î l(A)}.
Consider a stochastic switched linear discrete systems with convex polytopic uncer-

tainties with interval time-varying delay of the form

x(k + 1) = Aγ (ζ )x(k) + Bγ (ζ )x(k − d(k)) + σγ (x(k), x(k − d(k)), k)ω(k), k = 0, 1, 2, . . .

x(k) = vk, k = −d2, −d2 + 1, . . . , 0,
(2:1)

where x(k) Î Rn is the state, γ (.) : Rn → N := {1, 2, . . . , N} is the switching rule,

which is a function depending on the state at each time and will be designed. A

switching function is a rule which determines a switching sequence for a given switch-

ing system. Moreover, g(x(k)) = i implies that the system realization is chosen as the ith

system, i = 1, 2,..., N. It is seen that the system (2.1) can be viewed as an autonomous

switched system in which the effective subsystem changes when the state x(k) hits pre-

defined boundaries. Ai, Bi, i = 1, 2,..., N are given constant matrices. The system
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matrices are subjected to uncertainties and belong to the polytope Ω given by

� = {[Ai, Bi](ζ ) :=
N∑
j=1

ζj[Aij, Bij],
N∑
j=1

ζj = 1, ζj ≥ 0}, (2:2)

where Aij, Bij, i, j = 1, 2,..., N, are given constant matrices with appropriate dimen-

sions. ω(k) is a scalar Wiener process (Brownian Motion) on (�,F ,P) with

E{ω(k)} = 0, E{ω2(k)} = 1, E{ω(i)ω(j)} = 0(i �= j), (2:3)

and si: R
n × Rn × R ® Rn, i = 1, 2,..., N is the continuous function, and is assumed

to satisfy that

σ T
i (x(k), x(k − d(k)), k)σi(x(k), x(k − d(k)), k) ≤ ρi1x

T(k)x(k) + ρi2x
T(k − d(k))x(k − d(k),

x(k), x(k − d(k) ∈ Rn,
(2:4)

where ri1 > 0 and ri2 > 0, i = 1, 2,..., N are khown constant scalars. For simplicity, we

denote si(x(k), x(k- d(k)), k) by si, respectively.
The time-varying function d(k) satisfies the following condition:

0 < d1 ≤ d(k) ≤ d2, ∀k = 0, 1, 2, . . . .

Remark 2.1. It is worth noting that the time delay is a time-varying function belong-

ing to a given interval, in which the lower bound of delay is not restricted to zero.

Definition 2.1. The stochastic switched linear discrete systems with convex polytopic

uncertainties (2.1) is robustly stable in the mean square if there exist a positive definite

scalar function V (k, x(k): R+ × Rn ® R and a switching function g (·) such that

E{�V(k, x(k))} = E{V(k + 1, x(k + 1)) − V(k, x(k))} < 0,

along any trajectory of solution of the system (2.1) for all uncertainties which satisfy

(2.2).

Definition 2.2. The system of matrices {Ji}, i = 1, 2,..., N, is said to be strictly com-

plete if for every x Î Rn\{0} there is i Î {1, 2,..., N} such that xT Jix <0.

It is easy to see that the system {Ji} is strictly complete if and only if

N⋃
i=1

αi = Rn\{0},

where

αi = {x ∈ Rn : xTJix < 0}, i = 1, 2, . . . , N.

Proposition 2.1. [11]The system {Ji}, i = 1, 2,..., N, is strictly complete if there exist

δi ≥ 0, i = 1, 2, . . . ,N,
∑N

i=1 δi > 0such that

N∑
i=1

δiJi < 0.

If N = 2 then the above condition is also necessary for the strict completeness.

Proposition 2.2. For real numbers ζj ≥ 0, j = 1,2,...,N,
∑N

j=1 ζj = 1the following

inequality hold
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(N − 1)
N∑
j=1

ζ 2
j − 2

N−1∑
j=1

N∑
l=j+1

ζjζl ≥ 0.

Proof. The proof is followed from the completing the square:

(N − 1)
N∑
j=1

ζ 2
j − 2

N−1∑
j=1

N∑
l=j+1

ζjζl =
N−1∑
j=1

N∑
l=j+1

(ζj − ζl)
2 ≥ 0.

3 Main results
Let us set

‖ xk ‖= sup
s∈[−d2,0]

‖ x(k + s) ‖,

Wijj =

⎛
⎝ (d2 − d1)Qj − Pj + 2ρi1I Sj − SjAij −SjBij

STj − AT
ijS

T
j Pj + Sj + STj −SjBij

−BT
ijS

T
j −BT

ijS
T
j −Qj + 2ρi2I

⎞
⎠ ,

Wijl =

⎛
⎝ (d2 − d1)Qj − Pj + 2ρi1I Sj − SjAil −SjBil

STj − AT
ilS

T
j Pj + Sj + STj −SjBil

−BT
ilS

T
j −BT

ilS
T
j −Qj + 2ρi2I

⎞
⎠ ,

Wilj =

⎛
⎝ (d2 − d1)Ql − Pl + 2ρi1I Sl − SlAij −SlBij

STl − AT
ijS

T
l Pl + Sl + STl −SlBij

−BT
ijS

T
l −BT

ijS
T
l −Ql + 2ρi2I

⎞
⎠ ,

P(ζ ) =
N∑
j=1

ζjPj, Q(ζ ) =
N∑
j=1

ζjQj, S(ζ ) =
N∑
j=1

ζjSj,

λ1 = λmin(P(ζ )), λ2 = λmax(P(ζ )), R =

⎛
⎝R 0 0
0 0 0
0 0 0

⎞
⎠ ,

Jijj := Qj − SjAij − AT
ijS

T
j ,

Jijl = Qj − SjAil − AT
ilS

T
j ,

Jilj := Ql − SlAij − AT
ijS

T
l ,

αijj = {x ∈ Rn : xTJijjx < 0, }, i = 1, 2, . . . ,N, j = 1, 2, . . . ,N,

αijl = {x ∈ Rn : xTJijlx < 0, }, i = 1, 2, . . . ,N, j = 1, 2, . . . ,N − 1; l = j + 1, . . . ,N,

αijl = {x ∈ Rn : xTJiljx < 0, }, i = 1, 2, . . . ,N, j = 1, 2, . . . ,N − 1; l = j + 1, . . . ,N,

ᾱ1jj = α1jj, ᾱijj = αijj\
i−1⋃
i=1

ᾱijj, i = 2, 3, . . . ,N, j = 1, 2, . . . ,N

ᾱ1jl = α1jl, ᾱijl = αijl\
i−1⋃
i=1

ᾱijl, i = 2, 3, . . . ,N, j = 1, 2, . . . ,N − 1; l = j + 1, . . . ,N,

ᾱ1lj = α1lj, ᾱilj = αilj\
i−1⋃
i=1

ᾱilj, i = 2, 3, . . . ,N, j = 1, 2, . . . ,N − 1; l = j + 1, . . . ,N.

(3:1)

The main result of this article is summarized in the following theorem.

Theorem 3.1. The stochastic switched system with convex polytopic uncertainties (2.1)

is robustly stable in the mean square if there exist symmetric matrices Pj > 0, Qj > 0, R

≥ 0, j = 1, 2..., N and matrix Sj , j = 1, 2..., N satisfying the following conditions

(i) ∃δi ≥ 0,
∑N

i=1 δi > 0 :
∑N

i=1 δiJijj < 0 , and Jijj+ℛ < 0, i = 1,2,...,N, j = 1,2,...,N.

(ii) ∃δi ≥ 0,
∑N

i=1 δi > 0 :
∑N

i=1 [δiJijl + δiJilj] < 0 , and Jijl + Jilj − 2
N−1R < 0 , i = 1,2,...,

N, j = 1,2,..., N - 1; l = j + 1,...,N.

(iii) Wijj+ℛ < 0, i = 1, 2,...,N, j = 1, 2,...,N.
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(iv) Wijl +Wilj − 2
N−1R < 0, i = 1, 2,...,N, j = 1, 2,...,N - 1; l = j+1,...,N.

The switching rule is chosen as g(x(k)) = i, whenever x(k) ∈ ᾱijl .

Proof. Consider the following Lyapunov-Krasovskii functional for any ith system (2.1)

V(k) = V1(k) + V2(k) + V3(k),

where

V1(k) = xT(k)P(ζ )x(k), V2(k) =
k−1∑

i=k−d(k)

xT(i)Q(ζ )x(i),

V3(k) =
−d1+1∑
j=−d2+2

k−1∑
l=k+j

xT(l)Q(ζ )x(l).

We can verify that

λ1
∥∥x(k)∥∥2 ≤ V(k) ≤ λ2‖xk‖2. (3:2)

Let us set ξ(k) = [xT (k) xT (k + 1) xT (k - d(k)) ωT (k)], and

H(ζ ) =

⎛
⎜⎜⎝
0 0 0 0
0 P(ζ ) 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎠ , G(ζ ) =

⎛
⎜⎜⎝
P(ζ ) 0 0 0
I I 0 0
0 0 I 0
0 0 0 I

⎞
⎟⎟⎠ .

Then, the difference of V1(k) along the solution of the system (2.1) and taking the

mathematical expectation, we obtained

E{�V1(k)} = E{xT(k + 1)P(ζ )x(k + 1) − xT(k)P(ζ )x(k)}

= E

⎧⎪⎪⎨
⎪⎪⎩ξT(k)H(ζ )ξ(k) − 2ξT(k)GT(ζ )

⎛
⎜⎜⎝
0.5x(k)

0
0
0

⎞
⎟⎟⎠

⎫⎪⎪⎬
⎪⎪⎭ .

(3:3)

because of

E{ξT(k)H(ζ )ξ(k)} = E{x(k + 1)P(ζ )x(k + 1)},

E

⎧⎪⎪⎨
⎪⎪⎩2ξT(k)GT(ζ )

⎛
⎜⎜⎝
0.5x(k)

0
0
0

⎞
⎟⎟⎠

⎫⎪⎪⎬
⎪⎪⎭ = E{xT(k)P(ζ )x(k)}.

Using the expression of system (2.1)

0 = −S(ζ )x(k + 1) + S(ζ )Ai(ζ )x(k) + S(ζ )Bi(ζ )x(k − d(k)) + S(ζ )σiω(k),

0 = −σ T
i x(k + 1) + σ T

i Ai(ζ )x(k) + σ T
i Bi(ζ )x(k − d(k)) + σ T

i σiω(k),
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we have

E

⎧⎪⎪⎨
⎪⎪⎩−2ξT(k)GT(ζ ) ×

⎛
⎜⎜⎝

0.5x(k)
−S(ζ )x(k + 1) + S(ζ )Ai(ζ )x(k) + S(ζ )Bi(ζ )x(k − d(k)) + S(ζ )σiω(k)

0
−σ T

i x(k + 1) + σ T
i Ai(ζ )x(k) + σ T

i Bi(ζ )x(k − d(k)) + σ T
i σiω(k)

⎞
⎟⎟⎠ ξ(k)

⎫⎪⎪⎬
⎪⎪⎭

= E

⎧⎪⎪⎨
⎪⎪⎩−ξT(k)GT(ζ )

⎛
⎜⎜⎝

0.5I 0 0 0
S(ζ )Ai(ζ ) −S(ζ ) S(ζ )Bi(ζ ) S(ζ )σi

0 0 0 0
σ T
i Ai(ζ ) −σ T

i σ T
i Bi(ζ ) σ T

i σi

⎞
⎟⎟⎠ ξT(k)

⎫⎪⎪⎬
⎪⎪⎭

−E

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ξT(k)

⎛
⎜⎜⎝

0.5I 0 0 0
S(ζ )Ai(ζ ) −S(ζ ) S(ζ )Bi(ζ ) S(ζ )σi

0 0 0 0
σ T
i Ai(ζ ) −σ T

i σ T
i Bi(ζ ) σ T

i σi

⎞
⎟⎟⎠

T

G(ζ )ξ(k)

⎫⎪⎪⎪⎬
⎪⎪⎪⎭
.

Therefore, from (3.3) it follows that

E{�V1(k)} = E{xT(k)[−P(ζ ) − S(ζ )Ai(ζ ) − AT
i (ζ )S

T(ζ )]x(k)}
+ E{2xT(k)[S(ζ ) − S(ζ )Ai(ζ )]x(k + 1)}
+ E{2xT(k)[−S(ζ )Bi(ζ )]x(k − d(k))}
+ E{2xT(k)[−S(ζ )σi − σ T

i Ai(ζ )]ω(k)}
+ E{x(k + 1)[P(ζ ) + S(ζ ) + ST(ζ )]x(k + 1)}
+ E{2x(k + 1)[−S(ζ )Bi(ζ )]x(k − d(k))}
+ E{2x(k + 1)[σ T

i − S(ζ )σi]ω(k)}
+ E{2xT(k − d(k))[−σ T

i Bi(ζ )]ω(k)}
+ E{ωT(k)[−2σ T

i σi]ω(k)}.

By asumption (2.3), we have

E{�V1(k)} = E{xT(k)[−P(ζ ) − S(ζ )Ai(ζ ) − AT
i (ζ )S

T(ζ )]x(k)}
+ E{2xT(k)[S(ζ ) − S(ζ )Ai(ζ )]x(k + 1)}

+ E{2xT(k)[−S(ζ )Bi(ζ )]x(k − d(k))}
+ E{x(k + 1)[P(ζ ) + S(ζ ) + ST(ζ )]x(k + 1)}
+ E{2x(k + 1)[−S(ζ )Bi(ζ )]x(k − d(k))}
+ E{2[−σ T

i σi]}.

Applying asumption (2.4), the following estimations hold

E{−σ T
i (x(k), x(k−d(k)), k)σi(x(k), x(k−d(k)), k)} ≤ E{ρi1xT(k)x(k)+ρi2xT(k−d(k))x(k−d(k)}.

Therefore, we have

E{�V1(k)} = E{xT(k)[−P(ζ ) − S(ζ )Ai(ζ ) − AT
i (ζ )S

T(ζ ) + 2ρi1I]x(k)}
+ E{2xT(k)[S(ζ ) − S(ζ )Ai(ζ )]x(k + 1)}
+ E{2xT(k)[−S(ζ )Bi(ζ )]x(k − d(k))}
+ E{x(k + 1)[P(ζ ) + S(ζ ) + ST(ζ )]x(k + 1)}
+ E{2x(k + 1)[−S(ζ )Bi(ζ )]x(k − d(k))}
+ E{xT(k − d(k))[2ρi2I]x(k − d(k))}.

(3:4)

Rajchakit and Rajchakit Journal of Inequalities and Applications 2012, 2012:135
http://www.journalofinequalitiesandapplications.com/content/2012/1/135

Page 6 of 11



The difference of V2(k) is given by

E{�V2(k)} = E

⎧⎨
⎩

k∑
i=k+1−d(k+1)

xT(i)Q(ζ )x(i)−
k−1∑

i=k−d(k)

xT(i)Q(ζ )x(i)

⎫⎬
⎭

= E

⎧⎨
⎩

k−d1∑
i=k+1−d(k+1)

xT(i)Q(ζ )x(i) + xT(k)Q(ζ )x(k) − xT(k − d(k))Q(ζ )x(k − d(k))

⎫⎬
⎭

+ E

⎧⎨
⎩

k−1∑
i=k+1−d1

xT(i)Q(ζ )x(i)−
k−1∑

i=k+1−d(k)

xT(i)Q(ζ )x(i)

⎫⎬
⎭ .

(3:5)

Since d(k) ≥ d1 we have

E

{
k−1∑

i=k+1−d1

xT(i)Q(ζ )x(i)−
k−1∑

i=k+1−d(k)
xT(i)Q(ζ )x(i)

}
≤ 0,

and hence from (3.5) we have

E{�V2(k)} ≤ E{
k−d1∑

i=k+1−d(k+1)

xT(i)Q(ζ )x(i)+xT(k)Q(ζ )x(k)−xT(k−d(k))Q(ζ )x(k−d(k))}. (3:6)

The difference of V3(k) is given by

E{�V3(k)} = E{
−d1+1∑
j=−d2+2

k∑
l=k+j+1

xT(l)Q(ζ )x(l) −
−d1+1∑
j=−d2+2

k−1∑
l=k+j

xT(l)Q(ζ )x(l)}

= E

⎧⎨
⎩

−d1+1∑
j=−d2+2

[
k−1∑
l=k+j

xT(l)Q(ζ )x(l) + xT(k)Q(ζ )(ξ)x(k)

⎫⎬
⎭

− E{
k−1∑
l=k+j

xT(l)Q(ζ )x(l) − xT(k + j − 1)Q(ζ )x(k + j − 1)]}

= E

⎧⎨
⎩

−d1+1∑
j=−d2+2

[xT(k)Q(ζ )x(k) − xT(k + j − 1)Q(ζ )x(k + j − 1)]

⎫⎬
⎭

= E

⎧⎨
⎩(d2 − d1)xT(k)Q(ζ )x(k) −

k−d1∑
j=k+1−d2

xT(j)Q(ζ )x(j)

⎫⎬
⎭

(3:7)

Since d(k) ≤ d2, and

E

⎧⎨
⎩

k−d1∑
i=k=1−d(k+1)

xT(i)Q(ζ )x(i)−
k−d1∑

i=k+1−d2

xT(i)Q(ζ )x(i)

⎫⎬
⎭ ≤ 0,

we obtain from (3.6) and (3.7) that

E{�V2(k)+�V3(k)} ≤ E{(d2 −d1 +1)xT(k)Q(ζ )x(k)− xT(k−d(k))Q(ζ )x(k−d(k))}. (3:8)

Therefore, combining the inequalities (3.4), (3.8) gives

E{�V(k)} ≤ E{xT(k)Ji(ζ )x(k) + ψT(k)Wi(ζ )ψ(k)}, (3:9)
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where

ψ(k) = [xT(k)xT(k + 1)xT(k − d(k))],

Wi(ζ ) =

⎛
⎝ (d2 − d1)Q(ζ ) − P(ζ ) + 2ρi1I S(ζ ) − S(ζ )Ai(ζ ) −S(ζ )Bi(ζ )
ST(ζ ) − AT

i (ζ )S
T(ζ ) P(ζ ) + S(ζ ) + ST(ζ ) −S(ζ )Bi(ζ )

−BT
i (ζ )S

T(ζ ) −BT
i (ζ )S

T(ζ ) −Q(ζ ) + 2ρi2I

⎞
⎠ ,

Ji(ζ ) = Q(ζ ) − S(ζ )Ai(ζ ) − AT
i (ζ )S

T(ζ ).

From the convex combination of the expression of P(ζ), Q(ζ), S1(ζ), A(ζ), B(ζ), we

have

Wi(ζ ) =
N∑
j=1

ζ 2
j

⎛
⎝ (d2 − d1)Qj − Pj + 2ρi1I Sj − S1jAij −SjBij

STj − AT
ijS

T
j Pj + Sj + STj −SjBij

−BT
ijS

T
j −BT

ijS
T
j −Qj + 2ρi2I

⎞
⎠

+
N−1∑
j=1

N∑
l=j+1

ζjζl

⎛
⎜⎝
(d2 − d1)Qjl − Pjl + 2ρi1I Sjl − (SAi)jl −(SBi)jl
STjl − (SAi)Tjl Pjl + Sjl + STjl −(SBi)jl
−(SBi)Tjl −(SBi)Tjl −Qjl + 2ρi2I

⎞
⎟⎠

=
N∑
j=1

ζ 2
j Wijj +

N−1∑
j=1

N∑
l=j+1

ζjζl[Wijl +Wilj],

Ji(ζ ) =
N∑
j=1

ζ 2
j (Qj − SjAij − AT

ijS
T
j ) +

N−1∑
j=1

N∑
l=j+1

ζjζl(Qjl − (SAi)jl − (SAi)Tjl

=
N∑
j=1

ζ 2
j Jijj +

N−1∑
j=1

N∑
l=j+1

ζjζl[Jijl + Jilj],

where

(SAi)jl := SjAil + SlAij,

(SBi)jl := SjBil + SlBij,

Qjl = Qj +Ql, , Pjl = Pj + Pl, Sjl = Sj + Sl.

Then the conditions (i)-(iv) give

Wi(ζ ) < −
N∑
j=1

ζ 2
j R +

2
N − 1

N−1∑
j=1

N∑
l=j+1

ζjζlR ≤ 0,

Ji(ζ ) < −
N∑
j=1

ζ 2
j R +

2
N − 1

N−1∑
j=1

N∑
l=j+1

ζjζlR ≤ 0,

because of Proposition 2.2:

(N − 1)
N∑
j=1

ζ 2
j − 2

N−1∑
j=1

N∑
l=j+1

ζjζl =
N−1∑
j=1

N∑
l=j+1

(ζj − ζl)
2 ≥ 0.

Therefore, we finally obtain from (3.9) and the condition (iii), (iv) that

E{�V(k)} < E{xT(k)Ji(ζ )x(k)}, ∀i = 1, 2, . . . ., N, k = 0, 1, 2, . . . .
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We now apply the condition (i), (ii) and Proposition 2.1, the system Ji(ζ) is strictly

complete, and the sets aijl and ᾱijl by (3.1) are well defined such that

N⋃
i=1

αijl = Rn\{0},

N⋃
i=1

ᾱijl = Rn\{0}, ᾱijl ∩ ᾱtjl = ∅, i �= t.

Therefore, for any x(k) Î Rn, k = 0, 1, 2,...., there exists i Î {1, 2,..., N} such that

x(k) ∈ ᾱijl . By choosing switching rule as g(x(k)) = i whenever x(k) ∈ ᾱijl , from the

condition (i) and (ii) we have

E{�V(k)} ≤ E{xT(k)Ji(ζ )x(k)} < 0, k = 0, 1, 2, . . . ,

which, combining the condition (3.2), and Definition 2.1, the system (2.1) is expo-

nentially stable in the mean square. The proof is complete.

Remark 3.1. Note that the results purposed in [4-6,9,12] for switching systems to be

asymptotically stable under an arbitrary switching rule. The asymptotic stability for

switching linear discrete time-delay systems studied in [9] was limited to constant

delays. In [10], a class of switching signals has been identified for the considered

switched discrete-time delay systems to be stable under the averaged well time scheme.

Remark 3.2. It is worth noting that the time delay is a time-varying function belong-

ing to a given interval, in which the lower bound of delay is not restricted to zero but

in [18,19] were limited to constant delays and the lower bound of delay was restricted

to zero.

4 Numerical examples
Example 4.1. Consider the stochastic switched discrete-time system with convex poly-

topic uncertainties (2.1) for N = 2, where the delay function d(k) is given by

d(k) = 1 + 28sin2
kπ
2
, k = 0, 1, 2, . . . .

and

(A11, B11) =
([−1 0.1

0.2 −2

]
,

[−1 0.2
0.1 −3

])
, (A12, B12) =

([−2 0.3
0.5 −3

]
,

[−3 0.01
0.24 −1.8

])
,

(A21, B21) =
([−0.1 0.01

0.02 −0.2

]
,

[−0.1 0.02
0.01 −0.3

])
, (A22, B22) =

([−0.2 0.03
0.05 −0.3

]
,

[−0.3 0.01
0.024 −0.18

])
.

By LMI toolbox of Matlab, we find that the conditions (i) - (iv) of Theorem 3.1 are

satisfied with δ1 = 0.01, δ2 = 0:01, ζ 1 = 0:5, ζ 2 = 0.5, r11 = 0.1, r12 = 0.1, r21 = 0.1,

r22 = 0.1, d1 = 1, d2 = 29, and

P1 =
[
28.0877 0.0742
0.0742 22.3782

]
,P2 =

[
23.3129 0.0057
0.0057 29.0647

]
,Q1 =

[
0.3324 0.0128
0.0128 0.0868

]
,Q2 =

[
0.0160 0.0097
0.0097 0.1173

]
,
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S1 =
[−5.0578 −0.1508

−0.6586 −3.1947

]
, S2 =

[−3.9473 −0.2175
−0.6347 −2.9459

]
,R =

[
0.3270 −0.0153

−0.0153 0.4768

]
.

In this case, we have

(J111(R, Q), J211(R, Q)) =
([−9.7229 0.1973

0.1973 −12.5603

]
,

[−0.6731 0.0313
0.0313 −1.1780

])
,

(J122(R, Q), J222(R, Q)) =
([−15.5556 0.7448

0.7448 −17.1775

]
,

[−1.5412 0.0833
0.0833 −1.6122

])
,

(J112(R, Q), J212(R, Q)) =
([−19.7481 1.3578

1.3578 −18.6862

]
,

[−1.6756 0.1473
0.1473 −1.7905

])
,

(J121(R, Q), J221(R, Q)) =
([−7.7916 − 0.0761

−0.0761 − 11.5395

]
,

[−0.7648 0.0012
0.0012 −1.0484

])
.

Moreover, the sum

δ1J111(R, Q) + δ1J211(R, Q) + δ1J122(R, Q) + δ1J222(R, Q) + δ1J112(R, Q) + δ1J121(R, Q) + δ1J212(R, Q)

+δ1J221(R, Q) + δ2J111(R, Q) + δ2J211(R, Q) + δ2J122(R, Q) + δ2J222(R, Q) + δ2J112(R, Q) + δ2J121(R, Q)

+δ2J212(R, Q) + δ2J221(R, Q) =
[−1.1495 0.0497
0.0497 −1.3119

]
,

is negative definite; i.e. the first entry in the first row and the first column -1:1495 <0

is negative and the determinant of the matrix is positive. The sets aijl, i, j, l = 1, 2, are

given as

α111 = {(x1, x2) : −9.7229x21 + 0.3946x1x2 − 12.5603x22 < 0},
α211 = {(x1, x2) : 0.6731x21 − 0.0626x1x2 + 1.1780x22 > 0},
α122 = {(x1, x2) : −15.5556x21 + 1.4896x1x2 − 17.1775x22 < 0},
α222 = {(x1, x2) : 1.5412x21 − 0.1666x1x2 + 1.6122x22 > 0},
α112 = {(x1, x2) : −19.7481x21 + 2.7156x1x2 − 18.6862x22 < 0},
α212 = {(x1, x2) : 1.6756x21 − 0.2946x1x2 + 1.7905x22 > 0},
α121 = {(x1, x2) : −7.7916x21 − 0.1522x1x2 − 11.5395x22 < 0},
α221 = {(x1, x2) : 0.7648x21 − 0.0024x1x2 + 1.0484x22 > 0}.

Obviously, the union of these sets is equal to R2 \ {0}. The switching regions are

defined as

ᾱ111 = {(x1, x2) : −9.7229x21 + 0.3946x1x2 − 12.5603x22 < 0},
ᾱ211 = α211\ᾱ111,

ᾱ122 = {(x1, x2) : −15.5556x21 + 1.4896x1x2 − 17.1775x22 < 0},
ᾱ222 = α222\ᾱ122,

ᾱ112 = {(x1, x2) : −19.7481x21 + 2.7156x1x2 − 18.6862x22 < 0},
ᾱ212 = α212\ᾱ112,

ᾱ121 = {(x1, x2) : −7.7916x21 − 0.1522x1x2 − 11.5395x22 < 0},
ᾱ221 = α221\ᾱ121.
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By Theorem 3.1 the system is robustly stable in the mean square and the switching

rule is chosen as g(x(k)) = i whenever x(k) ∈ ᾱijl .

5 Conclusion
This article has proposed a switching design for the mean square robust stability of

stochastic switched linear discrete-time systems with convex polytopic uncertainties

with interval time-varying delays. Based on the discrete Lyapunov functional, a switch-

ing rule for the mean square robust stability for the stochastic system with convex

polytopic uncertainties is designed via linear matrix inequalities.
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