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Abstract
Enlargement of the vestibular aqueduct (EVA) is the
most common inner ear anomaly detected in ears of
children with sensorineural hearing loss. Pendred
syndrome (PS) is an autosomal recessive disorder
characterized by bilateral sensorineural hearing loss
with EVA and an iodine organification defect that can
lead to thyroid goiter. Pendred syndrome is caused
by mutations of the SLC26A4 gene. SLC26A4
mutations may also be identified in some patients with
nonsyndromic EVA (NSEVA). The presence of two
mutant alleles of SLC26A4 is correlated with bilateral
EVA and Pendred syndrome, whereas unilateral EVA
and NSEVA are correlated with one (M1) or zero (M0)
mutant alleles of SLC26A4. Thyroid gland
enlargement (goiter) appears to be primarily
dependent on the presence of two mutant alleles of
SLC26A4 in pediatric patients, but not in older
patients. In M1 families, EVA may be associated with

a second, undetected SLC26A4 mutation or
epigenetic modifications. In M0 families, there is
probably etiologic heterogeneity that includes causes
other than, or in addition to, monogenic inheritance.

Introduction

Approximately one in 1000 children are born
with hearing loss [1]. Morton [2] estimated that half of
all cases of hearing loss with an onset prior to the
normal development of speech and language (i.e.
prelingual onset) are thought to have a hereditary basis.
Most hereditary hearing loss is sensorineural (SNHL) and
inherited as a simple Mendelian trait. Hearing loss is
described as nonsyndromic or syndromic, respectively,
according to the absence or presence of abnormalities
of other organs, such as the kidney, heart, or eye [3].
Seventy percent or more of hereditary hearing loss
cases appear to be nonsyndromic [4]. Syndromic
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hearing loss accounts for the remaining 30% of
genetic SNHL phenotypes in children, with a growing
list of hundreds of hearing loss syndromes and genes
[5]. Nonsyndromic SNHL also has a high degree of
genetic heterogeneity with more than 160 loci and more
than 60 causative genes that have been identified to
date (Van Camp G, Smith RJH. Hereditary Hearing
Loss Homepage, Accessed August 11, 2011 at http://
hereditaryhearingloss.org). There is overlap among
these groups of genes because some of them underlie
both syndromic and nonsyndromic hearing loss phenotypes
[6]. Discovery of a causative gene for a syndromic
hearing loss phenotype is often followed by identification
of less severe or nonsyndromic phenotypes associated
with mutant alleles of the same gene. This extension of
a phenotypic spectrum can also occur with nonsyndromic
hearing loss disorders in which information from
gene expression studies or mouse models can guide
later detection of subtle syndromic findings in patients
initially diagnosed with nonsyndromic hearing loss.

Pendred syndrome

The diagnostic criteria for Pendred syndrome
have evolved since 1896 when Vaughan Pendred first
reported the combination of goiter and hearing loss in
two sisters [7]. Their severe hearing losses had been
present since infancy, while goiters were first noted at
the age of 13 years. In 1927, Brain [8] described 12
individuals who had profound hearing loss since birth
and developed goiter in childhood. He postulated that
both phenotypes were associated with a common
hereditary factor and inherited as a recessive trait. The
biochemical defect underlying goiter in Pendred syndrome
was later shown to be a thyroidal iodine organification
defect [9]. This defect affecting thyroid hormone
synthesis could be detected by measuring the discharge
of a radioactive inorganic iodide isotope from the
thyroid after administration of potassium perchlorate.
Potassium perchlorate is a competitive inhibitor of
the sodium-iodide symporter, which transports iodide into
thyroid folliculocytes across their basolateral membrane.
An abnormally high discharge of iodide from the
thyroid gland in response to perchlorate administration,
in combination with congenital deafness, became the
gold standard for the clinical diagnosis of Pendred
syndrome [10].

Fraser [11] defined Pendred syndrome as congenital
deafness, goiter and a positive perchlorate discharge

test and estimated its prevalence at 7.5 to 10 per 100,000
people. This indicated that Pendred syndrome might
account for up to 10% of hereditary hearing loss [11].
Advances in radiographic imaging of the temporal
bones led to the proposal that a Mondini malformation of
the cochlea should be included as an essential feature of
the diagnosis [12, 13]. Indeed, histological studies of
Pendred syndrome temporal bones revealed an incomplete
bony partition of adjacent turns of the cochlea (Mondini
malformation), enlargement of the vestibular aqueduct
(EVA), and a variety of membranous labyrinth
abnormalities [14]. A subsequent report revealed similar
findings in four additional patients with Pendred syndrome
[15], while another study concluded that the Mondini
defect was the underlying cause of SNHL in Pendred
syndrome [16].

SLC26A4

The causative gene for Pendred syndrome was
identified as SLC26A4 (originally called PDS) in 1997
[17]. The identification of SLC26A4 led to re-evaluation
of the original family used to define nonsyndromic
recessive deafness DFNB4, which was linked to the
same region on chromosome 7q31 [18]. The affected
members of the original DFNB4 family were re-diagnosed
with Pendred syndrome [19]. Most clinicians now
rely upon molecular testing of SLC26A4 for the diagnosis
of Pendred syndrome. There are over 160 reported
mutations in SLC26A4, which has been associated
with sporadic and familial forms of Pendred syndrome in
populations worldwide. Furthermore, a large-scale study
demonstrated mutations of SLC26A4 in approximately
5-10% of childhood SNHL patients among a variety of
different ethnic populations [20], providing a genotypic
confirmation of Fraser’s phenotypic estimate of
the prevalence of Pendred syndrome [11].

SLC26A4 encodes an 86-kDa transmembrane
protein named pendrin with up to 15 predicted membrane-
spanning domains [17, 21]. Mouse Slc26a4 is expressed
in a restricted tissue distribution that includes the
inner ear, thyroid, kidney, lung, and several other organs
[17]. Pendrin has been shown to exchange anions and
bases across the plasma membrane in several
heterologous expression systems. It is thought to mediate
Cl-/I- exchange in the thyroid [22] and Cl-/HCO3

-

exchange in the inner ear [23]. This anion exchange
activity appears to be critical during late embryonic
and early postnatal development of the inner ear
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[24]. The molecular details of this pathogenetic
mechanism remain to be fully elucidated [25, 26].

Enlargement of the vestibular aqueduct
(EVA)

Modern radiologic imaging of temporal bones and
molecular testing for SLC26A4 mutations established that
the Mondini cochlear malformation was neither a
consistent nor specific observation in Pendred syndrome.
Enlargement of the vestibular aqueduct (EVA) is now
recognized as the most penetrant feature of Pendred
syndrome [27]. EVA was initially defined as a vestibular
aqueduct diameter greater than or equal to 1.5 mm
measured midway between the operculum and the
common crus on computed tomography (CT) scans (Fig.
1A) [28]. Magnetic resonance (MR) imaging reveals
enlargement of the endolymphatic sac and duct, which
courses through the vestibular aqueduct (Fig. 1B) [27].
The relationship of the vestibular aqueduct and
endolymphatic duct and sac is shown in Fig. 2.

EVA is also identified in patients with nonsyndromic
hearing loss. Griffith et al. reported a family in which two

brothers had SNHL and EVA without syndromic
abnormalities. Their hearing loss and EVA was
postulated to be inherited as a recessive trait [29]. Other
authors reported additional familial cases [30] described
as ‘nonsyndromic hearing loss with EVA (NSEVA)’.
Molecular genetic testing revealed that many cases
of NSEVA are associated with SLC26A4 mutations.
First, a large Asian Indian family was reported to
segregate EVA, without goiter, with homozygosity for a
mutant allele of SLC26A4 at the DFNB4 locus [31].
Usami et al. identified SLC26A4 mutations in sporadic
and familial cases of NSEVA, indicating that SLC26A4
mutations are commonly associated with NSEVA [32].
Their observations were confirmed in numerous studies
of  large cohorts of NSEVA patients from different
ethnic populations [33-37].

EVA has also been detected in a subset of patients
with branchio-oto-renal (BOR) or branchio-oto (BO)
syndrome [38], Waardenburg syndrome [39], and
deafness associated with the recessive form of distal
renal tubular acidosis [40]. There is no published
evidence that mutations of the genes underlying these
syndromes cause NSEVA.

Fig. 1. Radiologic imaging of a right temporal bone with an enlarged vestibular aqueduct. (A) Axial
computed tomography (CT) scan of an enlarged vestibular aqueduct (arrow). (B) Axial magnetic resonance (MR) image
of the same ear showing an enlarged endolymphatic sac and duct (arrow). Reproduced from http://www.nidcd.nih.gov/health/
hearing/eva-intro.htm.
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SLC26A4 genotype-phenotype correlation

The detection of SLC26A4 mutations both in
Pendred syndrome and NSEVA has led to efforts to
identify potential genotype-phenotype correlations.
Scott et al. [33] used an anion transport assay in Xenopus
oocytes to ask whether SLC26A4 mutations detected
in patients with Pendred syndrome differed functionally
from SLC26A4 mutations detected in individuals with
NSEVA. They concluded that hypo-functional pendrin
encoded by NSEVA alleles had residual transport
activity that prevents the development of goiter, while
functional null alleles led to Pendred syndrome [33].
However, this correlation was not consistent with
later studies that identified null alleles in NSEVA and

hypo-functional alleles in Pendred syndrome [34, 37, 41].
There are some variants that are detected in NSEVA
but not Pendred syndrome, but many of these variants
are probably nonpathogenic and coincidentally detected
[42]. Taken together, the current published reports do
not support a correlation between the type of SLC26A4
mutation and thyroid phenotype (i.e. NSEVA versus
PS).

In North American and European EVA populations,
SLC26A4 mutations cannot be detected in up to one
half of patients, while only one mutant SLC26A4 allele is
identified in one fourth of patients [35-37, 43]. We
refer to the detection of only one or zero mutant alleles
of SLC26A4 as non-diagnostic because two mutant
alleles are required to cause an autosomal recessive trait

Fig. 2. Schematic
illustration of an
enlarged vestibular
aqueduct and
endolymphatic sac
and duct.
Reproduced from
h t t p : / /
www.nidcd.nih.gov/
h e a l t h / h e a r i n g /
vestAque.htm.
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[44]. The proportion of EVA patients with non-diagnostic
SLC26A4 genotypes is higher when the radiologic
criterion is changed to include vestibular aqueducts
with midpoint diameters as small as 1.0 mm [45, 46].
Pryor et al. examined the potential correlation of
clinical phenotype and the number of mutated alleles of
SLC26A4 in patients with EVA. They defined
Pendred syndrome as EVA and >15% discharge of iodide
two to three hours after administration of perchlorate.
Pendred syndrome was correlated with the presence
of two mutant alleles of SLC26A4 (M2), while NSEVA
was associated with either one (M1) or zero (M0)
mutant alleles of SLC26A4 [35]. In addition, unilateral
EVA was correlated with only one or zero mutant
allele of SLC26A4, while two mutant alleles of SLC26A4
was tightly correlated with bilateral EVA. The number
of mutant alleles of SLC26A4 was thus strongly
associated with the thyroid (perchlorate discharge test
result) and auditory phenotypes. The perchlorate
discharge phenotype-genotype correlation was
dependent upon uniform test procedures and
interpretation, and comprehensive screening to exclude
patients with other confounding phenotypic abnormalities
[35]. Madeo et al. [47] used ultrasonography to calculate
thyroid gland volume and defined goiter by comparison
to published normative data. Thyroid gland enlargement
was primarily dependent on the presence of two
mutant alleles of SLC26A4 in pediatric (<10 years old)
EVA patients, but not in older EVA patients [47].

Etiology of EVA in patients with non-
diagnostic SLC26A4 genotypes

In order to understand the causes and recurrence
risk of EVA in families of probands with non-diagnostic
SLC26A4 genotypes (M1 or M0), Choi et al. evaluated
the segregation ratio of EVA among siblings in M2, M1
and M0 families [44]. A segregation ratio is the
proportion of offspring that can be expected to be of a
particular genotype or phenotype. The segregation
ratios of EVA in M1 and M2 families were not statistically
different from 0.25, which is expected for an autosomal
recessive trait with full penetrance and viability. However,
the segregation ratio was significantly lower among
M0 families. Furthermore, SLC26A4-linked polymorphic
DNA markers co-segregated with EVA in M1, but not
M0 families. These results were consistent with the
existence of a second, undetected SLC26A4 mutation
that accounts for EVA in the M1 families [44]. However,

nucleotide sequence analyses of conserved noncoding
regions in and around the SLC26A4 gene failed to
identify occult mutations, and comparative genome
hybridization (CGH)-microarray analysis similarly
failed to identify pathogenic copy number variants at
the SLC26A4 locus [44]. These analyses could have failed
to detect copy number variations affecting short segments
of DNA, or mutations in intronic or regulatory
regions that were not analyzed. Alternatively, epigenetic
modifications of SLC26A4 such as DNA methylation
might repress transcription [48] and account for the
observed co-segregation of EVA and SLC26A4 in M1
families. The correlation of less severe, nonsyndromic
EVA phenotypes with M1 genotypes may reflect
undetected mutant or epigenetically-modified alleles
of SLC26A4 that exert their effects as hypomorphs with
residual function [44], in a tissue (inner ear)- or
time-specific manner [24], or a combination of these
mechanisms. It is unlikely that a single mutant allele of
SLC26A4 is sufficient to cause EVA since there are no
published reports of vertical co-segregation of EVA with
a single mutant allele of SLC26A4 or of sporadic cases
associated with a single de novo mutant allele of
SLC26A4 [35].

In M0 families, the low segregation ratio and
discordant inheritance of SLC26A4-linked DNA
markers with EVA suggested etiologic heterogeneity that
includes causes other than, or in addition to, monogenic
Mendelian inheritance [44]. Congenital cytomegalovirus
(CMV) infection is a very common cause of
childhood SNHL and can produce an auditory phenotype
that is very similar to that of EVA [49]. However,
congenital CMV infection was ruled out as a common
or significant cause of EVA [50].

In M1 families, a single pathogenic mutation
of SLC26A4 might cause EVA in combination with
a mutation in another gene [35]. Yang et al. described
several EVA patients with a heterozygous SLC26A4
mutation in combination with a heterozygous
hypo-functional variant of FOXI1 [51] or KCNJ10 [52].
However, these results have not been obtained in
other studies of EVA cohorts [53-55] and the
pathogenic potential of the reported FOXI1 and KCNJ10
variants remains uncertain [56, 57].

The causes of EVA in patients with nondiagnostic
SLC26A4 genotypes are thus largely unknown.
Identification of additional genes or factors underlying
EVA would facilitate more precise diagnosis and could
provide mechanistic insight into the pathogenesis of
hearing loss in this enigmatic disorder.

SLC26A4 Genotypes and EVA Phenotypes Cell Physiol Biochem 2011;28:545-552
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