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Abstract

Acid sphingomyelinase (ASM) is an important lipid-
metabolizing enzyme cleaving sphingomyelin to
ceramide, mainly within lysosomes. Acid ceramidase
(AC) further degrades ceramide to sphingosine which
can then be phosphorylated to sphingosine-1-phos-
phate. Ceramide and its metabolite sphingosine-1-
phosphate have been shown to antagonistically regu-
late apoptosis, cellular differentiation, proliferation and
cell migration. Inhibitors of ASM or AC therefore hold
promise for a number of new clinical therapies, e.g.
for Alzheimer’s disease and major depression on the
one hand and cancer on the other. Inhibitors of ASM
have been known for a long time. Cationic amphiphilic
substances induce the detachment of ASM protein
from inner lysosomal membranes with its consecu-
tive inactivation, thereby working as functional inhibi-
tors of ASM. We recently experimentally identified a
large number of hitherto unknown functional inhibi-
tors of ASM and determined specific physicochemi-

cal properties of such cationic amphiphilic substances
that functionally inhibit ASM. We propose the acro-
nym “FIASMA” (Functional Inhibitor of Acid
SphingoMyelinAse) for members of this large group
of compounds with a broad range of new clinical indi-
cations. FIASMAs differ markedly with respect to mo-
lecular structure and current clinical indication. Most
of the available FIASMAs are licensed for medical use
in humans, are minimally toxic and may therefore be
applied for disease states associated with increased
activity of ASM.

Copyright © 2010 S. Karger AG, Basel

Acid sphingomyelinase and acid cerami-
dase

Acid sphingomyelinase (ASM, EC 3.1.4.12) is a lyso-
somal glycoprotein that catalyses the hydrolysis of sphin-
gomyelin into ceramide and phosphorylcholine. Translo-
cation of lysosomal ASM to the cell surface plays an
important role during stress response [1]. CD95 ligands
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and cytokines such as tumor necrosis factor-a, interleukin-
1 and interferon-y but also environmental stimuli includ-
ing oxidative stress, reactive nitrogen species, ionizing ra-
diation, ultraviolet-C radiation, heat shock and other agents
of stress, injury or infections have been shown to stimu-
late ceramide production [2-16]. Ceramide consecutively
leads to membrane reorganization involving membrane
rafts [10, 17] and downstream signalling that may result
in apoptosis. In addition to ASM, at least three other
sphingomyelinases have been described in mammalian
cells [18-20] that vary in their pH optimum, cofactor de-
pendency and subcellular localization. Although these en-
zymes and an existing de novo synthesis pathway are
alternative mechanisms for ceramide generation, activa-
tion of ASM is critical for at least some cellular responses,
such as apoptosis induced by reactive nitrogen species
[4], radiation [5] and CD95 [21].

Ceramide is further metabolized to sphingosine and
sphingosine-1-phosphate by acid ceramidase (AC, EC
3.5.1.23) and sphingosine kinases. The specific activity
of AC was found to be low in comparison with ASM in
different tissues including the human brain. AC appears
to be more abundant in human placenta than ASM [22-
33]. The relative abundance and specific activity of ASM
versus AC in mammalian lysosomes is not currently
known.

While the biological function of sphingosine is largely
unknown, sphingosine-1-phosphate has been shown to
be involved in cellular differentiation, proliferation and cell
migration [34-38]. The balance between ceramide and
sphingosine-1-phosphate is referred to as the “ceramide/
sphingosine-1-phosphate rheostat” [39-41], which regu-
lates a proper balance between cell death and growth
(Fig. 1).

Altered activity of ASM in human disease
states

ASM is best known for its involvement in Niemann-
Pick disease, where a heritable deficiency of this enzyme
leads to the emergence of a lysosomal storage disorder
[42]. Pathologic reduction of ASM activity is caused by
mutations in the ASM gene itself or in a gene that en-
codes NPC-1, a protein indirectly regulating ASM activ-
ity [43]. The severity of Niemann-Pick disease corre-
lates with the decrease of ASM activity [44]. However,
studies using cells derived from Niemann-Pick disease
patients or from ASM knock-out mice revealed that a
deficiency of this enzyme might also have beneficial con-

sequences. There is now increasing evidence that acti-
vation of ASM and ceramide accumulation play a central
role in the development of common human diseases (for
review see [45, 46]).

Potential clinical indications of ASM
inhibitors

From a theoretical point of view, there are broad
clinical applications for inhibitors of ASM. Agents that
reduce ASM activity and thereby also ceramide levels
tend to attenuate receptor-mediated apoptosis, stress
stimuli-induced apoptosis as well as growth factor-depri-
vation-mediated apoptosis and promote cell proliferation
[47-52]. Thus, ASM-inhibitors potentially have anti-
apoptotic and neuroprotective effects and may therefore
be used in the treatment of disorders such as brain
ischemia, stroke [12, 53], ethanol-induced neuronal cell
death [54, 55], Alzheimer’s dementia [22, 56, 57], Par-
kinson’s disease, Chorea Huntington, spinal cord injury
[58], seizure disorder [59], glaucoma, and to protect against
neurodegeneration occurring in multiple sclerosis. Fur-
thermore, such drugs should prevent the radiation- and
chemotherapy-induced lethal gastrointestinal syndrome
[8], and should be helpful in the endotoxic shock syn-
drome [60], in severe sepsis [61] and in liver cell death
and anaemia occurring in Wilson’s disease [62]. The ac-
cumulation of cellular ceramide observed in cystic fibro-
sis [63] may be successfully prevented by functional in-
hibitors of ASM [64, 65](Gulbins et al., this issue). ASM
inhibition suppresses lipopolysaccharide-mediated release
of inflammatory cytokines from macrophages [66] and
blocks induction of matrix metalloproteinase-1 [67] indi-
cating a possible preventive or therapeutic role for ASM-
inhibitors in inflammatory bowel disease. ASM-depend-
ent production of ceramide plays a key role in the gen-
eration of pulmonary edema in acute lung injury [68] as
well as in lung emphysema [69]. Inhibitors of ASM might
thus be of therapeutic value in acute and chronic lung
injury. In a pilot study, increased ASM activity was found
in patients suffering from major depression [70]. ASM-
inhibitors might therefore contribute to antidepressant ef-
fects [71]. In addition, ASM-inhibitors might be helpful to
attenuate morphine anti-nociceptive tolerance [72]. ASM
is essential for infection with Neisseria gonorrhoeae
[73]. Moreover, ASM is involved in the formation of
atherosclerotic plaques [46, 74-76]. In summary, ASM
inhibitors hold promise for a number of new clinical thera-
pies [47-52,70,77].
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Fig. 1. The “ceramide/sphingosine-1-phosphate rheo-
stat”. ASM catalyses the degradation of sphingomy-
elin to ceramide and thus mediates pro-apoptotic ef-
fects (red). AC further metabolizes ceramide to sphin-
gosine which is phosphorylated to sphingosine-1-
phosphate by sphingosine kinases. AC thus mediates
anti-apoptotic effects (blue). FIASMAs (functional
inhibitors of acid sphingomyelinase) induce functional
inhibition of ASM. Some FIASMA:, like desipramine,
may also functionally inhibit AC.
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Currently available inhibitors of ASM

Direct inhibitors of ASM

A high throughput screening for direct ASM inhibi-
tors was unsuccessful in finding tractable lead structures
[78]. The rational development of compounds that block
ASM by direct interaction with the enzyme is difficult,
since the crystal structure of the enzyme is not available.
Therefore, only few examples of inhibitors directly inter-
acting with ASM are currently known. These substances
include physiological inhibitors of ASM such as
phosphatidyl-myo-inositol-3,4,5-triphosphate [ 79], L-a.-
phosphatidyl-D-myoinositol-3,5-biphosphate [80], com-
pounds isolated from plants, such as a-mangostin [81,
82] and non-natural direct inhibitors of ASM, such as
SMA-7[66], AD2765 [83] and synthetic phosphoinositide
analogues [84]. Several biphosphonates are potent and
selective inhibitors of ASM [85], among them zoledronic
acid, which is clinically used in the treatment of oste-
oporosis. It is unclear at present whether or not clini-
cally-used biphosphonates work as ASM inhibitors in vivo
and in therapeutic concentrations. Very recently, potent
drug-like direct inhibitors of the ASM have been
identified (C. Arenz, pers. communication). In contrast
to functional inhibitors (see below) direct inhibitors do
not need high lysosomal drug concentrations as a pre-
condition for inhibition of ASM. This might have advan-
tages and disadvantages in contrast to functional inhibi-
tors of ASM. For further details on direct inhibitors of
ASM see Arenz, this issue.

Functional inhibitors of ASM (FIASMAs)

Since the 1970s it has been shown that weak
organic bases such as desipramine have the potential to
inhibit the activity of ASM [70, 86-88]. It has been sug-
gested that ASM is bound to intra-lysosomal membranes,
thereby being protected against proteolytic inactivation.
Desipramine and related drugs result in detachment of
the ASM from the inner membrane [89] and its subse-
quent inactivation possibly by proteolytic degradation [90].
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Fig. 2. Drug-induced functional inhibition of ASM is the re-
sult of lysosomal accumulation and detachment of ASM from
the inner lysosomal membrane. The figure shows a schematic
model of how FIASMAs (functional inhibitors of acid
sphingomyelinase) and other lipophilic weak bases cumulate
intra-lysosomally, thereby functionally inhibiting ASM. A low
lysosomal pH is maintained by an ATP-driven proton pump.
(1) Weak bases (B) cumulate in intracellular acidic compart-
ments because the lysosomal membrane is much less perme-
able for the charged protonated bases (BH') compared to the
uncharged form, a phenomenon called lysosomotropism. Sub-
stances with high logP- and high pKa-values are highly con-
centrated intra-lysosomally. The enzyme ASM is attached by
electrostatic forces to the inner lysosomal membrane, thereby
being protected against proteolysis. ASM is active in the mem-
brane-bound form and degrades sphingomyelin to
phosphorylcholine and ceramide. (2) High concentrations of
the protonated bases disturb the binding of ASM to the inner
lysosomal membrane and result in detachment of ASM (3) and
subsequent inactivation (4), possibly involving proteolysis [89].
The figure is taken from Kornhuber ez al. 2008 [91].

Weak bases, therefore, do not directly inhibit ASM, but
result in a functional inhibition of ASM. We propose the
acronym FIASMA (Functional Inhibitor of Acid
SphingoMyelinAse) for a compound of this large group

FIASMASs
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Table 1. Molecular structures of newly discovered FIASMAs (functional inhibitors of

ASM) [91].

of drugs. According to this model, functional inhibition of
ASM depends on high lysosomal concentrations of a weak
basic drug (Fig. 2).

Recently, we identified several novel FIASMAs (for
example dextromethorphan, fluoxetine, maprotilin,
nortriptyline, orphenadrine, sertralin and triflupromazin,
Table 1, [91]), most of them US Food and Drug Adminis-
tration (FDA) approved known bioactive compounds, most
likely to be minimally toxic and potentially rapidly avail-
able for clinical use. These novel FIASMAs enabled us
to develop a qualitative property-activity relations model
for functional inhibition of ASM by cationic amphiphilic
compounds [91].

Inhibition of AC

Inhibition of AC might have anti-cancer effects
[92-94]. Only few data are available for the pharmaco-
logical inhibition of AC. A number of direct AC inhibitors
has been identified [92, 95-99]. These substances are
lipid derivatives, which are active in cell culture models.

Some of these drugs are also active in vivo [100].
A systematic investigation of drug-like non-lipid functional
inhibitors of AC is completely lacking so far.

It has been suggested that ASM and AC together
may form a tightly-associated complex which can be co-
purified under in vitro conditions [25]. Whether or not
such complexes exist under natural conditions is not pres-
ently known. There is parallel increase of AC and ASM
activity in the brain of Alzheimer’s disease patients which
is a further hint for parallel regulation of AC and ASM
[22]. On the other hand, the regulation by saposins dif-
fers between AC [101] and ASM [102], arguing for in-
dependent regulation of the two enzymes. The concen-
tration of ceramide after application of lysosomotropic
weak bases thus depends on the balance between inhibi-
tion of ASM and AC (Fig. 1). AC, similar to ASM, might
be functionally inhibited by cationic amphiphilic agents
like desipramine, chlorpromazine and chloroquine [103],
resulting in an increased level of cellular ceramide, at
least in the tumour cell lines investigated.
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Properties of FIASMAs

Currently available FIASMAs have a number
of interesting physicochemical, pharmacological and
clinical properties.

Structural and physicochemical properties

Structural diversity. Using Tanimoto-coefficients
based on 2D-fingerprints [ 104] we found that FIASMAs
are structurally very diverse (Kornhuber et al., unpub-
lished), meaning that functional inhibition of ASM does
not require very specific structural preconditions.
FIASMASs include for example mono-, bi-, tri- and
tetracyclic compounds (Table 1). The clinician has, there-
fore, the possibility to choose among a large structural
variety of compounds, which is important when aiming to
avoid drug interactions and unwanted side-effects.

Specific physicochemical properties. Instead
of special structural prerequisites, functional inhibition
of ASM requires specific physicochemical characteris-
tics of compounds, resulting in high intra-lysosomal
concentrations and partition of the drug into the
inner leaf of the lysosomal membrane (Fig 2). All of
the hitherto identified FIASMASs possess at least one basic
nitrogen atom, have a moderate to high logP-value
and most of them have a molecular weight below
500. Bupivacain, domperidone, droperidol and fluspirilene
are lipophilic weak bases. Nevertheless, they do not in-
hibit ASM [91] (Kornhuber et al., unpublished), meaning
that not all lipophilic weak bases are FIASMAs.
However, there are other specific physicochemical pre-
conditions, like a high sum of partial charges at nitrogen
atoms, that allow a highly accurate qualitative in silico
prediction of functional inhibition of ASM (Kornhuber et
al., unpublished). A consequence of these physicochemi-
cal characteristics is the fact that FIASMAs more
frequently violate the Lipinski-Rule-of-5 [105] than
compounds without effect on ASM (Kornhuber et al.,
unpublished).

Pharmacokinetic

properties

Favourable ADME properties. To be an effective
drug, a compound must be not only active against a tar-
get, but also possess appropriate ADME (Absorption,
Distribution, Metabolism, and Excretion) properties. Most
of'the available FIASMA s have favourable ADME prop-
erties. All of these drugs are orally active and many of
them cross the blood-brain barrier (Kornhuber et al., un-
published). Many FIASMAs may therefore be used for

and pharmacodynamic

treatment or prevention of diseases of the central nerv-
ous system.

Large differences in lysosomal uptake charac-
teristics. The cellular uptake kinetics differ markedly be-
tween the FIASMAs. In cell culture systems, FIASMASs
enter the cells and lysosomes within minutes to many
hours, depending on the logP- and pKa-values. These
experimental findings are supported by a single cell simu-
lation [106]. In human patients, the time to reach plateau
values in tissue is even much longer (see below). When
looking at the group of experimentally investigated
FIASMAs, there is no significant correlation between
calculated lysosomal concentration of a FIASMA and
residual ASM activity. The following FIASMAs have a
fast lysosomal uptake kinetic (equilibrium within 30 min)
and a moderate lysosomal accumulation (accumulation
ratio lysosome:extracellular < 100:1) according to the sin-
gle cell model [106]: benztropine, desipramine, fluoxetine,
maprotiline, paroxetine, protriptyline.

Long time to reach tissue plateau concentrations
in humans. Plateau concentrations of some of the
FIASMASs may only be reached after prolonged applica-
tion in humans [107]. The reason for the long time re-
quired to reach plateau tissue concentrations in humans
compared to in vitro cell culture models is probably the
low ratio between the amounts of drug administered and
the total volume of the storage compartment.

High apparent volume of distribution. The spe-
cial physicochemical properties of FIASMAs, namely
weak basicity and high lipophilicity, result in extensive
tissue binding, which is evidenced by the high apparent
volume of distribution of these drugs in humans [77, 108].

Biological and behavioural effects mediated via
ASM. In animal and cell culture experiments, there is a
high degree of congruence between behavioural or bio-
logical effects induced by FIASMAS or genetic deficiency
of ASM [62, 63,73, 109-114]. This indicates that ASM is
a critical mediator of the biological or behavioural effects
of FIASMAs.

Active in therapeutic concentrations. Increasing
concentrations of FIASMAs result in decreasing ASM
activity following sigmoidal concentration-effect curves.
Several FIASMAs inhibit the ASM in a concentration
range that is therapeutically achieved during common
pharmacotherapy in human patients (Tripal et al., unpub-
lished).

Active across different cell types and in vivo. Func-
tional inhibition of ASM obviously occurs largely inde-
pendent of the cell type. We found a significant correla-
tion between the inhibitory effects on ASM of 27 drugs

FIASMASs
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in H4 and PC12 cells (r=0.72; P < 0.001) [91]. Those
FIASMAS identified to inhibit ASM using a cell culture
model [91] were also found to inhibit ASM in vivo [64].

Residual basal ASM activity. FIASMAs do not in-
duce complete degradation of ASM when applied in vitro
[70] or in vivo [64]. Instead, FIASMAs leave a residual
basal ASM activity. It is unclear at present whether or
not this residual ASM activity is located within lysosomes.
However, this residual basal ASM activity may be im-
portant for cell viability and might explain why patients
under treatment with FIASMAs do not show symptoms
of Niemann-Pick-disease apart from phospholipidosis.

No habituation. ASM activity remains low, even
after prolonged administration of FIASMAs [70], mean-
ing that there is no habituation effect.

Reversible inhibition of ASM. After withdrawal
of FIASMASs in cell culture models, ASM activity re-
turns to control levels within 3 days [70].

No rebound effect. There is no increased ASM ac-
tivity after discontinuation of FIASMAs [70].

Additive effect. Co-application of structurally
diverse FIASMAs result in an additive functional inhibition
of ASM, arguing for action of these compounds on the
same molecular target (Kornhuber et al., unpublished).

Bimodal distribution. When applying 10 uM drug
concentrations to a cell culture system, we observed a
bimodal distribution of functional inhibition of ASM,
meaning that a drug either acts as a FIASMA (reduction
to less than 50% ASM activity compared to controls) or
does not act as a FIASMA, with only a few intermediate
compounds (Kornhuber ef al., unpublished). In agreement
with this observation, the newly identified FIASMAs
reduce ASM activity to a similar level when tested in
vivo [64]. The bimodal distribution occurring with 10 uM
drug concentrations also indicates, that the IC50 values
of most FIASMAs are below 10 uM.

Specificity to inhibit different sphingomyelinases.
Functional inhibition of ASM requires high lysosomal drug
concentrations [89], which are achieved by the selective
accumulation of the substances in acidic compartments
(acid trapping) [106]. High lysosomal drug concentra-
tions result in detachment of ASM from inner lysosomal
membranes [89] (Fig. 2). This is probably the reason why
FIASMAs do not inhibit secreted sphingomyelinase, neu-
tral or alkaline sphingomyelinase [64, 78]. This also ex-
plains, why desipramine inhibits ASM only in intact cell,
but not in cell lysates [87]. The FIASMA NB6 [115] did
not reduce basal activity of secreted sphingomyelinase
in vivo, but did abolish the endotoxin-induced increase in
plasma sphingomyelinase activity [61]. Thus, reduced

Lysosomal enzymes inhibited by cationic amphiphilic drugs

Acid sphingomyelinase 1 [89;91]

Acid ceramidase 11103]
Lysosomal acid lipase 1 [132] =[86]
Phospholipase Aand C 2 [133-135]

Lysosomal enzymes not inhibited by cationic amphiphilic drugs

Neuraminidase 11132
LAMP1 T1103]
Cathepsin B =[103]
Cathepsin L T1103]

B-N-Acetylhexosaminidase
a-Galactosidase
p-Galactosidase
Cerebroside-[i-galactosidase

Cerebroside-i-glucosidase

=[86;132,136;137]  1[88;138]
=[136] T[88,138]

=[136137]  11[88;138]

=[137]

=[136:137] T[88]

a-Glucosidase 1188]

B-Glucosidase 1T1138]

3-Glucuronidase 1 [88;138]

a-Mannosidase T188]

Arylsulfatase A =[86;132;136;137] T(138]
Arylsulfatase B =[86] T1[138)
a-Fucosidase =[132] T1138]

Acid phosphatase
Phosphodiesterase
B-Xylosidase

a-Mannosidase

=[132;137]  1[88;138]
=[88]

T1138]

T1138]

Table 2. Experimental data on the effect of FIASMAs (func-
tional inhibitors of ASM) on other lysosomal enzymes. ! Re-
duced enzyme activity; = unchanged enzyme activity; T en-
hanced enzyme activity. There are several limitations of this
compilation of the literature. The data are not based on identi-
cal methods, instead different cell culture systems, different
FIASMAs and different experimental conditions were used.
The names of the enzymes were taken from the original litera-
ture and may differ from modern nomenclature. It is evident
from the experimental data that FIASMAS inhibit only few lyso-
somal enzymes, while the activity of the majority of enzymes is
not inhibited.

activity of ASM within acidic intracellular compartments
induced by FIASMAs may secondarily result in reduced
activity of secreted sphingomyelinase.

Specificity to inhibit other lysosomal hydrolases.
Recent proteomic analyses reveal that the lysosome con-
tains at least 60 soluble luminal proteins [116]. Most of
these proteins are enzymes and some of them might, simi-
lar to ASM, be attached to the inner lysosomal surface
by electrostatic forces. Therefore, there is concern that
FIASMAs may act in an unspecific way, functionally in-
hibiting a large number of lysosomal hydrolases. How-
ever, the experimental data do not support this view. As
shown in table 2, FIASMAs do not exert a general effect
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on lysosomal hydrolases. Apart from ASM, only a few
other hydrolases are inhibited by FIASMAs, namely AC,
acid lipase and phospholipase A and C. Inhibitory effects
on AC have been obtained with desipramine, chlor-
promazine and chloroquine [103]. However, preliminary
studies indicate that treatment with amitriptyline or
fluoxetine reduces the concentration of ceramide in the
hippocampus of experimental animals (Gulbins et al., un-
published). These discrepant results may either indicate
that the effects of weak basic lysosomotropic drugs dif-
fer between in vitro and in vivo models, or that
desipramine inhibits ASM and AC to a similar extent, while
amitriptyline and fluoxetine display preferential inhibition
of ASM over AC. It is also possible that the cancer cells
used by Elojeimy ef al. [103] have an altered sphingolipid
metabolism, where FIASMAs like desipramine inhibit AC.

Lack of specificity with respect to other molecu-
lar drug targets. Most FIASMAs were originally devel-
oped to target enzymes, receptors or transporters, such
as the histamine receptor or the serotonin transporter.
FIASMAs are therefore present in many pharmacologi-
cal groups. When selecting a single FIASMA for clinical
use, its pharmacological effects apart from inhibition of
ASM have to be carefully considered. In future, it would
be interesting to design FIASMAs with negligible effects
on other molecular targets.

Clinical applicability

Approved for clinical use in humans. Most of the
FIASMAs are licensed for medical use and most of them
are listed in the ATC drug classification system recom-
mended by the World Health Organization [117, 118].
Furthermore, many of the FIASMAs are approved by
the FDA for medical application in humans [119].
These substances possess low toxicity and long-term clini-
cal experience with their use is available. Some of these
drugs have been in use for the last five decades.
This suggests the potential for rapid advancement into
preclinical and/or clinical trials. FIASMAs may there-
fore be well-suited for prolonged application in the treat-
ment of chronic diseases or for long-time prevention of
diseases.

Enriched in licenced drugs as compared to natu-
ral products. Using virtual in silico screening we found
that FIASMAS occur in about 6% of licensed drugs for
medical use in humans (ATC drug classification system),
but only in about 1% of natural products (“pure natural
products” [120]) (Kornhuber et al., unpublished).

Enrichment in only few major drug classes. Analy-
sis of the ATC drug classification system [117, 118] with

an in silico virtual screening approach (Kornhuber et
al., unpublished) revealed that FIASMAs are scattered
across many drug classes, however very unevenly. We
found a significant enrichment of FIASMASs in only a
few major drug classes of the ATC system, including an-
tihistamines for systemic use (drug class R06) and
psychoanaleptics (N06) (Kornhuber et al., unpublished).

Phospholipidosis has only minor functional con-
sequences. Although many of the FIASMAs induce
phospholipidosis in cell cultures and animal models [121-
123], experimental studies have failed to definitively show
that the presence of phospholipidosis induced by
FIASMASs is detrimental to the organism [124]. Most of
these drugs are well tolerated by patients even after long-
term treatment.

While inhibitors directly targeting ASM with high
specificity and with high potency have advantages as
research tools, such properties are not necessarily asso-
ciated with good clinical effects. There are many exam-
ples of advantageous clinical effects of unspecific
(“dirty”’) and/or moderate affinity and/or indirectly acting
drugs compared to directly acting drugs with high
specificity for and potency against a certain target. For
example, the “dirty”” neuroleptic drug clozapine has su-
perior anti-schizophrenic properties and a lower rate of
extrapyramidal side effects compared to more specific
or high-affinity dopamine receptor antagonists [125, 126].
Low-affinity NMDA glutamate receptor antagonists like
memantine or amantadine have a superior clinical profile
in comparison with more specific high-affinity NMDA
receptors antagonists like PCP or MK-801 [127]. Indi-
rect inhibition of NMDA receptors by flupirtine via acti-
vation of voltage-independent potassium channels is clini-
cally effective and well tolerated [128]. Thus, neither
unspecific action nor indirect action nor low affinity of
therapeutic drugs is necessarily a disadvantage in the clini-
cal setting.

There is currently no alternative to FIASMAs when
aiming to reduce activity of ASM in human patients. It
will still take many years for the development and safety
evaluation of specific direct inhibitors of ASM. Only
then will it be possible to judge and compare the relative
advantages of direct and functional inhibitors of ASM
with each other.

Many compounds which were recently identified as
FIASMAs [91] have been clinically available for
many years. The results of previous clinical studies with
such drugs may now be reinterpreted in the context of
the pathophysiology of ceramide signalling. This is

FIASMASs
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illustrated here by findings that the antidepressant
drug fluoxetine tends to reduce the formation of new brain
lesions in patients with multiple sclerosis [129-131].
Fluoxetine works as a FIASMA [91]. We therefore
assume that the beneficial clinical effect of fluoxetine
in multiple sclerosis may be related to functional
inhibition of ASM and should therefore be replicable
with other FIASMAs, but not with other antidepressant
drugs lacking effects on ASM. Clinical studies aimed
at inhibiting ASM have only recently been performed.
The first study with a rational basis to treat a human
disease, i.e. cystic fibrosis, with FIASMAs was
performed by the Gulbins group [65].

Conclusion

Functional inhibitors of acid sphingomyelinase
(FIASMASs) represent a new and large group of com-
pounds with broad clinical applications, mainly for
cytoprotective, antiapoptotic and anti-inflammatory

indications. Since most of the currently known FIASMAs
are licensed for medical use in humans, the way is now
open to proceed with clinical studies aiming to treat
ASM-associated disease conditions.

Abbreviations

AC (acid ceramidase); ADME (Absorption
Distribution Metabolism Excretion); ASM (acid
sphingomyelinase); ATC system (Anatomical Therapeu-
tic Chemical system); FDA (US Food and Drug
Administration); FIASMA (functional inhibitor of acid
sphingomyelinase); NMDA (N-methyl-D-aspartate);
PCP (phenyl-cyclohexyl-piperidine).

Acknowledgements

The work was supported by grants from DFG
(GU 335/20-3, KO 947/10-1).

References

> Jin S, Yi F, Zhang F, Poklis JL, Li PL: »s5 Santana P, Pefia LA, Haimovitz-Fried- »8 Paris F, Fuks Z, Kang A, Capodieci P,
Lysosomal targeting and trafficking of man A, Martin S, Green D, McLoughlin Juan G, Ehleiter D, Haimovitz-Friedman
acid sphingomyelinase to lipid raft plat- M, Cordon-Cardo C, Schuchman EH, A, Cordon-Cardo C, Kolesnick R: En-
forms in coronary endothelial cells. Fuks Z, Kolesnick R: Acid dothelial apoptosis as the primary lesion
Arterioscler Thromb Vasc Biol sphingomyelinase-deficient human initiating intestinal radiation damage in
2008;28:2056-2062. lymphoblasts and mice are defective in mice. Science 2001;293:293-297.

»2 Hannun YA, Luberto C: Ceramide in the radiation-induced apoptosis. Cell P9 Garcia-Barros M, Paris F, Cordon-Cardo
eukaryotic stress response. Trends Cell 1996;86:189-199. C, Lyden D, Rafii S, Haimovitz-Fried-
Biol 2000;10:73-80. »6 Morita Y, Perez GI, Paris F, Miranda SR, man A, Fuks Z, Kolesnick R: Tumor re-

>3 Charruyer A, Grazide S, Bezombes C, Ehleiter D, Haimovitz-Friedman A, Fuks sponse to radiotherapy regulated by en-
Miiller S, Laurent G, Jaffrézou JP: UV-C Z, Xie Z, Reed JC, Schuchman EH, dothelial cell apoptosis. Science
light induces raft-associated acid sphingo- Kolesnick RN, Tilly JL: Oocyte 2003;300:1155-1159.
myelinase and JNK activation and trans- apoptosis is suppressed by disruption of P10  Grassmé H, Jekle A, Richle A, Schwarz
location independently on a nuclear sig- the acid sphingomyelinase gene or by H, Berger J, Sandhoff K, Kolesnick R,
nal. J Biol Chem 2005;280:19196- sphingosine-1-phosphate therapy. Nat Gulbins E: CD95 signaling via ceramide-
19204. Med 2000;6:1109-1114. rich membrane rafts. J Biol Chem

>4 Castillo SS, Levy M, Thaikoottathil JV, »7 Pefia LA, Fuks Z, Kolesnick RN: Radia- 2001;276:20589-20596.
Goldkorn T: Reactive nitrogen and oxy- tion-induced apoptosis of endothelial ®»11  Grassmé H, Jendrossek V, Richle A, von
gen species activate different cells in the murine central nervous sys- Kiirthy G, Berger J, Schwarz H, Weller
sphingomyelinases to induce apoptosis tem: protection by fibroblast growth fac- M, Kolesnick R, Gulbins E: Host defense
in airway epithelial cells. Exp Cell Res tor and sphingomyelinase deficiency. against Pseudomonas aeruginosa requires
2007;313:2680-2686. Cancer Res 2000;60:321-327. ceramide-rich membrane rafts. Nat Med

2003;9:322-330.
16 Cell Physiol Biochem 2010;26:09-20 Kornhuber/Tripal/Reichel/Miihle/Rhein/Muehlbacher/Groemer/

Gulbins



»12

>13

»14

»15

»16

»17

>18

»19

»20

»21

22

»23

Yu ZF, Nikolova-Karakashian M, Zhou
D, Cheng G, Schuchman EH, Mattson
MP: Pivotal role for acidic
sphingomyelinase in cerebral ischemia-
induced ceramide and cytokine produc-
tion, and neuronal apoptosis. J Mol
Neurosci 2000;15:85-97.

Zhang Y, Mattjus P, Schmid PC, Dong Z,
Zhong S, Ma WY, Brown RE, Bode AM,
Schmid HHO, Dong Z: Involvement of
the acid sphingomyelinase pathway in
UVA-induced apoptosis. J Biol Chem
2001;276:11775-11782.

Gulbins E, Bissonnette R, Mahboubi A,
Martin S, Nishioka W, Brunner T, Baier
G, Baier-Bitterlich G, Byrd C, Lang F,
Kolesnick R, Altman A, Green D: FAS-
induced apoptosis is mediated via a
ceramide-initiated RAS signaling path-
way. Immunity 1995;2:341-351.
Chung HS, Park SR, Choi EK, Park HJ,
Griffin RJ, Song CW, Park H: Role of
sphingomyelin-MAPKs pathway in heat-
induced apoptosis. Exp Mol Med
2003;35:181-188.

Kolesnick RN: 1,2-Diacylglycerols but
not phorbol esters stimulate sphingomy-
elin hydrolysis in GH3 pituitary cells. J
Biol Chem 1987;262:16759-16762.
Megha, London E: Ceramide selectively
displaces cholesterol from ordered lipid
domains (rafts): Implications for lipid
raft structure and function. J Biol Chem
2004;279:9997-10004.

Nyberg L, Duan R-D, Axelson J, Nilsson
A: Identification of an alkaline
sphingomyelinase activity in human bile.
Biochim Biophys Acta 1996;1300:42-
48.

Liu B, Hassler DF, Smith GK, Weaver K,
Hannun YA: Purification and characteri-
zation of a membrane bound neutral pH
optimum magnesium-dependent and
phosphatidylserine-stimulated
sphingomyelinase from rat brain. J Biol
Chem 1998;273:34472-34479.
Karakashian AA, Giltiay NV, Smith GM,
Nikolova-Karakashian MN: Expression
of neutral sphingomyelinase-2 (NSMase-
2) in primary rat hepatocytes modulates
IL-b-induced JNK activation. FASEB J
2004;18:968-970.

Kirschnek S, Paris F, Weller M, Grassmé
H, Ferlinz K, Riehle A, Fuks Z, Kolesnick
R, Gulbins E: CD95-mediated apoptosis
in vivo involves acid sphingomyelinase.
J Biol Chem 2000;275:27316-27323.
He X, Huang Y, Li B, Gong CX,
Schuchman EH: Deregulation of sphin-
golipid metabolism in Alzheimer’s dis-
ease. Neurobiol Aging 2008.
Schuchman EH, Suchi M, Takahashi T,
Sandhoff K, Desnick RJ: Human acid
sphingomyelinase. Isolation, nucleotide
sequence and expression of the full-length
and alternatively spliced cDNAs. J Biol
Chem 1991;266:8531-8539.

»24

»25

»26

»27

»28

»29

»30

>3]

»32

>33

»34

»35

»36

Qiu H, Edmunds T, Baker-Malcolm J,
Karey KP, Estes S, Schwarz C, Hughes H,
Van Patten SM: Activation of human acid
sphingomyelinase through modification
or deletion of C-terminal cysteine. J Biol
Chem 2003;278:32744-32752.

He X, Okino N, Dhami R, Dagan A, Gatt
S, Schulze H, Sandhoff K, Schuchman EH:
Purification and characterization of
recombinant, human acid ceramidase.
Catalytic reactions and interactions with
acid sphingomyelinase. J Biol Chem
2003;278:32978-32986.

Schulze H, Schepers U, Sandhoff K:
Overexpression and mass spectrometry
analysis of mature human acid
ceramidase. Biol Chem 2007;388:1333-
1343.

Al BIM, Tiffany CW, Gomes de Mesquita
DS, Moser HW, Tager JM, Schram AW:
Properties of acid ceramidase from hu-
man spleen. Biochim Biophys Acta
1989;1004:245-251.

Bartelsen O, Lansmann S, Nettersheim
M, Lemm T, Ferlinz K, Sandhoff K: Ex-
pression of recombinant human acid
sphingomyelinase in insect Sf21 cells:
purification, processing and enzymatic
characterization. J Biotechnol
1998;63:29-40.

Bernardo K, Hurwitz R, Zenk T, Desnick
RJ, Ferlinz K, Schuchman EH, Sandhoff
K: Purification, characterization, and
biosynthesis of human acid ceramidase. J
Biol Chem 1995;270:11098-11102.
Lansmann S, Ferlinz K, Hurwitz R,
Bartelsen O, Glombitza G, Sandhoff K:
Purification of acid sphingomyelinase
from human placenta: Characterization
and N-terminal sequence. FEBS Lett
1996;399:227-231.

Linke T, Lansmann S, Sandhoff K: Puri-
fication of acid ceramidase from human
placenta. Methods Enzymol
2000;311:201-207.

Quintern LE, Weitz G, Nehrkorn H, Tager
JM, Schram AW, Sandhoff K: Acid
sphingomyelinase from human urine:
purification and characterization.
Biochim Biophys Acta 1987;922:323-
336.

Tayama M, Soeda S, Kishimoto Y, Mar-
tin BM, Callahan JW, Hiraiwa M,
O’Brien JS: Effect of saposins on acid
sphingomyelinase. Biochem J
1993;290:401-404.

Schwarz A, Futerman AH: Distinct roles
for ceramide and glucosylceramide at dif-
ferent stages of neuronal growth. J
Neurosci 1997;17:2929-2938.
Futerman AH, Hannun YA: The com-
plex life of simple sphingolipids. EMBO
Rep 2004;5:777-782.

Hobson JP, Rosenfeldt HM, Barak LS,
Olivera A, Poulton S, Caron MG, Milstien
S, Spiegel S: Role of the sphingosine-1-
phosphate receptor EDG-1 in PDGF-in-
duced  cell motility. Science
2001;291:1800-1803.

»37

>33

»39

»40

»41

»42

»43

» 44

»45

»46

»47

»48

Spiegel S, Milstien S: Sphingosine 1-phos-
phate, a key cell signaling molecule. J
Biol Chem 2002;277:25851-25854.
Toman RE, Payne SG, Watterson KR,
Maceyka M, Lee NH, Milstien S, Bigbee
JW, Spiegel S: Differential
transactivation of sphingosine-1-phos-
phate receptors modulates NGF-induced
neurite extension. J Cell Biol
2004;166:381-392.

Spiegel S, Merrill AH, Jr.: Sphingolipid
metabolism and cell growth regulation.
FASEB J 1996;10:1388-1397.
Cuvillier O, Pirianov G, Kleuser B, Vanek
PG, Coso OA, Gutkind S, Spiegel S: Sup-
pression of ceramide-mediated pro-
grammed cell death by sphingosine-1-
phosphate. Nature 1996;381:800-803.
Spiegel S, Cuvillier O, Edsall LC, Kohama
T, Menzeleev R, Olah Z, Olivera A,
Pirianov G, Thomas DM, Tu Z, Van B,
Jr., Wang F: Sphingosine-1-phosphate in
cell growth and cell death. Ann N 'Y Acad
Sci 1998;845:11-18.

Brady RO, Kanfer JN, Mock MB,
Fredrickson DS: The metabolism of
sphingomyelin. II. Evidence of an
enzymatic deficiency in Niemann-Pick
disease. Proc Natl Acad Sci U S A
1966;55:366-369.

Carstea ED, Morris JA, Coleman KG,
Loftus SK, Zhang D, Cummings C, Gu J,
Rosenfeld MA, Pavan WJ, Krizman DB,
Nagle J, Polymeropoulos MH, Sturley SL,
Ioannou YA, Higgins ME, Comly M,
Cooney A, Brown A, Kaneski CR,
Blanchette-Mackie EJ, Dwyer NK,
Neufeld EB, Chang T-Y, Liscum L, Strauss
JE, 1II, Ohno K, Zeigler M, Carmi R,
Sokol J, Markie D, O’Neill RR, van
Diggelen OP, Elleder M, Patterson MC,
Brady RO, Vanier MT, Pentchev PG,
Tagle DA: Niemann-Pick Cl disease
gene: Homology to mediators of choles-
terol homeostasis. Science
1997;277:228-231.

Schuchman EH, Miranda SRP: Niemann-
Pick disease: Mutation update, genotype/
phenotype correlations, and prospects
for genetic testing. Genet Test
1997;1:13-19.

Uhlig S, Gulbins E: Sphingolipids in the
lungs. Am J Respir Crit Care Med
2008;178:1100-1114.

Smith EL, Schuchman EH: The unex-
pected role of acid sphingomyelinase in
cell death and the pathophysiology of
common diseases. FASEB J
2008;22:3419-3431.

Kolesnick R: The therapeutic potential
of modulating the ceramide/sphingomy-
elin pathway. J Clin Invest 2002;110:3-
8.

Gulbins E, Li PL: Physiological and
pathophysiological aspects of ceramide.
Am J Physiol Regul Integr Comp Physiol
2006;290:R11-R26.

FIASMASs

Cell Physiol Biochem 2010;26:09-20 17



»49

»50

»s51

»52

»s53

»s54

»s55

»s56

»s57

»s58

»59

Thevissen K, Frangois IEJA, Winderickx
J, Pannecouque C, Cammue BPA:
Ceramide involvement in apoptosis and
apoptotic diseases. Mini Rev Med Chem
2006;6:699-709.

Deigner HP, Haberkorn U, Kinscherf R:
Apoptosis modulators in the therapy of
neurodegenerative diseases. Expert Opin
Investig Drugs 2000;9:747-764.
Pandey S, Murphy RF, Agrawal DK: Re-
cent advances in the immunobiology of
ceramide. Exp Mol Pathol 2007;82:298-
309.

Raff MC, Barres BA, Burne JF, Coles HS,
Ishizaki Y, Jacobson MD: Programmed
cell death and the control of cell sur-
vival: lessons from the nervous system.
Science 1993;262:659-700.

Altura BM, Gebrewold A, Zheng T, Altura
BT: Sphingomyelinase and ceramide ana-
logs induce vasoconstriction and
leukocyte-endothelial interactions in cer-
ebral venules in the intact rat brain: In-
sight into mechanisms and possible rela-
tion to brain injury and stroke. Brain Res
Bull 2002;58:271-278.

Pascual M, Valles SL, Renau-Piqueras J,
Guerri C: Ceramide pathways modulate
ethanol-induced cell death in astrocytes.
J Neurochem 2003;87:1535-1545.
Reichel M, Greiner E, Richter-
Schmidinger T, Yedibela O, Tripal P,
Jacobi A, Bleich S, Gulbins E, Kornhuber
J: Increased acid sphingomyelinase ac-
tivity in peripheral blood cells of acutely
intoxicated patients with alcohol depend-
ence. Alcohol Clin Exp Res 2010;34:46-
50.

Malaplate-Armand C, Florent-Béchard S,
Youssef I, Koziel V, Sponne I, Kriem B,
Leininger-Muller B, Olivier JL, Oster T,
Pillot T: Soluble oligomers of amyloid-b
peptide induce neuronal apoptosis by
activating a cPLA2-dependent sphingo-
myelinase-ceramide pathway. Neurobiol
Dis 2006;23:178-189.

Han X, Holtzman M, McKeel DW, Jr.,
Kelley J, Morris JC: Substantial sulfatide
deficiency and ceramide elevation in very
early Alzheimer’s disease: potential role
in disease pathogenesis. J Neurochem
2002;82:809-818.

Cuzzocrea S, Deigner H-P, Genovese T,
Mazzon E, Esposito E, Crisafulli C, Di
PR, Bramanti P, Matuschak G, Salvemini
D: Inhibition of ceramide biosynthesis
ameliorates pathological consequences of
spinal cord injury. Shock 2009;31:634-
644.

Mikati MA, Zeinieh M, Habib RA, El
HJ, Rahmeh A, El SM, Usta J, Dbaibo G:
Changes in sphingomyelinases, ceramide,
Bax, Bcl2, and caspase-3 during and af-
ter experimental status epilepticus. Epi-
lepsy Res 2008;81:161-166.

»60

»61

»62

»63

64

»65

»66

»67

»68

Haimovitz-Friedman A, Cordon-Cardo C,
Bayoumy S, Garzotto M, McLoughlin M,
Gallily R, Edwards CK, III, Schuchman
EH, Fuks Z, Kolesnick R: Lipopolysac-
charide induces disseminated endothelial
apoptosis requiring ceramide generation.
J Exp Med 1997;186:1831-1841.
Claus RA, Bunck AC, Bockmeyer CL,
Brunkhorst FM, Losche W, Kinscherf R,
Deigner H-P: Role of increased
sphingomyelinase activity in apoptosis
and organ failure of patients with severe
sepsis. FASEB J 2005;19:1719-1721.
Lang PA, Schenck M, Nicolay JP, Becker
JU, Kempe DS, Lupescu A, Koka S, Eisele
K, Klarl BA, Rubben H, Schmid KW,
Mann K, Hildenbrand S, Hefter H, Huber
SM, Wieder T, Erhardt A, Haussinger D,
Gulbins E, Lang F: Liver cell death and
anemia in Wilson disease involve acid
sphingomyelinase and ceramide. Nat Med
2007;13:164-170.

Teichgriber V, Ulrich M, Endlich N,
Riethmiiller J, Wilker B, de Oliveira-
Munding CC, van Heeckeren AM, Barr
ML, von Kiirthy G, Schmid KW, Weller
M, Timmler B, Lang F, Grassme H,
Déring G, Gulbins E: Ceramide accumu-
lation mediates inflammation, cell death
and infection susceptibility in cystic fi-
brosis. Nat Med 2008;14:382-391.
Becker KA, Riethmiiller J, Liith A, Doring
G, Kleuser B, Gulbins E: Acid
sphingomyelinase inhibitors normalize
pulmonary ceramide and inflammation
in cystic fibrosis. Am J Respir Cell Mol
Biol 2009;in press.

Riethmiiller J, Anthonysamy J, Serra E,
Schwab M, Déring G, Gulbins E: Thera-
peutic efficacy and safety of amitriptyl-
ine in patients with cystic fibrosis. Cell
Physiol Biochem 2009;24:65-72.
Sakata A, Ochiai T, Shimeno H,
Hikishima S, Yokomatsu T, Shibuya S,
Toda A, Eyanagi R, Soeda S: Acid
sphingomyelinase inhibition suppresses
lipopolysaccharide-mediated release of
inflammatory cytokines from
macrophages and protects against disease
pathology in dextran sulphate sodium-
induced colitis in mice. Immunology
2007;122:54-64.

Bauer J, Liebisch G, Hofmann C, Huy C,
Schmitz G, Obermeier F, Bock J: Lipid
alterations in experimental murine coli-
tis: role of ceramide and imipramine for
matrix metalloproteinase-1 expression.
PLoS One 2009;4:¢7197.

Goggel R, Winoto-Morbach S, Vielhaber
G, Imai Y, Lindner K, Brade L, Brade H,
Ehlers S, Slutsky AS, Schiitze S, Gulbins
E, Uhlig S: PAF-mediated pulmonary
edema: a new role for acid sphingo-
myelinase and ceramide. Nat Med
2004;10:155-160.

»69

»70

»71

»72

»73

»74

»75

»76

77

»78

Petrache I, Natarajan V, Zhen L, Medler
TR, Richter AT, Cho C, Hubbard WC,
Berdyshev EV, Tuder RM: Ceramide
upregulation causes pulmonary cell
apoptosis and emphysema-like disease in
mice. Nat Med 2005;11:491-498.
Kornhuber J, Medlin A, Bleich S,
Jendrossek V, Henkel AW, Wiltfang J,
Gulbins E: High activity of acid
sphingomyelinase in major depression. J
Neural Transm 2005;112:1583-1590.
Kornhuber J, Reichel M, Tripal P,
Groemer TW, Henkel AW, Miihle C,
Gulbins E: The role of ceramide in major
depressive disorder. Eur Arch Psychiatry
Clin Neurosci 2009;259:S199-S204.
Ndengele MN, Cuzzocrea S, Masini E,
Vinci MC, Esposito E, Muscoli C,
Petrusca DN, Mollace V, Mazzon E, Li
D, Petrache I, Matuschak GM, Salvemini
D: Spinal ceramide modulates the devel-
opment of morphine antinociceptive
tolerance via peroxynitrite-mediated
nitroxidative stress and neuroimmune
activation. J Pharmacol Exp Ther
2009;329:64-75.

Grassmé H, Gulbins E, Brenner B, Ferlinz
K, Sandhoff K, Harzer K, Lang F, Meyer
TF: Acidic sphingomyelinase mediates
entry of N. gonorrhoeae into
nonphagocytic cells. Cell 1997;91:605-
615.

Devlin CM, Leventhal AR, Kuriakose G,
Schuchman EH, Williams KJ, Tabas I:
Acid sphingomyelinase promotes lipo-
protein retention within early athero-
mata and accelerates lesion progression.
Arterioscler Thromb Vasc Biol
2008;28:1723-1730.

Augé N, Négre-Salvayre A, Salvayre R,
Levade T: Sphingomyelin metabolites in
vascular cell signaling and atherogenesis.
Prog Lipid Res 2000;39:207-229.
Marathe S, Kuriakose G, Williams KJ,
Tabas I: Sphingomyelinase, an enzyme
implicated in atherogenesis, is present in
atherosclerotic lesions and binds to spe-
cific components of the subendothelial
extracellular matrix. Arterioscler
Thromb Vasc Biol 1999;19:2648-2658.
Kornhuber J, Retz W, Riederer P: Slow
accumulation of psychotropic substances
in the human brain. Relationship to
therapeutic latency of neuroleptic and
antidepressant drugs? J Neural Transm
Suppl 1995;46:311-319.

Mintzer RJ, Appell KC, Cole A, Johns A,
Pagila R, Polokoff MA, Tabas I, Snider
RM, Meurer-Ogden JA: A novel high-
throughput screening format to identify
inhibitors of secreted acid sphingo-
myelinase. J Biomol Screen 2005;10:225-
234.

18

Cell Physiol Biochem 2010;26:09-20

Gulbins

Kornhuber/Tripal/Reichel/Miihle/Rhein/Muehlbacher/Groemer/



»79

»30

»31

»32

>33

>34

»35

»36

»37

>33

»39

Testai FD, Landek MA, Goswami R,
Ahmed M, Dawson G: Acid sphingo-
myelinase and inhibition by phosphate
ion: role of inhibition by phosphatidyl-
myo-inositol 3,4,5-triphosphate in oli-
godendrocyte cell signaling. J Neurochem
2004;89:636-644.

Kolzer M, Arenz C, Ferlinz K, Werth N,
Schulze H, Klingenstein R, Sandhoff K:
Phosphatidylinositol-3,5-bisphosphate is
a potent and selective inhibitor of acid
sphingomyelinase. Biol Chem
2003;384:1293-1298.

Okudaira C, Ikeda Y, Kondo S, Furuya S,
Hirabayashi Y, Koyano T, Saito Y,
Umezawa K: Inhibition of acidic
sphingomyelinase by xanthone com-
pounds isolated from Garcinia speciosa.
J Enzyme Inhib 2000;15:129-138.
Hamada M, Iikubo K, Ishikawa Y, Ikeda
A, Umezawa K, Nishiyama S: Biological
activities of alpha-mangostin derivatives
against acidic sphingomyelinase. Bioorg
Med Chem Lett 2003;13:3151-3153.
Darroch PI, Dagan A, Granot T, He X,
Gatt S, Schuchman EH: A lipid analogue
that inhibits sphingomyelin hydrolysis
and synthesis, increases ceramide, and
leads to cell death. J Lipid Res
2005;46:2315-2324.

Roth AG, Redmer S, Arenz C: Potent in-
hibition of acid sphingomyelinase by
phosphoinositide analogues.
Chembiochem 2009;10:2367-2374.
Roth AG, Drescher D, Yang Y, Redmer S,
Uhlig S, Arenz C: Potent and selective
inhibition of acid sphingomyelinase by
bisphosphonates. Angew Chem Int Ed
Engl 2009;48:7560-7563.

Albouz S, Hauw JJ, Berwald-Netter Y,
Boutry JM, Bourdon R, Baumann N:
Tricyclic  antidepressants induce
sphingomyelinase deficiency in fibroblast
and neuroblastoma cell cultures. Biomedi-
cine 1981;35:218-220.

Yoshida Y, Arimoto K, Sato M,
Sakuragawa N, Arima M, Satoyoshi E:
Reduction of acid sphingomyelinase ac-
tivity in human fibroblasts induced by
AY-9944 and other cationic amphiphilic
drugs. J Biochem (Tokyo) 1985;98:1669-
1679.

Sakuragawa N, Sakuragawa M, Kuwabara
T, Pentchev PG, Barranger JA, Brady RO:
Niemann-Pick disease experimental
model: sphingomyelinase reduction in-
duced by AY-9944. Science
1977;196:317-319.

Kolzer M, Werth N, Sandhoff K: Inter-
actions of acid sphingomyelinase and li-
pid bilayers in the presence of the
tricyclic antidepressant desipramine.
FEBS Lett 2004;559:96-98.

»90

»9]

»92

»93

»94

»95

»96

»97

»93

»99

Hurwitz R, Ferlinz K, Sandhoff K: The
tricyclic antidepressants desipramine
causes proteolytic degradation of lyso-
somal sphingomyelinase in human
fibroblasts. Biol Chem Hoppe Seyler
1994;375:447-450.

Kornhuber J, Tripal P, Reichel M,
Terfloth L, Bleich S, Wiltfang J, Gulbins
E: Identification of new functional in-
hibitors of acid sphingomyelinase using
a structure-property-activity relation
model. ] Med Chem 2008;51:219-237.
Holman DH, Turner LS, El-Zawahry A,
Elojeimy S, Liu X, Bielawski J, Szulc ZM,
Norris K, Zeidan YH, Hannun YA,
Bielawska A, Norris JS: Lysosomotropic
acid ceramidase inhibitor induces
apoptosis in prostate cancer cells. Can-
cer Chemother Pharmacol
2008;61:231-242.

Liu X, Elojeimy S, Turner LS, Mahdy
AE, Zeidan YH, Bielawska A, Bielawski
J, Dong J-Y, El-Zawahry AM, Guo G-W,
Hannun YA, Holman DH, Rubinchik S,
Szulc Z, Keane TE, Tavassoli M, Norris
JS: Acid ceramidase inhibition: a novel
target for cancer therapy. Front Biosci
2008;13:2293-2298.

Zeidan YH, Jenkins RW, Korman JB, Liu
X, Obeid LM, Norris JS, Hannun YA:
Molecular targeting of acid ceramidase:
Implications to cancer therapy. Curr
Drug Targets 2008;9:653-661.
Grijalvo S, Bedia C, Triola G, Casas J,
Llebaria A, Teixido6 J, Rabal O, Levade T,
Delgado A, Fabrias G: Design, synthesis
and activity as acid ceramidase inhibi-
tors of 2-oxooctanoyl and N-
oleoylethanolamine analogues. Chem
Phys Lipids 2006;144:69-84.
Bielawska A, Bielawski J, Szulc ZM,
Mayroo N, Liu X, Bai A, Elojeimy S,
Rembiesa B, Pierce J, Norris JS, Hannun
YA: Novel analogs of D-e-MAPP and
B13. Part 2: Signature effects on
bioactive sphingolipids. Bioorg Med
Chem 2008;16:1032-1045.

Sugita M, Willians M, Dulaney JT, Moser
HW: Ceramidase and ceramide synthesis
in human kidney and cerebellum. Descrip-
tion of a new alkaline ceramidase.
Biochim Biophys Acta 1975;398:125-
131.

Bedia C, Casas J, Garcia V, Levade T,
Fabrias G: Synthesis of a novel ceramide
analogue and its use in a high-throughput
fluorogenic assay for ceramidases.
Chembiochem 2007;8:642-648.

Bedia C, Canals D, Matabosch X, Harrak
Y, Casas J, Llebaria A, Delgado A, Fabrias
G: Cytotoxicity and acid ceramidase in-
hibitory activity of 2-substituted
aminoethanol amides. Chem Phys Lipids
2008;156:33-40.

»100

»101

»102

»103

» 104

»105

»106

»107

»108

»109

»110

Nahas Z, Jiang Y, Zeidan YH, Bielawska
A, Szulc Z, Devane L, Kalivas P, Hannun
YA: Anti-ceramidase LCL385 acutely
reduces BCL-2 expression in the hippoc-
ampus but is not associated with an in-
crease of learned helplessness in rats.
Behav Brain Res 2009;197:41-44.
Linke T, Wilkening G, Sadeghlar F,
Mozcall H, Bernardo K, Schuchman E,
Sandhoff K: Interfacial regulation of acid
ceramidase activity. Stimulation of
ceramide degradation by lysosomal lipids
and sphingolipid activator proteins. J
Biol Chem 2001;276:5760-5768.
Linke T, Wilkening G, Lansmann S,
Moczall H, Bartelsen O, Weisgerber J,
Sandhoff K: Stimulation of acid
sphingomyelinase activity by lysosomal
lipids and sphingolipid activator proteins.
Biol Chem 2001;382:283-290.
Elojeimy S, Holman DH, Liu X, El-
Zawahry A, Villani M, Cheng JC, Mahdy
A, Zeidan Y, Bielwaska A, Hannun YA,
Norris JS: New insights on the use of
desipramine as an inhibitor for acid
ceramidase. FEBS Lett 2006;580:4751-
4756.

Matter H: Selecting optimally diverse
compounds from structure databases: a
validation study of two-dimensional and
three-dimensional molecular descriptors.
J Med Chem 1997;40:1219-1229.
Lipinski CA, Lombardo F, Dominy BW,
Feeney PJ: Experimental and computa-
tional approaches to estimate solubility
and permeability in drug discovery and
developmental settings. Adv Drug Deliv
Rev 1997;23:3-25.

Trapp S, Rosania GR, Horobin RW,
Kornhuber J: Quantitative modeling of
selective lysosomal targeting for drug
design. Eur Biophys J 2008;37:1317-
1328.

Kornhuber J, Reichel M, Tripal P,
Groemer TW, Henkel AW, Miihle C,
Gulbins E: The role of ceramide in major
depressive disorder. Eur Arch Psychiatry
Clin Neurosci 2009;259:S199-S204.
Lombardo F, Obach RS, Shalaeva MY,
Gao F: Prediction of human volume of
distribution values for neutral and basic
drugs. 2. Extended data set and leave-
class-out statistics. J Med Chem
2004;47:1242-1250.

Bianco F, Perrotta C, Novellino L,
Francolini M, Riganti L, Menna E,
Saglietti L, Schuchman EH, Furlan R,
Clementi E, Matteoli M, Verderio C: Acid
sphingomyelinase activity triggers
microparticle release from glial cells.
EMBO J 2009;28:1043-1054.

Brand V, Koka S, Lang C, Jendrossek V,
Huber SM, Gulbins E, Lang F: Influence
of amitriptyline on  eryptosis,
parasitemia and survival of Plasmodium
berghei-infected mice. Cell Physiol
Biochem 2008;22:405-412.

FIASMASs

Cell Physiol Biochem 2010;26:09-20 19



»111

»112

»113

»114

»115

»116

»117

119

Grassmé H, Riehle A, Wilker B, Gulbins
E: Rhinoviruses infect human epithelial
cells via ceramide-enriched membrane
platforms. J Biol Chem 2005;280:26256-
26262.

Bauer J, Huy C, Brenmoehl J, Obermeier
F, Bock J: Matrix metalloproteinase-1
expression induced by IL-1b requires acid
sphingomyelinase. FEBS Lett
2009;583:915-920.

Llacuna L, Mari M, Garcia-Ruiz C,
Fernandez-Checa JC, Morales A: Critical
role of acidic sphingomyelinase in murine
hepatic ischemia-reperfusion injury.
Hepatology 2006;44:561-572.

Kato Y, Ozawa S, Tsukuda M, Kubota E,
Miyazaki K, St-Pierre Y, Hata R: Acidic
extracellular pH increases calcium influx-
triggered phospholipase D activity along
with acidic sphingomyelinase activation
to induce matrix metalloproteinase-9
expression in mouse metastatic
melanoma. FEBS J 2007;274:3171-
3183.

Deigner H-P, Claus R, Bonaterra GA,
Gehrke C, Bibak N, Blaess M, Cantz M,
Metz J, Kinscherf R: Ceramide induces
aSMase expression: implications for
oxLDL-induced apoptosis. FASEB J
2001;15:807-814.

Liibke T, Lobel P, Sleat DE: Proteomics
of the lysosome. Biochim Biophys Acta
2009;1793:625-635.

The selection and use of essential medi-
cines. World Health Organ Tech Rep Ser
2004;920:1-127.

The WHO Collaborating Centre for Drug
Statistics Methodology NIoPH. The
ATC/DDD System. http://
www.whocc.no/atcddd/

Approved Drug Products with Therapeu-
tic Equivalence Evaluations, ed 28th edi-
tion. U.S. Department of Health and
Human Servies. Food and Drug Adminis-
tration. Center for Drug Evaluation and
Research. Office of Pharmaceutical Sci-
ence. Office of Generic Drugs, 2008.

120

»121

»122

»123

»124

»125

»126

»127

»128

»129

Micro Source Discovery. Pure Natural
Products. www.msdiscovery.com/
natprod.html

Anderson N, Borlak J: Drug-induced
phospholipidosis. FEBS Lett
2006;580:5533-5540.
Liillmann-Rauch R: Drug-induced lyso-
somal storage disorders. Front Biol
1979;48:49-130.

Xia Z, Ying G, Hansson AL, Karlsson H,
Xie Y, Bergstrand A, DePierre JW,
Nissberger L: Antidepressant-induced li-
pidosis with special reference to tricyclic
compounds. Prog Neurobiol
2000;60:501-512.

Reasor MJ, Kacew S: Drug-induced
phospholipidosis: Are there functional
consequences? Exp Biol Med (Maywood)
2001;226:825-830.

Kapur S, Seeman P: Does fast dissocia-
tion from the dopamine D2 receptor
explain the action of atypical anti-
psychotics? A new hypothesis. Am J Psy-
chiatry 2001;158:360-369.

Davis JM, Chen N, Glick ID: A meta-
analysis of the efficacy of second-gen-
eration antipsychotics. Arch Gen Psy-
chiatry 2003;60:553-564.

Kornhuber J, Weller M: Psycho-
togenicity and N-methyl-D-aspartate
receptor antagonism: implications for
neuroprotective pharmacotherapy. Biol
Psychiatry 1997;41:135-144.
Kornhuber J, Bleich S, Wiltfang J, Maler
M, Parsons CG: Flupirtine shows func-
tional NMDA receptor antagonism by
enhancing Mg2+ block via activation of
voltage independent potassium channels.
J Neural Transm 1999;106:857-867.
Mostert JP, Admiraal-Behloul F,
Hoogduin JM, Luyendijk J, Heersema DJ,
van Buchem MA, De Keyser J: Effects
of fluoxetine on disease activity in re-
lapsing multiple sclerosis: a double-blind,
placebo-controlled, exploratory study. J
Neurol Neurosurg Psychiatry
2008;79:1027-1031.

»130

»13]

»132

»133

> 134

»135

»136

»137

»138

Sijens PE, Mostert JP, Irwan R, Potze
JH, Oudkerk M, De Keyser J.: Impact of
fluoxetine on the human brain in multi-
ple sclerosis as quantified by proton mag-
netic resonance spectroscopy and diffu-
sion tensor imaging. Psychiatry Res:
Neuroimaging 2008;164:274-282.

Flax JW, Gray J, Herbert J: Effect of
fluoxetine on patients with multiple scle-
rosis. Am J Psychiatry 1991;148:1603.
Albouz S, Boutry JM, Dubois G, Bourdon
R, Hauw JJ, Baumann N: Lipid and lyso-
somal enzymes in human fibroblasts cul-
tured with perhexiline maleate. Naunyn
Schmiedebergs Arch  Pharmacol
1981;317:173-1717.

Kubo M, Hostetler KY: Mechanism of
cationic amphiphilic drug inhibition of
purified lysosomal phospholipase Al.
Biochemistry 1985;24:6515-6520.
Matsuzawa Y, Hostetler KY: Inhibition
of lysosomal phospholipase A and phos-
pholipase C by chloroquine and 4,4'-
bis(diethylaminoethoxy)a,p-
diethyldiphenylethane. J Biol Chem
1980;255:5190-5194.

Hostetler KY, Matsuzawa Y: Studies on
the mechanism of drug-induced lipidosis.
Cationic amphiphilic drug inhibition of
lysosomal phospholipases A and C.
Biochem Pharmacol 1981;30:1121-
1126.

Jaffrézou JP, Herbert JM, Levade T, Gau
MN, Chatelain P, Laurent G: Reversal of
multidrug resistance by calcium channel
blocker SR33557 without photoaffinity
labeling of P-glycoprotein. J Biol Chem
1991;266:19858-19864.

Albouz S, Vanier MT, Hauw JJ, Le Saux F,
Boutry JM, Baumann N: Effect of
tricyclic antidepressants on sphingo-
myelinase and other sphingolipid
hydrolases in C6 cultured glioma cells.
Neurosci Lett 1983;36:311-315.
Igarashi M, Suzuki K, Chen SM: Changes
in brain hydrolytic enzyme activities in
rats treated with cholesterol biosynthe-
sis inhibitor, AY9944. Brain Res
1975;90:97-114.

20

Cell Physiol Biochem 2010;26:09-20

Gulbins

Kornhuber/Tripal/Reichel/Miihle/Rhein/Muehlbacher/Groemer/




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.5
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 300
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /DEU <>
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


