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treated hippocampus. Taken together, these results suggest 
that insulin may be an essential factor in the immature brain, 
allowing the expression of LTP to facilitate learning and 
memory. 
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 Introduction 

 The role of insulin as a neuromodulator and neuro-
trophic factor in the brain has received much attention in 
recent years  [1–4] . The interest in a central action of in-
sulin was prompted by the early unexpected finding that 
the brain contains insulin and insulin receptors  [5–8] , 
and the increased awareness of a possible causal link be-
tween insulin resistance and cognitive deficits in diabetes 
 [2, 9] . Furthermore, there is evidence that defective insu-
lin signaling contributes to the pathophysiology of Alz-
heimer’s disease  [10–13] .

  Experimental studies in humans and animals in gen-
eral point to a facilitatory role of insulin in cognitive 
 performance. For example, administration of insulin in-
tra-nasally or by infusion in humans  [14, 15]  and via in-
tracerebroventricular injection in rats  [16]  resulted in el-
evated insulin levels in the brain and enhancement of 
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 Abstract 
 Many studies indicate that impairment in insulin signaling 
leads to learning and memory deficits. However, previous 
studies failed to establish a clear role of insulin in long-term 
potentiation (LTP), the best cellular model of memory forma-
tion. Here we show that while insulin pretreatment did not 
affect LTP magnitude in the adult rat hippocampus, it facili-
tated LTP expression in the immature hippocampus. The ty-
rosine kinase inhibitor AG-1024 abolished the effect of insu-
lin in young rats, suggesting the involvement of the insulin 
receptor. On the other hand, increasing extracellular glucose 
concentration failed to facilitate LTP and application of an 
insulin-responsive glucose transporter-4 inhibitor did not 
impair the effect of insulin. These results suggest that the 
facilitatory action of insulin on LTP is not an indirect effect 
on glucose homeostasis/utilization. Involvement of the 
MAPK/ERK pathway, a known downstream pathway of insu-
lin signaling, was revealed by pretreatment with PD98059, 
which blocked the insulin-mediated LTP facilitation. Consis-
tent with this, high-frequency stimulation induced a signifi-
cant increase in the level of phosphorylated Erk-2 in insulin-
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memory functions. Insulin also exerts a restorative ac-
tion on memory impairment in various settings, includ-
ing drug-induced experimental model of diabetes  [17, 18] , 
models of stress  [19]  and also in Alzheimer’s disease pa-
tients  [20] . These findings are consistent with the obser-
vation that insulin receptors are especially abundant in 
the hippocampus in both rats and humans  [21–24]  and 
that insulin receptors on pyramidal neurons are upregu-
lated after training in the water maze task  [25] . 

  It is widely accepted that long-term synaptic plasticity 
in the hippocampus, especially long-term potentiation 
(LTP), is the mechanism that underlies some forms of 
learning and memory. In the hippocampus, insulin re-
ceptor immunoreactivity and insulin binding sites are 
particularly prominent in the CA1 subfield  [26, 27] . How-
ever, although a role of insulin in inducing a long-term 
depression-like phenomenon has been well documented 
in the hippocampus  [28] , the effect of insulin on LTP re-
mains unclear. In fact, it has been shown that insulin does 
not facilitate high-frequency stimulation (HFS)-induced 
LTP  [29] . Also, although some studies show that in ex-
perimental diabetes, LTP is impaired and can be rescued 
by insulin  [17, 30] , there are reports showing that LTP is 
preserved in this condition [e.g.  31 ]. Thus, the exact rela-
tionship between insulin and LTP is still obscure.

  In this study, we addressed the question of whether 
insulin application has any effect on LTP expression in 
the hippocampus of normal, healthy rats. Since it is 
known that insulin receptor expression in the brain is 
developmentally regulated, being highest in young age 
and decreasing with age  [1, 32] , we examined and com-
pared the effect of insulin on LTP in both immature and 
adult rats. Our experiments reveal that insulin plays a 
critical permissive role in LTP expression in the imma-
ture brain via insulin receptors but not through its influ-
ence on glucose utilization/homeostasis. This finding 
suggests that insulin may be an indispensible endogenous 
factor allowing LTP expression  in normal young animals 
for learning and memory, and provides an explanation 
for the impaired cognitive function in children with in-
sulin-dependent type 1 diabetes  [33] .

  Materials and Methods 

 All experimental protocols and procedures described were 
performed in compliance with the National Institutes of Health 
Guidelines for the Care and Use of Laboratory Animals and were 
approved by the Animal Experimentation Ethical Committee of 
the Chinese University of Hong Kong. Efforts were made to min-
imize the number of animals used and their suffering.

  Hippocampal Brain Slices  
 Sprague-Dawley rats, provided by the Laboratory Animal Ser-

vices Center of the Chinese University of Hong Kong, were anes-
thetized with isoflurane, and then sacrificed by decapitation. The 
brains were immediately removed and cut into two halves in the 
sagittal plane and then immersed in ice-cold artificial cerebrospi-
nal fluid (ACSF) of the following composition: 125 m M  NaCl, 2.0 
m M  KCl, 1.2 m M  MgSO 4 , 2.5 m M  CaCl 2 , 1.2 m M  KH 2 PO 4 , 11 m M  
glucose, and 26 m M  NaHCO 3 , which was continuously bubbled 
with 95% O 2  and 5% CO 2  (pH 7.4; osmolarity 290–310 mosm). The 
brains were then glued with the lateral side down onto a platform 
in a chamber filled with oxygenated ice-cold ACSF, and 300- � m-
thick    parasagittal   sections   were   cut   using   a   vibrating   micro-
tome (Integraslice 7550MM, Campden Instruments Ltd., Lough-
borough, UK). Slices were preincubated in a holding chamber 
containing oxygenated ACSF at 34  8  1   °   C for at least 1 h. 

  LTP Measurements  
 A planar multielectrode recording setup (MED64 system, Al-

pha Med Sciences Co., Ltd, Tokyo, Japan) was employed to record 
the field excitatory postsynaptic potential (fEPSP), and to study 
LTP. The methodology has been described in details elsewhere 
 [34, 35] . Briefly, hippocampal slices were placed on special probes 
that were fabricated with 8  !  8 electrode arrays (20  !  20  � m, 
made of indium tinoxide and platinum black) and precoated with 
polyethylenimine (Sigma). The P210A probes (Alpha Med Scienc-
es) with an interelectrode distance of 100  � m were routinely used. 
Correct placement of the electrodes at the CA3-CA1 region was 
done manually, monitored by a microscope (MIC-D, Olympus 
Ltd., Japan). To increase the efficiency of the experiments and to 
minimize the variation in the results arising from differences in 
incubation times, a maximum of 4 slices were studied simultane-
ously by means of a splitter provided by the manufacturer. Each 
slice was submerged in and superfused with oxygenated ACSF at 
a flow rate of 1.3–1.5 ml/min. fEPSPs were recorded from the den-
dritic layer of CA1 neurons by choosing an electrode in the Schaf-
fer collateral pathway as the stimulating electrode. Based on the 
stimulus-response curve, we chose a stimulation intensity that 
evoked the fEPSP with a magnitude of 30–40% of the maximum 
response. After allowing a stable baseline of 30 min in which the 
stimulus was delivered every 60 s, an LTP induction protocol con-
sisting of 1 train of 100-Hz stimuli that lasted for 1 s was applied, 
and the field potential response after the tetanus was recorded for 
1 h. The magnitude of LTP was quantified as percentage change 
in the average amplitude of the fEPSP taken at 50- to 60-min in-
tervals after LTP induction. Drugs were applied to the slices for at 
least 30 min before the delivery of HFS. 

  Protein Analyses  
 After preparation of hippocampal slices from young rats, the 

CA1 regions from 5–7 slices were cut and incubated with radio-
immunoprecipitation assay lysis buffer including Pimix (1:   200 di-
lution) and 0.1  M  phenylmethylsulfonyl fluoride (1:   100 dilution) 
for 30 min. After centrifugation at 13,000 rpm for 15 min, the su-
pernatant was measured for the concentration of protein and was 
then subjected to SDS–PAGE (10% polyacrylamide gel electro-
phoresis). The protein was transferred to nitrocellulose mem-
brane using an electrophoretic transfer system. The membrane 
was blocked with Tris-buffered saline mixed with Tween-20 in-
cluding 5% milk for 1 h followed by overnight incubation at 4   °   C 
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with rabbit primary antibody against MAPK/ERK and phospho-
MAPK/ERK (1:   3,000). The membrane was stripped in 50 ml 
stripping buffer at 50   °   C and shaken for at least 30 min until no 
signal could be detected. After incubation with goat anti-rabbit 
IRDye 800 CW secondary antibody (1:   10,000, Li-Cor) for 1 h at 
room temperature, the membrane was scanned by an Odyssey 
scanner. The intensities of the specific bands were analyzed by 
Odyssey infrared imaging software at a resolution of 169  � m. 
Each experiment was performed three times.

  Chemicals and Data Analysis  
 Insulin was purchased from Sigma (USA). Indinavir was ob-

tained from TRC (Canada). PD98059 was purchased from Cay-
man (USA) and AG1024 was from Spectrum (USA). MAPK (Erk) 
antibodies and phospho-MAPK (p-Erk) antibodies were obtained 
from Cell Signaling Technology Company (USA). The fEPSPs ob-
tained were analyzed using Prism 4.0 (GraphPad software, San 
Diego, Calif., USA). The data are expressed as means  8  SEM and 
n stands for the number of brain slices used. An unpaired Stu-
dent’s t test was used to compare LTP magnitude between two 
groups; ANOVA was used to compare LTP amplitude for multiple 
groups followed by a Newman-Keuls test. 

  Results 

 Differential Effects of Insulin on LTP in Young and 
Adult Rats  
 We first examined the ability of the hippocampal slic-

es from 2-month-old (adult) and 11- to 12-day-old (young) 
rats to exhibit LTP. After baseline recording for at least 30 
min, standard HFS (100 Hz, 1 s) stimuli were delivered to 
the Schaffer collateral pathway and fEPSPs were recorded 
in the CA1 dendritic layer for at least 60 min. As shown 
in  figure 1 a, in the adult group, the fEPSP amplitude was 
potentiated to 165.8  8  13.0% of baseline (12 slices, 8 rats). 
On the other hand, HFS failed to induce potentiation of 
the fEPSP in the young rat measured at the end of 60 min 
( fig. 1 b, 100.3  8  6.4% of baseline, 8 slices, 4 rats). 

  To test the effect of insulin on LTP, some hippocampal 
slices from both age groups were pretreated with insulin 
(0.08 or 0.8 ng/ml, equivalent to 13.7 and 137 n M,  respec-
tively) for at least 1 h before delivery of HFS. Insulin at 
these concentrations did not affect the baseline fEPSPs. 
As shown in  figure 1 a, in the adult group, the magnitude 
of LTP was not altered by insulin at both 0.08 ng/ml 
(158.5  8  14.4%, 8 slices 5 rats, p = 0.64 compared with 
control) and the higher concentration of 0.8 ng/ml (149.3 
 8  4.3%, 10 slices 5 rats, p = 0.59 compared with control). 
Strikingly, however, in the young rats in which HFS could 
not induce LTP, pretreatment with insulin induced po-
tentiation of the fEPSP in a dose-dependent manner 
( fig. 1 b). At a concentration of 0.08 ng/ml, the fEPSP mea-

sured at the end of 60 min was 102.6  8  3.4% of baseline 
( fig. 1 b, 9 slices from 6 rats, p = 0.77 compared with con-
trol). Significant potentiation of the fEPSP, i.e. LTP, was 
enabled at an insulin concentration of 0.8 ng/ml. The am-
plitude of the fEPSP at 60 min after HFS was 120.4  8  
4.4% of baseline ( fig. 1 b, 10 slices from 6 rats, p  !  0.01, 
compared with control). These results indicate that under 
the experimental conditions of the present study, insulin 
plays a permissive role in the LTP expression in young 
rats while it is without effect on the LTP in the adult hip-
pocampus. 

  The Facilitatory Effect of Insulin Is Mediated by the 
Insulin Receptor 
 To determine the involvement of the insulin receptor 

in mediating the effect of insulin on synaptic plasticity, 
we studied the effect of AG-1024, a tyrosine kinase in-
hibitor known to inhibit the insulin receptor  [36] , on the 
observed insulin-dependent LTP in the young rats. Incu-
bation of the hippocampal slices with AG-1024 (80 n M ) 
did not affect the basal synaptic transmission. However, 
as shown in  figure 2 a, pretreatment of the slices with AG-
1024 for 30 min before HFS and throughout the experi-
ment largely abolished the insulin-dependent LTP. The 
magnitude of LTP in the presence of AG-1024 was 105.8 
 8  2.5% (15 slices from 9 rats), which was significantly 
lower than that of the insulin-alone group ( fig. 2 a, 130.4 
 8  5.7%; 14 slices from 7 rats, p  !  0.001).

  We also tested the effect of AG-1024 on the LTP ex-
pressed by the adult hippocampus. In the control group, 
the LTP magnitude was 143.8  8  9.4% ( fig. 2 b, 12 slices 
from 6 rats). Treatment with AG-1024 did not affect the 
LTP (148.6  8  8.3%, 11 slices 6 rats, p = 0.71;  fig. 2 b). These 
results indicate that AG-1024 itself does not have a direct 
effect on LTP and is in line with the notion that the LTP 
expressed in the adult hippocampus is not dependent on 
insulin. 

  The Facilitation of LTP Expression Is Not via 
Regulation of Glucose Utilization 
 The effect of insulin on glucose metabolism in the 

brain is uncertain, and is still debated  [37, 38] . To address 
the possibility that the facilitatory action of insulin on 
LTP expression in the young animals is via its effect on 
glucose utilization, we performed two sets of experi-
ments. In the first experiment, we studied the effect of 
indinavir, an insulin-sensitive glucose transporter-4 
(GLUT-4) inhibitor. In the insulin-treated group, the 
magnitude of LTP was 122.2  8  4.9% ( fig. 3 a, 10 slices 
from 5 rats). Preincubation of the slices with indinavir 
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  Fig. 1.  Different effects of insulin on hippocampal LTP in mature 
and immature rats.  a  Left panel: fEPSPs recorded from the hip-
pocampal CA1 region of 2-month-old rats showed that LTP was 
induced by conventional HFS delivered to the Schaffer collateral 
pathway at 30 min after stable baseline recording. The presence of 
insulin in the ACSF (0.08 and 0.8 ng/ml) did not affect the mag-
nitude of the LTP. The results are summarized in the right panel. 
Representative recordings are shown in the insets, sampled dur-
ing the baseline and at the time indicated by the arrow.  b  The same 

HFS failed to induce LTP in the hippocampus of young (11–12 
days) rats, but insulin at 0.8 ng/ml facilitated the expression of 
LTP. Statistical analysis shown in the right panel shows that
the averaged amplitude of fEPSPs measured in the last 10 min of 
recording in the 0.8 ng/ml group was significantly higher than 
those of the control and the low-concentration (0.08 ng/ml) group. 
Insulin was applied for at least 1 h before the delivery of HFS and 
was present throughout the experiment,  *  *  p  !  0.01. 
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  Fig. 2.  The facilitatory effect of insulin on LTP in immature rats 
is mediated by insulin receptor.  a  Incubation of the hippocampal 
slices with AG-1024 (80 n M) , an inhibitor of insulin receptor, sig-
nificantly decreased the magnitude of insulin-mediated LTP in 
the young rats. Representative traces are shown in the insets, sam-
pled during the baseline and at the time indicated by the arrow. 
Statistical analysis shown in the right panel shows that the aver-

aged amplitude of fEPSPs measured in the last 10 min of record-
ing in the AG-1024-treated group was significantly lower than the 
insulin group.  b  In the mature rats, AG-1024 failed to alter the 
magnitude    of    the    LTP.    AG-1024    was    applied    for    30    min     be-
fore HFS delivery and was present throughout the experiments, 
 *  *  *  p  !  0.001. 
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(100  �  M ) for over 30 min did not affect the magnitude of 
LTP observed (118.7  8  9.1%, 11 slices from 6 rats, p = 
0.75). In the brain, uptake of glucose is mainly dependent 
on facilitated glucose transport, which is driven by the 
glucose concentration gradient across the cell membrane. 
Thus, to assess the impact of increased glucose uptake per 
se, we tested the effect of raising extracellular glucose 
concentration on the expression of LTP in the young rats. 

As shown in  figure 3 b, increasing the glucose concentra-
tion from 11 to 22 or 33 m M  did not affect the magnitude 
of LTP in young rats (104.6  8  3.2%, 9 slices from 6 rats, 
p = 0.79 and 106.7  8  2.2%, 10 slices from 6 rats, p = 0.87, 
respectively). Taken together, these data strongly suggest 
that the facilitatory action of insulin on LTP expression 
is not an indirect effect via the regulation of glucose avail-
ability to the neurons.
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  Fig. 3.  The facilitatory action of insulin on 
LTP is not via its effect on glucose utiliza-
tion.  a  Application of indinavir (100  �  M ), 
an inhibitor of the insulin-sensitive GLUT-
4, did not affect the magnitude of insulin-
dependent LTP in young rats.  b  Doubling 
and tripling the concentration of glucose 
from 11 to 22 and 33 m M,  respectively, did 
not facilitate the expression of LTP. Repre-
sentative traces are shown in the insets, 
sampled during the baseline and at the 
time indicated by the arrow. Indinavir was 
applied for 30 min prior HFS delivery and 
was present throughout the experiment.         



 Zhao/Wu/Xie/Ke/Yung

 

Neurosignals 2010;18:236–245242

  Involvement of the MAPK/ERK Pathway 
 We next explored the intracellular signaling pathway 

of the insulin-dependent LTP. Specifically, we tested the 
involvement of the MAPK/ERK pathway, which has been 
shown to be a major signaling pathway mediating the ef-
fect of insulin in the peripheral organs  [39] .  Figure 4 a 
shows that in the insulin treatment group, the average 
magnitude of fEPSP obtained in 8 slices from 4 rats was 
119.4  8  3.2%. When PD98059 (20  �  M ), an inhibitor of 
MEK1, was applied before and continued throughout the 
experiment, the LTP magnitude was reduced to 106.6  8  
3.3% (10 slices from 5 rats, p  !  0.05). To further confirm 
the involvement of the MAPK/ERK pathway in the effect 
of insulin, we examined the expression of phosphorylated 
Erk1/2 in the hippocampus of young rats after HFS stim-
ulation by Western blot analysis. As shown in  figure 4 b, 
in the presence of insulin, the expression of phosphory-
lated Erk-2 (p42 MAPK) in the hippocampal slices was 
increased 8 min after the delivery of HFS. Analysis 
showed that the ratio of phosphorylated Erk-2 versus total 
Erk-2 increased significantly in the presence of insulin 
compared with that in control group ( fig.  4 c, 0.077  8  
0.025 vs. 0.045  8  0.019, n = 3, p  !  0.05). However, the ra-
tio of phosphorylated Erk-1 (p44 MAPK) versus total Erk-

1 was not significantly different from that of the control 
group ( fig. 4 c, 0.038  8  0.017 vs. 0.041  8  0.017, n = 3, p  1  
0.05). 

  Discussion 

 Despite different lines of evidence supporting a role of 
insulin in facilitating learning and memory, the relation-
ship between insulin and LTP, the best cellular candidate 
underlying memory formation, remains elusive up to date. 
By investigating the action of insulin on the expression of 
hippocampal LTP in healthy adult and young rats, we 
show that insulin plays a permissive role in the expression 
of LTP in young rats but has a minimal effect in adult rats. 
This conclusion is based on the fact that the hippocampus 
from 11- to 12-day-old rats, in response to the convention-
al HFS paradigm, produced a small increase in fEPSP 
magnitude that was not sustained. However, addition of 
0.8 ng/ml (or 137 n M ) of insulin allowed the expression of 
a decent LTP, which amounted to over 20% of potentiation 
in fEPSP. On the other hand, insulin application had no 
effect on the magnitude of the LTP in the adult hippocam-
pus, which is in agreement with previous studies  [29, 40] . 
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  Fig. 4.  Involvement of Erk-2 activation in 
the insulin-dependent LTP.  a  Pretreat-
ment of the MEK inhibitor PD98059 (20 
 �  M ) significantly decreased the magni-
tude of insulin-mediated LTP in the im-
mature rats.  b  Western blot analysis 
showed that 8 min after the delivery of 
HFS, there was an increase in the expres-
sion of phosphorylated Erk-2 (p-Erk-2, or 
p42 MAPK) only in those hippocampal 
slices incubated with insulin (0.8 ng/ml). 
 c  Statistical analysis revealed that Erk-2, in 
contrast to Erk-1, is specifically activated 
by the combined HFS and insulin treat-
ment,      *  p      !  0.05 (n = 3). 
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  These findings lead to some interesting speculations. 
First, it has been shown by others  [41–43]  and also in the 
present study that hippocampal slices from rats younger 
than 2 weeks are much weaker in the ability to express 
LTP, and therefore are regarded as developmentally im-
mature. Our study suggests that the hippocampus at 11–
12 days is equipped with the machinery to express LTP in 
response to the standard one-train HFS. The fact that 
they could not express LTP could be due to the removal 
of endogenous factors like insulin from the incubation 
fluid rather than to an inherent deficit. Second, insulin as 
a neuromodulator is particularly important for learning 
and memory in young subjects. This speculation is in line 
with the observation that the expression of insulin recep-
tor is developmentally regulated, being highest in early 
postnatal stages and decreasing with age  [1, 32] , and can 
explain the cognitive dysfunction found in children with 
type 1 diabetes in which there is deficiency in insulin pro-
duction  [33, 44, 45] . In the adult hippocampus, it is pos-
sible that other factors, e.g. brain-derived neurotrophic 
factor, or mechanisms serve to ensure the expression of 
LTP which as a result relies less on insulin. 

  Our results imply the involvement of the insulin re-
ceptor in mediating the insulin-dependent LTP. This is 
based on the fact that AG-1024 and the MAPK/ERK 
pathway inhibitor PD98059 significantly suppressed the 
effect of insulin. However, due to the similarity between 
the insulin receptor and that of insulin-like growth fac-
tor-1 (IGF-1), and that both insulin and IGF-1 can act on 
these two types of receptors, we cannot rule out a role of 
IGF-1. In fact, the tyrosine kinase inhibitor AG-1024 in-
hibits both receptors. However, since the expression of 
the insulin receptor and the IGF-1 receptor within the 
hippocampus is different, with the insulin receptor being 
higher in the CA1 region  [21] , it is likely that insulin is the 
more important endogenous factor in permitting the ex-
pression of LTP in the CA3-CA1 pathway in vivo. 

  What is the mechanism enabling insulin to facilitate the 
expression of LTP? It is well known that glucose is the main 
nutrient and energy source of neurons. The brain has tra-
ditionally been regarded as an insulin-insensitive organ 
 [46]  because the main glucose transporters expressed cen-
trally are glucose transporter-1 (or GLUT-1) and glucose 
transporter-3 (or GLUT-3), both of which are insulin in-
sensitive. However, recent studies suggest the presence of 
the insulin-responsive GLUT-4 in the brain, and insulin 
can induce GLUT-4 translocation to the plasma mem-
brane in neurons, including those in the hippocampus 
 [47–51] . Therefore, an insulin-induced increase in glucose 
utilization and therefore an increase in energy supply is a 

possible mechanism underlying the facilitatory effect of 
insulin on LTP. Our study, however, is not in favor of this 
scenario because neither elevating the concentration of 
glucose in the ACSF nor incubation with the GLUT-4 in-
hibitor indinavir  [52, 53]  affected the magnitude of the in-
sulin-dependent LTP. It remains possible that GLUT-4 
plays a role under high metabolic requirement, which is 
not reached in the in vitro slice condition. Alternatively, 
GLUT-4-mediated glucose uptake may be related to growth 
and development rather than long-term synaptic plasticity. 

  There are other potential mechanisms by which insu-
lin can facilitate the expression of LTP. For example, it has 
been found that insulin promotes cell surface expression 
of N-methyl- D -aspartic acid (NMDA) receptors  [54]  and 
the GluR1  � -amino-3-hydroxy-5-methyl-4-isoxazole-
propionic acid (AMPA) receptor subunit  [55] ; both can 
lead to enhanced synaptic transmission. Insulin also en-
hances NMDA receptor-mediated current in hippocam-
pal neurons  [56] . These effects could lower the threshold 
for the induction of LTP in the hippocampus and allow 
its expression in response to the HFS. Interestingly, both 
the activity of the NMDA receptor and the expression of 
the GluR1 AMPA receptor subunit can be increased in an 
MAPK-dependent manner  [57, 58] . Consistent with these 
observations, our results revealed that activation of Erk-2 
(p42 MAPK) might be involved in the facilitatory effect 
of insulin on LTP. Insulin may also facilitate the expres-
sion of LTP by increasing the protein expression of the 
dendritic scaffolding protein PSD-95  [59]  and the re-
cruitment of the insulin receptor substrate IRSp53, which 
has been shown to be translocated to the synapses in re-
sponse to neuronal activity  [60] . Obviously, further work 
is needed to dissect the detailed mechanism. 

  In conclusion, our results identify an acute, restorative 
action of insulin on LTP expression in young animals, 
suggesting its importance in the synaptic plasticity, and 
therefore learning and memory, of the immature brain. 
This finding highlights a new facet of insulin signaling in 
addition to the growing belief that this protein is impor-
tant for synapse maturation and maintenance during de-
velopment  [1] . Since cognitive impairment is a common 
feature in children suffering from insulin-dependent dia-
betes, elucidating the role of insulin in the developing ner-
vous system is important both scientifically and clinically. 
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