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ABSTRACT: 

 

The idea of using artificial neural network has been proven useful for hyperspectral image classification. However, the high 

dimensionality of hyperspectral images usually leads to the failure of constructing an effective neural network classifier. To improve 

the performance of neural network classifier, wavelet-based feature extraction algorithms can be applied to extract useful features for 

hyperspectral image classification. However, the extracted features with fixed position and dilation parameters of the wavelets provide 

insufficient characteristics of spectrum. In this study, wavelet networks which integrates the advantages of wavelet-based feature 

extraction and neural networks classification is proposed for hyperspectral image classification. Wavelet networks is a kind of feed-

forward neural networks using wavelets as activation function. Both the position and the dilation parameters of the wavelets are 

optimized as well as the weights of the network during the training phase. The value of wavelet networks lies in their capabilities of 

optimizing network weights and extracting essential features simultaneously for hyperspectral images classification. In this study, the 

influence of the learning rate and momentum term during the network training phase is presented, and several initialization modes of 

wavelet networks were used to test the performance of wavelet networks. 

 

 

1. INTRODUCTION 

 Imaging spectrometer, a remote sensing technology which was 

developed in 1980’s, can obtain images with hundreds of spectral 

bands simultaneously (Goetz et al., 1985). The images acquired 

with spectrometers are called as hyperspectral images. These 

images not only reveal two-dimensional spatial information but 

also contain rich and fine spectral information. With these 

characteristics, they can be used to identify surface objects and 

improve land use/cover classification accuracies. In past three 

decades, hyperspectral images have been widely used in different 

fields such as mineral identification, forest vegetation mapping, 

and disaster investigation based on the spectral analysis 

(Lillesand and Kiffer, 2000). 

 

Since hyperspectral images contain rich and fine spectral 

information, an improvement of land use/cover classification 

accuracy is highly expected from the utilization of such images. 

However, the statistics-based classification methods which have 

been successfully applied to multispectral images are not as 

effective as to hyperspectral images. In fact, problems will arise 

if too many spectral bands are simultaneously taken on finite 

training samples. If the training samples are insufficient for the 

needs, which is a very common case in the hyperspectral images, 

the estimation of statistical parameters becomes inaccurate and 

unreliable. As the dimensionality increases with the number of 

bands, the number of training samples needed for training a 

specific classifier should be increased exponentially as well. The 

rapid increase in training samples size for density estimation has 

been termed the “curse of dimensionality” by Bellman (1961), 

which leads to the “peaking phenomenon” or “Hughes 

phenomenon” in classifier design (Hughes, 1968). The 

consequence is that the classification accuracy first grows and 
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then declines as the number of spectral bands increases while 

training samples are kept the same. 

A simple but sometimes very effective way of dealing with high-

dimensional data is to reduce the dimensionality deliberately 

(Lee and Landgrebe, 1993; Benediktsson et al., 1995; Hsu, 

2007a). In the case of hyperspectral images, this can be done by 

feature extraction that a small number of salient features are 

extracted from the hyperspectral images before classification. 

Since the dimensionality is reduced before classification, the 

curse of dimensionality can be avoided. Thus most of the 

traditional classification methods such as the maximum 

likelihood classifier (MLC) can be directly applied to the 

extracted features after the feature extraction 

 

In order to avoid the problems caused by the limited training 

samples, several feature extraction methods based on the wavelet 

transform (WT) have been proposed for hyperspectral image 

classification (Hsu, 2003; Hsu, 2007a). In the past decades, WT 

has been developed as a powerful analysis tool for signal 

processing, and also has been successfully applied in applications 

such as image processing, data compression and pattern 

recognition (Mallat, 1999). Due to the time-frequency 

localization properties, discrete wavelet and wavelet packet 

transforms have proven to be appropriate starting point for the 

classification of the measured signals (Pittner and Kamarthi, 

1999). The WT decomposes a signal into a series of translated 

and scaled versions of the mother wavelet function. When WT is 

applied to the hyperspectral images, the local energy variations 

of a spectral signature in different spectral bands at each scale (or 

frequency) can be detected automatically and provide useful 

information for hyperspectral image classification. Although the 

proposed wavelet-based methods perform well for feature 
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extraction and also effectively for classification, however, the 

relationship between the extracted features and the identified 

classes are not apparent.  

In addition to the dimensionality reduction for the statistics-based 

classifier, nonparametric classifiers such as the artificial neural 

networks (ANNs) are also proposed to deal with the problem of 

high dimensionality and also have been applied to hyperspectral 

image classification. The use of ANNs is motivated by their 

power in pattern recognition and classification due to the 

ultimately fine distribution and non-linearity of the process. 

However, most of the neural processing algorithms are 

computationally intensive and involve many iterative 

calculations, especially for hyperspectral images. A 

characteristic of neural networks is that the networks need a long 

training time but are relatively fast data classifiers. For very-high-

dimensional data, the training time of a neural network can be 

very long and the resulting neural network can be very complex. 

This is a serious drawback, especially when the dimensionality 

and the sample size of training data are large (Benediktsson et al., 

1995).  

 

To combine the advantages of ANN’s with wavelet-based feature 

extraction methods, the wavelet networks (WNs) have been 

proposed with some success in data approximation, identification 

and classification (Dickhaus and Heinrich, 1996). The value of 

wavelet networks lies in their capabilities of extracting essential 

features in time-frequency plane. Furthermore, both the position 

and the dilation of the wavelets are optimized besides the weights 

of the network during the training phase. This hierarchical, 

multiresolution training can result in a more meaningful 

interpretation of the resulting mapping and adaptation of 

networks that are more efficient compared to conventional 

methods. In addition, the wavelet theory provides useful 

guidelines for the construction and initialization of networks and, 

consequently, the training times are significantly reduced 

(Iyengar, 2002).  

 

The performance of the WNs for hyperspectral image 

classification has been test in Hsu (2007b). The experiment results 

showed that the WNs exactly is an effective tool for classification 

of hyperspectral images, and has better results than the traditional 

feed-forward multi-layer neural networks. The structure of the 

WNs used in this study is a kind of feed-forward neural network, 

and the ordinary back-propagation (BP) is used for training WNs. 

Therefore, the drawbacks of BP may exist in WNs. The first 

problem is the local minimum of the loss function caused by the 

gradient descent algorithms (Postalcioglu & Becerikli, 2007). In 

BP, the learning rate is usually used to control the size of weight 

changes during the learning phase. Finding a reasonable learning 

rate of wavelet networks is important to not only curtail 

processing cost but also classify accurately. A simple gradient 

decent procedure steps toward the minimum very slowly, and an 

oscillatory descent occurs with a higher learning rate. In general 

back-propagation learning process, a simple but powerful 

improvement algorithm is to add a momentum term (Plaut et al., 

1986) to the gradient decent formula. The use of momentum adds 

inertia to the motion through weight space and smoothes out the 

oscillations (Bishop, 1995). In this study, the influence of the 

momentum will be tested.  

 

The second problem is the initialization of the network 

parameters. Efficient initialization will result to less iterations in 

the training phase of the network and also avoid local minimums 

of the loss function in the training phase (Alexandridis and 

Zapranis, 2013). As for the initialization of wavelet networks, 

weights are typically started with random numbers. For initial 

wavelon nodes, there are several initial modes have been 

proposed to solve best regression problems (Zhang, 1997), but 

they are not convenient for classification. An easier approach is 

take prior information into account. For example, differences 

between two classes are expected for higher frequencies, and the 

wavelet nodes should be initialized in this region of the time-

frequency plane. 

 

In this study, the theory of WNs is firstly introduced for 

hyperspectral image classification, and then an AVIRIS image 

was used to test the feasibility and performance of classification 

using the WNs. The influence of the learning rate and momentum 

term is presented, and several initialization modes of WNs were 

used to test the performance of wavelet networks. 

 

 

2. WAVELET TRANSFORM 

2.1 Wavelet Transform 

Due to the time-frequency localization properties, wavelet 

transform (WT) has proven to be appropriate starting point for 

the classification of the measured signals (Stefan and Sagar, 

1999). The wavelet transform decomposes a signal into a series 

of shifted and scaled versions of the mother wavelet function. In 

the past two decades, wavelet transform (WT) has been 

developed as a powerful analysis tool for signal processing, and 

also has been successfully applied in applications such as image 

processing, data compression and pattern recognition (Mallat, 

1999). 

 

Mathematically, a wavelet is defined as a function 𝜓 ∈ 𝕃2(𝑅) 
that has effectively a limited extent and it has an average value 

of zero. The family of wavelet bases can be produced by scaling 

s and translating 𝑢 from the mother wavelet (Mallat, 1999): 

 

𝜓𝑢,𝑠 =
1

√𝑠
𝜓 (
𝑡 − 𝑢

𝑠
) (1) 

 

The continue wavelet transform (CWT) of 𝑓 ∈ 𝕃2(𝑅) at time 𝑢 

and scale 𝑠 can obtained by taking the integral inner product of 

𝑓(𝑡) with the scaled and translated versions of the basis function 

𝜓: 

 

𝑊𝑓(𝑢, 𝑠) = 〈𝑓, 𝜓𝑢,𝑠〉 = ∫ 𝑓(𝑡)
1

√𝑠
𝜓∗ (

𝑡 − 𝑢

𝑠
)

+∞

−∞

 (2) 

 

where ∗ denotes complex conjugation. In definition, the CWT is 

a convolution of the input data with a set of functions generated 

by the mother wavelet. The convolution can be computed by 

using the Fast Fourier Transform (FFT). 

 

The analysis of a signal using CWT yields a wealth of 

information. Clearly there will be a lot of redundancy in the CWT 

The discrete wavelet transform (DWT) is an implementation of 

the wavelet transform using a discrete set of the scales and 

translations according to some defined rules to reduce the 

redundancy. The orthogonal wavelet in terms of multi-resolution 

analysis (MRA) is commonly used in various applications. The 

DWT can decompose a signal into the low-frequency 

components that represent the optimal approximation, and the 

high-frequency components that represent the detailed 

information of the original signal (Mallat, 1989). The 

decomposition coefficients in a wavelet orthogonal basis can be 

computed with a fast algorithm that cascades discrete 

convolutions with conjugate mirror filters h and g, and 

subsamples the outputs. The decomposition formulas are listed 

as following:  
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𝑎𝑗+1[𝑝] = ∑ ℎ[𝑛 − 2𝑝]

∞

𝑛=−∞

𝑎𝑗[𝑝] = 𝑎𝑗 ∗ ℎ̅[2𝑝] (3) 

𝑑𝑗+1[𝑝] = ∑ 𝑔[𝑛 − 2𝑝]

∞

𝑛=−∞

𝑎𝑗[𝑝] = 𝑎𝑗 ∗ 𝑔̅[2𝑝] (4) 

 

where ℎ̅[𝑛] = ℎ[−𝑛] and 𝑔̅[𝑛] = 𝑔[−𝑛] are the approximation 

coefficients at scale 2𝑗 , and 𝑎𝑗+1 and 𝑑𝑗+1 are respectively the 

approximation and detail components at scale 2𝑗+1. 

 

Either CWT or DWT can be used in WNs.  In this study, the CWT 

is used for the purpose of the hyperspectral image classification.  

 

2.2 Wavelet-Based Feature Extraction 

It has been shown that wavelet transform provides good 

capabilities of time-frequency analysis. Hence, several wavelet-

based feature extraction (WFE) methods have been proposed to 

extract essential features of hyperspectral images for 

classification (Hsu, 2007a). Such features were performed with 

wavelet transform described by translating and scaling indices. 

The values of WT at specific time and scale index can be 

regarded as meaningful features that can be used to distinguish 

different classes of land objects in image classification. However, 

the extracted features were highly dependent on both the values 

of the translating and scaling parameters that characterize pre-

processing of WFE. These values are selected before feature 

extraction procedure based on a user’s prior knowledge that is 

rarely acquired or unpredictable (Angrisani et al., 2001). To 

overcome this limitation, adjustable translating and scaling 

parameters dependent on characteristics of data are expected. In 

this paper, wavelet networks based on back-propagation 

networks and wavelet theory is introduced. Wavelet networks 

can adjust translating and scaling parameters during learning 

stage and give optimized image classification result. Not only 

avoid the limited sample problem, but also improve the 

performance of neural networks. This wavelet networks-based 

classifier for hyperspectral image is more flexible than neural 

networks because weights and extracted features both are 

optimized during training. Figure 1 illustrates the difference 

between wavelet networks and neural networks with extracted 

features by the WFE.  

 

 

3. WAVELET NETWORKS 

3.1 Structure of Wavelet Networks 

Based on the theory of wavelet transform, the concept of wavelet 

networks was first proposed by Zhang and Benvenite (Zhang and 

Benveniste, 1992). Wavelet networks for classification combines 

the aspects of the wavelet transformation for purposes of feature 

extraction and selection with the characteristic decision 

capabilities of neural-network approaches (Dickhaus and 

Heinrich, 1996). Figure 2 shows the structure of the wavelet 

networks used in this study, in which consists of one wavelet 

layer, one hidden layer, and one output layer. A wavelet node 

(called wavelon) for feature extraction is parameterized by a 

translation parameter, 𝑢𝑘, and a scale parameter, 𝑠𝑘. The outputs 

of the wavelons, 𝜑𝑘, which can be interpreted as the correlation 

between the signal 𝑥[𝑖] and the wavelet ℎ𝑘(𝑡), server as input to 

the hidden layer of neural network classifier. The classifier of the 

right part can be any single-layer or multi-layer perceptrons. 

During the learning process, the wavelet node parameters are also 

updated to minimize the error, 𝐸. 

 

 

 

Figure 1. Comparison between neural networks with WFE and 

wavelet networks 

 

 

 

Figure 2. The structure of wavelet networks 

 

 

3.2 Implementation of Wavelet Networks 

A typical wavelet function used in the wavelet networks is the 

complex Morlet wavelet (Dickhaus and Heinrich, 1996): 

 

h(𝑡) = exp(𝑗𝜔0𝑡 − 0.5 ∙ 𝑡
2) (5) 

 

The wavelet nodes ℎ𝑘(𝑡)  in Figure 2 are scaled and dilated 

versions of this wavelet mother function: 

 

ℎ𝑘(𝑡) =
1

√𝑠𝑘
exp (𝑗𝜔0 (

𝑡 − 𝑢𝑘
𝑠𝑘

) − 0.5 ∙ (
𝑡 − 𝑢𝑘
𝑠𝑘

)
2

) (6) 
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The variable 𝑠𝑘  is the scale parameter, and 𝑢𝑘  is the dilation 

parameter of the wavelet function. If the scale 𝑠𝑘  is large, the 

wavelet is a dilated low-frequency function, whereas for small 

values of 𝑠𝑘, the wavelet is compact, corresponding to a high-

frequency function. Formally, the node’s output 𝜑𝑘 is the result 

of the wavelet transform which is defined as the inner product of 

the node ℎ𝑘 and the signal 𝑥[𝑖], which is the input of the wavelet 

networks (the index  𝑖 = 1,⋯ ,𝑁 denotes the signal number) 

 

𝜑𝑘 = 〈ℎ𝑘 , 𝑥〉 = |∫ ℎ (
𝑡 − 𝑢𝑘
𝑠𝑘

) 𝑥(𝑡)𝑑𝑡

𝑡

| (7) 

 

For the Morlet wavelet, 𝜑𝑘 can be calculated for each wavelet 

node 

 

𝜑𝑘 = √𝑜𝑐𝑜𝑠𝑘
2 + 𝑜𝑠𝑖𝑛𝑘

2  (8) 

 

where 

 

𝑜𝑐𝑜𝑠𝑘 =∑𝑥[𝑛]

𝑁

𝑖=1

cos (𝜔0
𝑛 − 𝑢𝑘
𝑠𝑘

) ∙ exp (−0.5 ∙ (
𝑛 − 𝑢𝑘
𝑠𝑘

)
2

) (9) 

𝑜𝑠𝑖𝑛𝑘 =∑𝑥[𝑛]

𝑁

𝑖=1

sin (𝜔0
𝑛 − 𝑢𝑘
𝑠𝑘

) ∙ exp (−0.5 ∙ (
𝑛 − 𝑢𝑘
𝑠𝑘

)
2

) (10) 

 

The neuron’s output 𝑦𝑖 is calculated by the weighted sum of the 

outputs of the pervious layer, 𝑜𝑗, the neuron’s threshold, 𝑏𝑗 , and 

its activation function f , that the sigmoidal function is used in 

this paper: 

 

𝑦𝑖 = 𝑓 (𝑢𝑖
[2]
) =

1

1 + exp (𝑢𝑖
[2]
)
                                   

                       =
1

1 + exp (∑ 𝑤𝑖𝑗
[2]
∙ 𝑜𝑗

𝐽
𝑗=1 + 𝑏𝑖

[2]
)  

 

(11) 

 

 

3.3 Training of Wavelet Networks 

During the training phase, the ANN weights 𝑤 are adjusted to 

minimize the total least-square error 𝐸𝑇 between the net’s desired 

output vector 𝑑𝑖 and its actual output 𝑦𝑖 for all input vectors 𝑥(𝑝). 
 

𝐸𝑇 = ∑𝐸(𝑝)
𝑃

𝑝=1

=
1

2
∑∑(𝑑𝑖

(𝑝)
− 𝑦𝑖

(𝑝)
)
2

𝑀

𝑖=1

𝑃

𝑝=1

→ 𝑚𝑖𝑛 (12) 

 

The minimization problem can be solved by an iterative gradient 

technique. The partial derivative of the weights, 𝑤, are calculated 

according to the generalized delta rule: 

 

𝑤𝑡+1 = 𝑤𝑡 − 𝜂
𝜕𝐸

𝜕𝑤𝑡
+ 𝛼(𝑤𝑡 −𝑤𝑡−1) (13) 

𝑤 = {𝑢𝑘 , 𝑠𝑘 , 𝑤𝑗𝑘
[1]
, 𝑏𝑗
[1]
, 𝑤𝑖𝑗

[2]
, 𝑏𝑖
[2]
} (14) 

𝜕𝐸𝑇
𝜕𝑤

= ∑
𝜕𝐸(𝑝)

𝜕𝑤

𝑃

𝑝=1

 (15) 

The partial derivatives of the weights to the neurons in the output 

and hidden layer are calculated as follows: 

 

𝜕𝐸𝑇

𝜕𝑤𝑖𝑗
[2]
= −∑𝛿𝑖𝑗

(𝑝)

𝑃

𝑝=1

𝑜𝑗
(𝑝)

 (16) 

𝜕𝐸𝑇

𝜕𝑤𝑗𝑘
[1]
= −∑𝛿𝑗𝑘

(𝑝)

𝑃

𝑝=1

𝜑𝑘
(𝑝)

 (17) 

 

These two equations hold for neurons with a sigmoidal activation 

function. 

In the wavelet network, not only the weights are adjusted, but 

also the parameters of the wavelet nodes. The partial derivatives 

for a wavelet node’s scale parameter, 𝑠𝑘, and it shift parameter, 

𝑢𝑘, depend on the wavelet basis chosen and are determined using 

the backpropagated error 𝐸𝑇:  

 

Thus, in each iteration of the training cycle, the weights and the 

wavelet parameters are varied to reduce the error, E. This 

procedure is repeated until the net has settled down to a minimum 

 

𝜕𝐸(𝑝)

𝜕𝑢𝑘
= −∑𝛿𝑗𝑘𝑤𝑗𝑘

[1] 𝜕𝜑𝑘
𝜕𝑢𝑘

𝐿

𝑗=1

 (18) 

𝜕𝐸(𝑝)

𝜕𝑠𝑘
= −∑𝛿𝑗𝑘𝑤𝑗𝑘

[1] 𝜕𝜑𝑘
𝜕𝑠𝑘

𝐿

𝑗=1

 (19) 

𝜕𝜑𝑘
𝜕𝑢𝑘

=
1

𝜑𝑘
∑𝑥[𝑛]

𝑁

𝑖=1

exp (−0.5 ∙ (
𝑛 − 𝑢𝑘
𝑠𝑘

)
2

)
1

𝑠𝑘
 

∙

(

 
𝑜𝑐𝑜𝑠𝑘 [𝜔0 sin (𝜔0

𝑡 − 𝑢𝑘
𝑠𝑘

) +
𝑡 − 𝑢𝑘
𝑠𝑘

cos (𝜔0
𝑛 − 𝑢𝑘
𝑠𝑘

)]

+𝑜𝑠𝑖𝑛𝑘 [−𝜔0 cos (𝜔0
𝑛 − 𝑢𝑘
𝑠𝑘

) +
𝑛 − 𝑢𝑘
𝑠𝑘

sin (
𝑡 − 𝑢𝑘
𝑠𝑘

)]
)

  

(20) 

𝜕𝜑𝑘
𝜕𝑠𝑘

=
𝑛 − 𝑢𝑘
𝑠𝑘

𝜕𝜑𝑘
𝜕𝑢𝑘

 (21) 

 

 

 

4. EXPERIMENTS 

In this study, a set of hyperspectral data was used to test the 

classification performance using the two methods mentioned 

above. The diagram of the experiment is illustrated in Figure 1. 

The study image is a small segment of AVIRIS image. The image 

is located in NW Indiana Indian Pine test site and was taken in 

1991. The image size is 145 pixels145 pixels. The original data 

set has 224 spectral bands from 400 nm to 2450 nm with 10 nm 

spectral resolution. The number of bands is 220 after removing 4 

noisy bands. The radiance spectra are directly used to test the 

feature extraction method without performing any kind of 

atmospheric correction. The ground truth data includes five 

different classes which are “grass/trees”, “soybeans-min”, 

“soybeans-notill”, “hay-windrowed” and “woods”. Figure 4 

shows the information related to test image. The number of 

training samples of each known class was 50 from ground truth 

data and additional labeled test samples were used to assess the 

accuracy of the classification. 
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In order to develop a wavelet networks image classifier suitable 

for hyperspectral image, three experiments were designed to look 

for a proper wavelet network classifier. The performance of 

wavelet networks was evaluated generally by the criterion MSE 

(mean square error).  

 

 

  

 

(a) Test image (b) Ground truth data 

Figure 3. Test Image Data 

 

 

4.1 Experiment 1: Learning Rate and Momentum Term 

An experiment was set to test three back-propagation algorithms 

including general gradient decent algorithm, gradient decent with 

momentum term, and quickprop method. Momentum term and 

quickprop method are improved algorithms to accelerate the 

learning process. The performance (MSE) was used to evaluate 

the efficiency of learning in Figure 4. An oscillatory curve was 

obtained by the simple gradient descent method. It indicates that 

a large initial learning rate was chosen in this case. Compare to 

the result of added momentum term, the oscillations was 

smoothed out because of adaptive learning strategy. In addition, 

the quickprop method lead the most effective learning process in 

this experiment because of the quick and smoother convergence 

in Figure 4. 

 

Table 1 shows the classification results acquired by trained 

networks whose MSE = 0.5 . As discussed above, quickprop 

required the least iteration computation. Further, good 

generalization ability was provided because the minimum MSE 

was corresponding to the best classification result in Table 1. 

These results suggest that quickprop is a practical improved 

gradient algorithm for wavelet networks.  

 

 

 

Figure 4. The performance (MSE) of three back-propagation 

algorithms 

 

 

 

 
overall 

accuracy 

the number of 

iterative learning 

gradient 87.1% 92 

gradient with 

moment term 
88.8% 119 

quickprop 89.8% 80 

Table 1. Classification result and the number of learning at 

MSE = 0.5 

 

4.2 Experiment 2: Different Initialization Modes 

Several initialization modes were used to test the performance of 

wavelet networks. As listed in Table 2, better classification 

results were given by mode1 and mode 5. Initial values set by 

these two modes were well distributed in all band-scale space. 

The results indicated that useful features can be found in both 

high frequency field (detail space) and low frequency field 

(approximation space). Further, using the wavelet networks with 

the initial scaling and translating values chosen randomly is a 

feasible and easy procedure. 

 

Mode 
Initialized parameters Overall 

accuracy translating scaling 

Mode 1 equal interval 
each resolution 

space 
88.1% 

Mode 2 equal interval random 86.3% 

Mode 3 equal interval finest resolution 85.3% 

Mode 4 random 
each resolution 

space 
86.6% 

Mode 5 random random 87.7% 

Mode 6 random finest resolution 81.7% 

Mode 7 non-linear non-linear 84.6% 

Table 2. Initialization mode 

 

Figure 5 represented the locations of the wavelons for all modes 

on the time-frequency plane after training. It can be found that 

several common regions were selected as features by different 

modes. It can be inferred that wavelet networks can extract useful 

features during training. Moreover, these features were 

distributed mostly in high frequency domain. Features extracted 

from wavelet networks initialized by different modes were 

converged to the same spot of time-frequency plane, especially 

higher frequency or detail space. In multi-resolution analysis, 

useful features can be found in detail space to distinguish objects. 

 

 

 

Figure 5. Locations of learned wavelons on time-frequency 

plane 

 

Then by projecting scaling and translating indices of learned 

wavelons to time-frequency plane of the tested data, one can 

examine the efficiency of wavelons, as shown in Figure 6. It can 
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be seen approximately that features extracted by wavelet 

networks corresponded to the modulus of coefficients 

characterizing the five classes.  

 

 

 

 

 

 

Figure 6. Modulus of coefficients and learned wavelons of 

mode 5 

 

4.3 Experiment 3: Varying Number of Wavelons 

Statistically, the effective number of features can be 

approximately selected upon the number of classes by 

𝑁𝑓𝑒𝑎𝑡𝑟𝑒𝑠 = 𝑁𝑐𝑙𝑎𝑠𝑠𝑒𝑠 + 1 . Unnecessary features increase the 

computation burden. Moreover, the problem of insufficient 

samples discussed before arises. The issue about how many 

efficient wavelons should have in wavelet networks is crucial. 

The experiment results in Figure 7 showed that growing features 

is not beneficial to accuracy but increase the training time. The 

appropriate number of wavelons was approximately acquired by 

training with 5 wavelons. No significant accuracy improvement 

was obtained by adding wavelons.  

 

Figure 7. Classification results with increasing the numbers of 

wavelons (features) 

 

5. CONCLUSION  

Supervised image classification requires a certain amount of 

training samples to obtain reliable statistical parameters. 

However, we often have limited ground truth data in practical 

applications. Neural networks is an alternative approach of image 

classification without necessary statistical computation. 

However, neural networks increase training cost and complexity 

when applying to high dimensional data. Wavelet networks can 

successfully improve the performance of traditional neural 

networks by combining wavelet decomposition theory and 

learning ability of neural networks. Moreover, it yields a good 

generalization ability .Some parameters of wavelet networks are 

discussed in this paper to design a proper hyperspectral image 

classifer. By optimizing the parameters of wavelet networks, an 

effective tool to classify can be expected.  

 

Since the mother wavelet function used in this study was complex 

Morlet wavelet only, it is expected that future research could 

examine further the correlation between different mother wavelet 

functions and performance of wavelet networks. Instead of back-

propagation wavelet networks, an additional interesting research 

might be to consider other wavelet networks, such as radical 

wavelet neural networks and recurrent wavelet networks. 

Moreover, a more extensive study about the applicability of other 

artificial intelligence techniques, such as support vector machine, 

fuzzy logic and genetic algorithm is another interesting topic. 
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