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Abstract An optimal calibration method for a micro-
electro-mechanical inertial measurement unit (MIMU) is 
presented in this paper. The accuracy of the MIMU is 
highly dependent on calibration to remove the 
deterministic errors of systematic errors, which also 
contain random errors. The overlapping Allan variance 
is applied to characterize the types of random error 
terms in the measurements. The calibration model 
includes package misalignment error, sensor-to-sensor 
misalignment error and bias, and a scale factor is built. 
The new concept of a calibration method, which 
includes a calibration scheme and a calibration 
algorithm, is proposed. The calibration scheme is 
designed by D-optimal and the calibration algorithm is 
deduced by a Kalman filter. In addition, the thermal 
calibration is investigated, as the bias and scale factor 
varied with temperature. The simulations and real tests 
verify the effectiveness of the proposed calibration 
method and show that it is better than the traditional 
method.   
 
Keywords Calibration, MIMU, D-optimal, Kalman Filter, 
Thermal 
 
 

1. Introduction 

Nowadays, the progress in micro electro-mechanical 
systems (MEMSs) has enabled the development of low-cost 
inertial measurement units (IMUs), which are increasingly 
used in biomedical applications [1], in robots’ navigation 
systems [2] and in microsurgical instruments [3]. However, 
the performance of MEMS inertial sensors is degraded by 
fabrication defects, including produced asymmetric 
structures, the misalignment of actuation mechanisms and 
deviations of the centre of mass from the geometric centre. 
The inner factors cause output errors, which are often 
divided into deterministic and random errors [4]. Moreover, 
the inertial measurement unit integrated by MEMSs’ 
inertial sensors (MISs) may still contain IMU package 
misalignment errors and IMU sensor-to-sensor 
misalignment errors [4]. Therefore, it is essential to develop 
an effective calibration method to reduce the errors and 
increase the MIMU’s precision and stability.  
 
The method most commonly used for the calibration of 
MEMS accelerometers is the six-position method [5], 
which requires the inertial system to be mounted on a 
levelled surface with each sensitivity axis of each sensor  
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pointing, alternately, up and down. This calibration 
method can be used to determine the bias and scale 
factors of the sensors, but cannot estimate the axes 
misalignments or non-orthogonalities. The multi-position 
calibration method is proposed to detect more errors [6]. 
These methods depend on the earth’s gravity as a stable 
physical calibration standard. Furthermore, some special 
apparatus, such as motion sensing equipment [7] and 
robotic arms [8-9], are used for calibration. For the 
calibration of low-cost MEMS gyroscopes, the Earth’s 
rotation rate is smaller than its resolution. Therefore, the 
traditional calibration method is dependent on a 
mechanical platform, rotating the IMU into different, pre-
defined, precisely-controlled orientations and angular 
rates. Such a method was primarily designed for in-lab 
tests, which often require the use of expensive equipment 
[5]. Therefore, some calibration methods that do not 
require the mechanical platform have been proposed. In 
[10], an optical tracking system is used. In [11], an 
affordable three-axis rotating platform is designed for the 
calibration. Meanwhile, schemes for in-field user 
calibration without external equipment are proposed. 
Fong et al. [12] calibrated gyroscopes by comparing the 
outputs of the accelerometer and the IMU orientation 
integration algorithm after arbitrary motions, which 
requires an initial rough estimate of the gyroscope’s 
parameters. Jurman [13] and Hwangbo [14] proposed a kind 
of shape-from-motion calibration method with 
magnitude constraint of motion. Furthermore, the 
calculation algorithm is another important issue. The 
calibration parameters are computed by the algorithm. 
The least squares method is the algorithm most 
commonly used in scalar calibration to estimate the 
calibration parameters [6, 11-14]. H.L Zhang et al. [15] 
implemented an optimal calibration scheme by 
maximizing the sensitivity of the measurement norms 
with respect to the calibration parameters. The algorithms 
typically lead to a biased estimate of the calibration 
parameters and may give non-optimal estimates of the 
calibration coefficients. To avoid this, Panahandeh et al. 
[16] solved the identification problem by using the 
maximum likelihood estimation (MLE) framework, but 
only simulation results are presented. In fact, the biases 
and scale factors vary with temperature. The thermal 
calibration is also an indispensable process for MIMU. 
However, the literature seldom completes this type of 
calibration.  
 
In this paper, an optimal calibration method for a MIMU 
is presented. Firstly, the measurement noise of the 
sensors is analysed to provide the information for the 
calibration. Next, the concept of the calibration method is 
introduced, which consists of a calibration scheme and a 
calibration algorithm. The optimal calibration scheme is 
designed by the D-optimal method [17-18]. Meanwhile, the 
optimal calibration algorithm is deduced by a Kalman 

filter. The calibration parameters, like scale factors, 
misalignments and biases, are estimated. Afterwards, 
thermal calibration is implemented to determine the scale 
factors and biases in different temperatures. In the end, 
the results of the simulations and experiments verify the 
effectiveness of the proposed method, and the 
performance of the MIMU is improved after the 
calibration.     
 
The paper is organized as follows. Section 2 presents the 
hardware of the MIMU and introduces the inertial sensor 
model. Section 3 describes the character of the sensors’ 
measurement noise, and the overlapping Allan variance 
is applied. Section 4 gives the MIMU model, where the 
scale factors, package misalignments, sensor-to-sensor 
misalignments and biases of the accelerometer and 
gyroscope triads are considered as the calibration 
parameters. Then, the optimal calibration algorithm for 
the gyroscope triad and the accelerometer triad is 
proposed, followed by the optimal calibration scheme 
designed by the D-optimal method. The thermal 
calibration of the MIMU is presented at the end of the 
section. Section 5 reports the calibration results of MIMU 
through both simulations and real tests. It shows that the 
improved multi-position approach outperforms the 
traditional calibration method. Conclusions are drawn in 
section 6. 

2. Hardware description 

A MIMU has been constructed by using MEMS gyros and 
a MEMS accelerometer. A MMA7260 accelerometer 
measures the triple-axis acceleration; three single-axis 
ADXRS300 gyros measure the angular rate in yaw, roll 
and pitch. Finally, the printed circuit boards (PCBs) of the 
yx,  gyros are kept orthogonal by a slot.   

 
The dynamic range of the ADXRS300 gyro is ±300◦/s [19], 
and full range-scale of the MMA7260QT accelerometer is 
±1.5 g [20]. The outputs from the sensors are analogue 
voltages that are proportional to the inputs as the rotation 
rate or acceleration. At zero input, the nominal output of 
the sensor is bias; positive rotation (clockwise) or 
acceleration increases the voltage from the nominal null 
offset value, whereas negative rotation (anticlockwise) or 
deceleration decreases the voltage output. The null offset 
value must be subtracted from the raw sensor output 
measurements. The specifications of the sensors are 
shown in Table 1. 
 

 Nominal bias Nominal 
Scale Factor 

ADXRS300 gyro 2.5 V 5 mv/°/s

MMA7260QT 
accelerometer 1.65 V 800 mV/g 

Table 1. The specifications of the sensors 
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Based on the above analysis, the output of acceleration 
measured by the accelerometer can be described by the 
following equation:  
 

aaaa εbaKV ++=                              (1) 

 
where aV  is the voltage of acceleration, a  is the true 
acceleration, ab  is the sensor bias, aK  is the scale factor 
(or acceleration gain) and aε  is the sensor’s noise.  
 
A similar equation can be used to describe the angular 
velocity measured by the gyros on the single axis: 
 

ωωωω εbωKV ++=                             (2) 

 

where ωV  is the voltage of angular velocity, ω  is the 
true angular velocity, ωb  is the sensor bias, ωK  is the 
scale factor (or angular velocity gain) and ωε  is the 
sensor’s noise.  
 
Although the MEMS gyro’s and MEMS accelerometer’s 
parameters are given in the manuals, a dynamic range 
modification of the MEMS sensors exists. The errors of 
the parameters as biases and scale factors are 
deterministic errors, which are reduced by calibration. In 
addition, the random errors are measurement noises, 
which should not be ignored in calibration. Therefore, the 
noise needs to be characterized. For this unit, the data 
were collected using a multifunction 12-b data-
acquisition card from National Instruments, the 
DAQCard-6008, which is controlled by a script based on 
National Instruments’ LabVIEW 2007.  

3. Analysis of the measurement noise 

Several variance techniques have been devised for the 
stochastic modelling of the random errors. These are 
basically very similar and primarily differ in that various 
signal processing - by way of weighting functions, 
window functions, etc. - are incorporated into the 
analysis algorithms in order to achieve a desired result 
for improving the model characterizations. The simplest 
is the Allan variance.  
 
The Allan variance is a method of representing the root 
mean square (RMS) random drift error as a function of 
averaging time. It is simple to compute and relatively 
simple to interpret and understand. The Allan variance 
method can be used to determine the characteristics of the 
underlying random processes that give rise to the data 
noise. This technique can be used to characterize various 
types of error terms in the inertial-sensor data by 
performing certain operations on the entire length of 
data.  
 

Assume that there are N  consecutive data points, each 
having a sample time of 0t . Forming a group of n 
consecutive data points (with 2/Nn < ), each member of 
the group is a cluster. Associated with each cluster is a 
time T, which is equal to 0nt . If the instantaneous output 

rate of the inertial sensor is )(TΘ , the cluster average is 
defined as: 
 


+

Θ=Θ
Tt

t
k

k

k

dtT
T

T )(1)(                                  (3) 

 
where )(TkΘ represents the cluster average of the output 
rate for a cluster, which starts from the k th data point 
and contains n  data points.  
 
The definition of the subsequent cluster average is: 
 

( ) ( )
++

+

Θ=Θ
Tt

t
next

k

k

dtT
T

T
1

1

1
                               (4) 

 
where Ttt kk +=+1 . 

 
Performing the average operation for each of the two 
adjacent clusters can form the difference: 
 

( ) ( )TT knextkk Θ−Θ=+ ,1ξ                              (5) 
 

For each cluster time T, the ensemble of sξ  defined by (5) 
forms a set of random variables. The quantity of interest 
is the variance of sξ  over all the clusters of the same size 
that can be formed from the entire data. Thus, the Allan 
variance of length T  is defined as [21]: 
 

( ) [ ]
−

=

Θ−Θ
−

=
nN

k

knext TT
nN

T
2

1

22 )()(
22

1)(σ         (6) 

 
Obviously, for any finite number of data points (N), a 
finite number of clusters of a fixed length (T) can be 
formed. Hence, equation (6) represents an estimation of 
the quantity )(2 Tσ  whose quality of estimate depends on 
the number of independent clusters of a fixed length that 
can be formed. It is normally plotted as the square root of 
the Allan variance ( )Tσ  versus T  on a log–log plot. 
 
In addition, the percentage error is equal to:   
 

( )12
1)(

−
=

nN
δσ                             (7) 
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where N  is the total number of data points in the entire 
run and n is the number of data points contained in the 
cluster.  
 
Equation (7) shows that the estimation errors in the 
region of a short cluster length T are small where the 
number of independent clusters in these regions is large. 
In contrast, the estimation errors in the region of a long 
cluster length T  are large where the number of 
independent clusters in these regions is small. In order to 
avoid the estimation error increasing due to a lack 
of samples, the overlapping Allan variance was proposed 
[22]. The use of overlapping samples improves the 
confidence of the resulting stability estimate. The formula 
is expressed as follows:   
 

( ) ( )( ) 
+−

=

−+

=
+













Θ−Θ
+−

=
12

1

21

2
2

)12(2
1)(

mN

j

mj

ji
imi TT

mNm
Tσ

    (8) 
 

where m  is the averaging factor. 
 
The static data from the MIMU were collected with a 
sampling rate of 1000 Hz at room temperature 25℃. By 
applying the overlapping Allan-variance method to 
the whole data set, a log–log plot of the overlapping 
Allan standard deviation versus the cluster time is 
shown in Figure 1 for the accelerometers data and 
Figure 2 for the gyros data. As shown in these figures, 
the drift characteristic of the sensors is at its worst as 
σ  takes the longest time interval - of about 20 s - to 
converge, which means that the bias drifts of the 
accelerometers and gyros are much noisier. This 
implies that the sensor bias should be averaged over a 
period of at least 20 s so that the average bias will not 
change significantly over the next few 20 s intervals. 
Within 20 s, the random error can be considered as 
white noise.  
 

  
Figure 1. Accelerometers overlapping Allan variance results 

 
Figure 2. Gyros overlapping Allan variance results 
 
In dealing with the sensor signals over a period of time 
determined using the Allan variance analysis above, it 
will keep the bias drift minimal during the successive 
time period when the calibration data are collected. 
Accordingly, the white noise is only considered in the 
calibration. 

4. Calibration method 

Calibration is the process of comparing the instruments 
output with known reference information and 
determining the coefficients that force the output to agree 
with the reference information over a range of output 
values [23]. Moreover, many researchers [5-16] have 
developed calibration methods for the IMU.   Before the 
description of our own calibration method, a clear 
concept of the calibration method is introduced first of all. 
The calibration method of the IMU should consist of two 
aspects, which are a calibration scheme and a calibration 
algorithm. The scheme is to design the experiments, 
while the algorithm is to compute the parameters by the 
experimental data. A novel calibration method is 
presented in this section according to this concept.  
 
Firstly, the complete calibration model of the MIMU is 
described. Next, an optimal calibration method is 
proposed by an optimal calibration scheme and an 
optimal calibration algorithm. The scheme is the design of 
a calibration experiment for the gyroscope triad and the 
accelerometer triad, and the calibration results are 
computed by the optimal algorithm. Finally, thermal 
calibration is described. 

4.1 Calibration model 

The measurement model of the accelerometer or 
gyroscope generally includes bias, scale factors and 
random error. Bias and scale factors are considered as the 
most significant parameters, which change with different 
temperatures. It is also a very important characteristic for 
inertial sensors (though this is dealt with by independent 
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thermal calibration, as explained at the end). In this 
section, the calibration procedure is performed at a stable 
temperature and the self-heating effects can be ignored, 
as the MIMU is calibrated after the sensors are warmed 
up to thermal stability. Moreover, the random error can 
be considered as white Gaussian noise from the last 
section.  
 
In this paper, the MIMU consists of three almost 
orthogonally mounted gyroscopes and a three-axis 
accelerometer. As to the unit, the misalignment error 
would be induced because of the sensors’ installation. 
The misalignment error is divided into two sources: 
package misalignment error and sensor-to-sensor 
misalignment error. Package misalignment error is 
defined as the angle between the true axis of sensitivity 
and the body axis of the package. Sensor-to-sensor 
misalignment error defines the misalignment error due to 
the non-orthogonality of the IMU’s axes.  
 
The package misalignment angle can be defined as three 
angles. First, for a rotation about the z -axis by an angle 
of zθ , the matrix can be represented as follows: 
 
















−=

100
0cossin
0sincos

1 zz

zz

C θθ
θθ

                    (9)  

 
Second, for a rotation about the y -axis by an angle yθ , 
the matrix is represented as follows: 
 















 −
=

yy

yy

C
θθ

θθ

cos0sin
010

sin0cos

2                    (10) 

 
And finally, for a rotation about the x -axis by an angle of 
xθ , the matrix is represented as follows: 

 
















−=

xx

xxC
θθ
θθ

cossin0
sincos0

001

3                    (11)

 
 
The three angles can be considered as small angles. Then, 
the package misalignment error can be represented by the 
following equation: 
 


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The sensor-to-sensor misalignment error or non-
orthogonality can be also considered as creating a series 
of rotation matrices that define the relationship of the 
misaligned axes to those of the perfectly orthogonal triad. 
Generally, it is considered that the axes x  of the frames 
coincide and - assuming small angles - the non-
orthogonality matrix can be approximated by: 
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Then, the total misalignment error can be written as:  
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Consequently, the measurement of the accelerometer 
cluster can be expressed as: 
 

aagaac vbaMKa ++=                         (15) 

 
where ga denotes the input specific force expressed in 
platform coordinates and av is the measurement noise. 
The scale factor matrix and bias vector of the 
accelerometer are defined, respectively, as:  
 

),,( zayaxaa kkkdiag=K , [ ]Tzayaxaa bbb=b
 

 
where iak  and iab , respectively, denote the scale factor 
and the bias of the i th accelerometer output, zyxi ,,= .  
The misalignment matrix of the accelerometer is written 
as:  
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Analogously, the measurement of the gyroscope cluster 
can be written as:  
 

gggggc vbMK ++= ωω                    (17) 

 
 

(14) 
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where cω denotes the true platform angular velocity with 
respect to the inertial coordinates expressed in platform 
coordinates, gK is the diagonal scale factor matrix, gb is 
the bias vector of the gyroscope cluster, and gv is the 
measurement noise. 
 
The misalignment matrix of the gyroscope triad is written 
as: 


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
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g
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The task of MIMU calibration is to estimate such 
parameters as scale factors, misalignments, biases of the 
accelerometer and the gyroscopes.Meanwhile, the 
experiment is implemented at 25℃ in the lab. The key 
technology of the calibration can be divided according to 
two aspects: the calibration scheme and the calibration 
algorithm. We will discuss these separately in the 
following sections. 

4.2 Calibration scheme 

The calibration scheme is the experiment design for the 
MIMU. Generally, a multi-position calibration scheme is 
used for the IMU’s calibration. The general principle of 
the method is to design enough positions to estimate the 
calibration parameters. At least 12 different equations for 
determining (that is, at least 12 positions for the MIMU) 
are required in calibration, as there are 12 unknown 
parameters in both the accelerometer triad and the 
gyroscope triad. In order to avoid computational 
singularity in estimation, more positions are desired to 
get numerically reliable results in reality. Afterwards, the 
question as to how the positions are designed in 
calibration arises. The current literature has seldom 
discussed in detail how the positions are optimized - in 
other words, the scheme not only makes all the 
calibration parameters identifiable, but also maximizes 
their numerical accuracy. In the current context, the 
optimal calibration positions are proposed by the D-
optimal method. 
 
According to equations (15)-(17), the following equation 
can be deduced: 
 

vbPIO ++=                                (19) 
 
where aaMKP = or ggMK , gaI =  or gω  denotes the 

input vector of MIMU, caO =  or cω  denotes the vector 
of the MIMU’s measurement, avv =  or gv , abb =  or gb . 

 
By rearranging equation (19), we can attain the following 
equations: 









++⋅=
++⋅=
++⋅=
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z
z

z

y
y
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vbO
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3

2

1

                            (20) 

 

where [ ]T1312111 PPP=P , 

[ ]T2322212 PPP=P , 

[ ]T3332313 PPP=P , 

Oi denotes the MIMU’s measurement of the 
i axis, zyxi ,,= . 
 
Assume Ξ is an experimental procedure, which is used to 
calibrate the parameters in equation (20). The 
experimental procedure is composed of n  tests, defined 
as kU ( [ ]nk ,1∈ ). Each test kU corresponds to a test 
position of Ξ , which is generated by the input vector 

[ ]1kk IΓ = , where kI  is the vector at test point k . As a 
result, every experimental procedure can be 
mathematically represented as: 
 

( ) [ ]{ }nkU kk ,1∈=Ξ Γ                           (21) 

 
with associated outputs Oi . 
 
It is shown that a D-optimal design can be achieved with 

( ) 21+≤≤ ppnp , where p  is the number of parameters 
to be estimated. From equation (21), one can see that there 
are four unknown parameters for each output axis, so the 
optimal number of measurement positions must exist in 
[5,13]. 
 
Then, the optimal function can be described as follows:  
 
Find:     [ ] ΕΓΓΓ ∈=∗Ξ k21  

With:             ( ) ( )}{ nD nnn FF Tdetmaxarg =Ξ=Ξ
Ε∈Ξ

              (22) 

where Ε is the global region of positions and 
[ ]kn ΓΓΓF 21=  for the design information matrix 

of n  test positions.   
 
In addition, the procedure of D-optimal design is 
described as follows: 

1) Select n  test positions from global candidate 
positions and calculate the object function niD  

2) Select a maximum niD  and let nin DD max=  
3) 12≤n ,return to step 1) 
4) Optimal experiment positions ∗Ξ  

 
Four optimal positions for each Oi are acquired; therefore, 
totally, 12 optimal positions can be attained for 
calibration. Then, there are the duplicate positions. After 
removing the duplicate positions, the nine optimal 
positions (which are listed in Table 2) are used for 
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calibration. It is noticed that the MEMS gyros in the paper 
are low cost and cannot measure the Earth’s rotation rate. 
Therefore, a rotation rate table is used in the calibration to 
produce a reference signal. Meanwhile, gravity is also 
considered as a reference signal. 
 

No. 
MIMU Postures 

Illustration 
x  y  z  

1 1 0 0 

2 -1 0 0 

3 2/2  2/2  0 

4 2/2  0 2/2  

5 0 1 0 

6 0 -1 0 

7 0 2/2  2/2  

 

8 0 0 1 

9 0 0 -1 

Table 2. Optimal positions for calibration 

4.3 Calibration algorithm  

The calibration algorithm is the computation of the 
calibration parameters from the data, which is collected 
by the calibration scheme. Because the collected data 
from the MIMU contain random noise, the optimal 
estimate algorithm is generally adopted. The least 
squares algorithm is the most commonly used in 
estimating the calibration parameters. The algorithms 
typically lead to a biased estimate of the calibration 
parameters and may give non-optimal estimates of the 
calibration coefficients. Consequently, a Kalman filter is 
designed for the calibration algorithm in what follows.  
 

4.3.1 Kalman filter design 

A Kalman filter (KF) eliminates random noise and errors 
using knowledge about the state-space representation of 
the system and uncertainties in the process: the 
measurement noise and the process noise. As such, it is 
very useful as a signal filter in the case of signals with 
random disturbances or else when signal errors can be 
treated as an additional state-space variable in the 
system. For linear Gaussian systems, the Kalman filter is 
the optimal minimum mean square error estimator. 
 
The model can be expressed as follows: 
 

iii wΦXX +=+ 1                                        

111 +++ +⋅= iii εXHZ                          (23) 

 
where iX  is the state vector at time i  and: 

1+iZ - the system output (measured signal) at time i , 
iw - the process noise at time i , 
iε -the measurement noise at time i , 
Φ , H - matrices of the state-space representation: Φ - 
the state;H - the output. 
 
Moreover, the Kalman filter can be derived by the 
following process: 
 
Time updating: 
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Measurement updating: 
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(25) 

 

According to the optimal positions, a bank of Kalman 
filters is deduced:  
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where 44×= IΦx , [ ]T131211 PPPbx
x =X , 
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Three simpler Kalman filters have been designed for the 
MIMU calibration. Next, the observability is analysed to 
make sure that the calibration parameters are identifiable. 
 
According to [24], the n -state discrete linear time-
invariant system has the observability matrix G  defined 
by: 

( ) [ ]1, −= nHHHHG φφφ                    (29) 
 
The system is observable if, and only if, ( ) nGrank = .  
We can derive the following equations from equations 
(26)-(28) 
 

( ) 4=Hxrank , ( ) 4=Hyrank , ( ) 4=Hzrank           (30) 
 
Because iΦ （ zyxi ,,= ）are identity matrices, the rank 
of the observability matrix is equal to the quantity of 
states. We can conclude that three Kalman filters are 
observable - in another words, the parameters can be 
estimated by the measurements, which are measured by 
the nine-position experiment.   
 
Therefore, the scale factors, biases and orthogonalization 
angles of the MIMU are estimated by the three Kalman 
filters. However, the scale factors and biases are not 
stable in different temperatures. Therefore, thermal 
calibration is also important for the MIMU. 

4.4 Thermal calibration 

The purpose of thermal calibration is to reduce the errors 
caused by the variation of the scale factors and biases of  
 

the MIMU when operated under different temperatures. 
There are two main approaches for thermal testing [5]: (1) 
Allow the IMU enclosed in the thermal chamber to 
stabilize at a particular temperature corresponding to the 
temperature of the thermal chamber and then record the 
data (this method of recording the data at specific 
temperature points is called the ‘Soak method’). (2) In the 
so-called ‘thermal ramp’ method, the IMU temperature is 
linearly increased or decreased for a certain period of 
time. We would use the Soak method to investigate the 
thermal effect of the sensors. 
 
According to equation (15) and equation (17), the model 
of thermal calibration can be described:  
 

g
t
ggg

t
gc vbMK ++= ωω                         (31) 

a
t
aga

t
ac vbaMKa ++=                           (32) 

 
where t

gK  and t
aK  denote the scale factors at a certain 

temperature,  
 
and t

gb  and t
ab denote the biases at a certain temperature. 

 
The misalignment parameters can be obtained by the last 
section and they are not varied by the temperature, so 
only the scale factors and biases should be estimated. The 
calibration scheme can be designed by no. 1-6 in Table 2. 
 
Analogously, the calibration algorithms are deduced:  
 







+=

=

+++

+
a
i

ta
i

t
a

ta
i

t

a
i

t
a

a
i

t

111

1

εXHZ

XΦX
                         (33) 

 







+=

=

+++

+
ωω

ω
ω

ω
ω

ω

ε 111

1

i
t

i
tt

i
t

i
t

i
t

XHZ

XΦX
                         (34) 

 

where [ ]Taza
y

a
x

a
z

a
y

a
x

at bbbkkk=X , 

 

[ ]Tωωωωωωω
zyxzyx

t bbbkkk=X , 

 

66×== IΦΦ ωa , 
 



























−

−

−

==

10000
10000
01000
01000
00100
00100

r
r

r
r

r
r

tat ωHH . 

 
 

8 Int J Adv Robot Syst, 2014, 11:14 | doi: 10.5772/57516



 

 

It is noticed that the variances of the MIMU 
measurements are different for different temperatures, 
and so the covariance matrices of the measurement noise 
should be calculated for different temperatures. In 
thermal calibration, a turntable and a thermal chamber 
are assembled together to form a thermal-turntable unit, 
as shown in Figure 3. 
 

 
Figure 3. The thermal test setup  

5. Calibration Results 

5.1 Simulation and calibration results 

In order to verify the calibration method, a Monte Carlo 
simulation is first implemented. The true values of the 12 
parameters in the calibration model are listed in Table 3. 
It is noted that the parameters are dimensionless 
parameters. 
 

 Sensor 1 Sensor 2 Sensor 3

Bias 2.0 2.5 2.9

Scale factor 0.01 0.05 0.09

xθ  0.01 

yθ  0.05 

zθ  0.1 

yzβ  0.5 

zyβ  0.5 

zxβ  0.8 

Table 3. The simulation parameters 
 
These parameters used in the simulation were chosen to 
be within the range of the expected MIMU parameters. 
The sensor noise standard deviation is: 
 

[ ]001.0001.0001.0=σ                      (35) 
 
Both the traditional method and the proposed approach 
were performed in the simulation. It is noted that the 
traditional method is the method of least squares [5]. The 
results are shown in Figures 4-7.  
 

 
Figure 4. The bias errors of the two calibration methods 
 

 
Figure 5. The scale factors error of the two calibration methods 
 

 
Figure 6. The package misalignment angle errors of the two 
calibration methods 
 
The parameters’ errors are smaller under the proposed 
method. Meanwhile, we find that parameters estimated 
by the traditional method will deviate significantly when 
the noise standard deviation is increased. However, the 
proposed method is still effective. 
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Figure 7. The orthogonalization angle errors of the two 
calibration methods 
 
The simulation results have shown the performance of 
the filter and the accuracy of the proposed method. Next, 
the MIMU is calibrated in the lab, using a cube and a rate 
table. The outputs were sampled at a rate of 1000 Hz and 
the LabVIEW program stored the digitalized analogue 
measurements from the MIMU. The collected data were 
later read into the MATLAB program for processing. The 
calibration results are shown as follows. Figures 8-11 
show the parameters of the three-axis accelerometers 
while the gyros’ are shown in Figures 12-15.  
 

 
Figure 8. Bias of the accelerometers 
 

 
Figure 9. Scale factor of the accelerometers 

 
Figure 10. Package misalignment angles of the accelerometers 
 

 

 
Figure 11. Non-orthogonality angles of the accelerometers 
 

 

 
Figure 12. Bias of the gyros 
 
The estimated results are listed in Table 4. It indicates that 
the estimating procedure is convergent and it takes less 
than two seconds to complete. The parameters converge 
quickly to the stable values.  
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Figure 13. Scale factor of the gyros 
 

  
Figure 14. Package misalignment angles of the gyros 
 

 
Figure 15. Non-orthogonality angles of the gyros 
 

5.2 Thermal calibration results 

The temperature of the thermal chamber varies from 0℃ 
to 50℃. A total of nine different temperatures are 
considered in this experiment. For each temperature, the 
MIMU is allowed to stabilize before recording data.   
 

  Acc. X Acc. Y Acc. Z Gyro X Gyro Y Gyro Z

Bias  (m/s2) (。/s)
1.79 1.66 1.74 2.51 2.52 2.48

Scale 
factor 

(mv/m/s2 ) (mv/。/s)
80.80 80.14 80.84 5.07 5.09 5.17

xθ (。) 0.06 -0.18
yθ (。) 0.20 0.05 
zθ (。) 0.19 0.15 
yzβ (。)
zyβ (。)
zxβ (。)

0.01
-0.02 
-0.01 

1.32 
1.05 
1.15 

Table 4. The calibration results of the MIMU 
 
We calculate the variances of the MIMU measurements at 
different temperatures. The results are listed in Table 5, 
and they are different for the different temperatures. The 
scale factors and biases for the MIMU at different 
temperatures are shown in Figures 16-19. We can see that 
the biases and scale factors of the MIMU vary 
significantly with temperature. Hence, it is necessary to 
get the thermal calibration model for low-cost MEMS 
sensors to compensate for these biases and scale factor 
drift with temperature. 
 

Temperature(℃) 
Variance（10-5v2） 

Gyro 
X 

Gyro 
Y 

Gyro 
Z 

Acc. 
X 

Acc. 
Y 

Acc. 
Z 

0 2.14 2.46 1.77 5.92 4.86 5.31
10 1.42 2.45 1.91 6.75 6.83 5.93
15 1.73 1.27 1.65 6.02 6.57 6.78
20 2.37 1.69 2.31 5.02 6.60 6.51
25 1.27 0.92 1.92 3.57 4.23 2.47
30 0.98 0.95 1.24 4.86 6.47 5.26
35 2.75 1.48 2.44 5.44 5.27 6.50
40 2.58 0.69 1.25 5.05 6.85 7.24
50 1.16 2.29 2.42 6.57 7.17 7.75

Table 5. The measurement variance for different temperatures 
 

 
Figure 16. Variation of the accelerometer scale factor with 
temperature 
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Figure 17. Variation of the accelerometer biases with temperature  
 

 
Figure 18. Variation of the gyroscope scale factor with temperature  
 

 
Figure 19. Variation of the gyroscope biases with temperature 
 
To evaluate the performance of the proposed calibration 
method, we compare it with the six-position method used 
in [5] which is the most commonly used. This requires the 
IMU to be mounted on a levelled table with each sensitive 
axis pointing alternately up and down. For a triad of 
orthogonal sensors, this results in a total of six positions. 
The thermal calibration is implemented by the traditional 
method for the same temperature. Next, the calibrated 

measurements of the static IMU are compared by two 
calibration methods. The results are shown in Figures 20-
21. By comparison with the traditional method, the 
proposed method can improve the measurement 
precision by an order of magnitude.    
 

 
Figure 20. The measured accelerations with zero-inputs  
 

 
Figure 21. The measured angular velocities with zero-inputs 

5.3 Discussion  

Light-weight and low-cost MIMUs are widely used. 
However, these units need calibration for an accurate 
measurement solution. The computed biases, scale factors, 
package misalignment angles and sensor-to-sensor 
misalignment angles are estimated in a stable 
temperature through the optimal calibration method. By 
observing the estimated parameters of the MIMU, we can 
find out the differences between sets of sensors, even 
though they belong to the same type. In fact, the 
parameters’ values are not identical to the specifications’ 
values. Meanwhile, it is evident that the accelerometer 
triad contains smaller orthogonalization errors than the 
gyros, since the accelerometer triad consists of one three-
axis sensor while the gyroscope triad has three single-axis 
sensors, which are not easy to install orthogonally. 
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We get the misalignment angles in the optimal calibration 
at a stable temperature, and then estimate the biases and 
scale factors of the MIMU at different temperatures by 
thermal calibration. The experiments have shown that the 
random errors’ variances of the measurements are 
different. It is useful for the estimation of the biases and 
scale factors by the Kalman filter. As observed in Figure 
17 and Figure 19, there is an almost linear relationship 
between the biases and temperatures. Hence, a linear 
interpolation formula can be deduced for calibration in 
the temperature range. As observed from Figure 16 and 
Figure 20, the scale factors have an ambiguous 
relationship with temperature, but the interpolation 
polynomial can be obtained. The temperature drift errors 
can be reduced by thermal calibration.  

6. Conclusion 

The calibration of MIMU is an important phase in 
improving performance. This paper has presented an 
optimal calibration method for the MIMU, together with 
deduction, simulation and experimental results. We 
analyse the random errors by overlapping Allan variance, 
and the white noise is taken account of by the calibration. 
The general calibration model includes such calibration 
parameters as scale factors, biases, package misalignment 
error angles and sensor-to-sensor misalignment angles. A 
new concept for a calibration method is proposed. 
Moreover, the new calibration scheme is presented by the 
D-optimal method, the new calibration algorithms are 
designed with Kalman filters, which are used to obtain 
optimal estimates of the calibration parameters. 
Simulations have verified their feasibility and 
effectiveness. Thermal calibration has been accomplished 
because the biases of accelerometers and gyroscopes vary 
significantly with temperature. The experiment results 
have demonstrated that the new approach outperforms 
traditional methods. In future, the calibrated MIMU will 
be used for remotely-operated vehicle navigation for a 
nuclear power plant.    
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