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ABSTRACT

CD57" expression in T lymphocytes has been recog-
nized for decades as a marker of in vitro replicative se-
nescence. In recent years, accumulating evidences
have pointed on the utility of this marker to measure
functional immune deficiency in patients with autoim-
mune disease, infectious diseases, and cancers. We
review here the relevant literature and implications in
clinical settings. J. Leukoc. Biol. 87: 107-116; 2010.

Introduction

The CD57 antigen (Fig. 1) is a terminally sulfated glycan car-
bohydrate epitope (glycoepitope) that was first described in
1981 on HNK cells [2], and it is also called HNK-1, LEU-7, or
L2 [3]. The HNK-1 epitope is expressed by a variety of cell
types in the vertebrate nervous system, where its cell type-spe-
cific expression patterns change during neural development.
The HNK-1 determinant is composed of a GlcA attached in
a1-3 linkage to a terminal galactose. This structure is synthe-
sized by specific glucuronosyltransferases that act on terminal
(poly)-N-acetyl-lactosamine units of N-glycans. Glucuronylation
is followed by 3-O-sulfation of the GlcA by one or more spe-
cific sulfotransferases. The HNK-1 epitope has also been de-
scribed on O-glycans of glycoproteins, on proteoglycans, and
on glycolipids. Two different GlcA transferases participate in
HNK-1 GlcA addition: GIcAT-P and GIcAT-S [4-6] (a third
enzyme, GIcAT-D, has been suggested to be involved [7]).
They have very different activities for glycoprotein or glyco-
lipid substrates in vitro and thus, may generate functionally
different HNK-1 epitopes in vivo.

The HNK-1 epitope is present on a variety of neuronal cell
glycoproteins, including neural cell adhesion molecule, contac-

Abbreviations: ATG=antithymocyte globulin, B-CLL=B cel chronic lympho-
cytic leukemia, CDB2LL=CDE?2 ligand, FL=fdllicular lymphoma, GC=germinal
center, GlcA=3-O-sulfated glucuronic acid, HAART=highly active antiviral
therapy, HCMV=human CMV, HCV=hepatitis C virus, HNK-1=human NK 1,
HSCT=hematopoietic stem cell transplantation, IRP=immune-risk phenotype,
KIR=Kiler Ig-like receptor, KLRG1=kiler cell lectin-like receptor sulbfamily G,
member 1, LGL=large granular ymphocyte, NLPHD=nodular lymphocyte
predominance type of Hodgkin's lymphoma, PD-1=programmed death 1,
PNH=paroxysmal nocturnal hemoglobinuria, RCC=renal cell carcinoma,
TB=tuberculosis, TTV=torquetenovirus
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tin, myelin-associated glycoprotein, 5'-nucleotidase [1], ICAMb
[8], L1, and PO (the major glycoprotein of peripheral nerve
myelin [9-11]). Accordingly, the first mouse anti-CD57 mAb,
M6764, was produced against the crude membrane fractions of
the neural tubes [12]. There is evidence that HNK-1 can func-
tion as a ligand for laminin [13], L-selectin, P- selectin [14],
and a cerebellar adhesion protein, termed amphoterin. HNK-1
has also been shown to mediate homotypic adhesive interac-
tions involving PO. HNK-1-dependent adhesive interactions
have been implicated in cell migration processes involving
cell-cell and cell-matrix interactions and are proposed to par-
ticipate in reinnervation of muscles by motor neurons.

Expression of CD57 is also found on T-lineage lymphocytes,
where it is currently considered a marker-replicative senes-
cence (“clonal exhaustion” [15]), i.e., a high susceptibility to
activation-induced cell death and the inability to undergo new
cell-division cycles despite preserved ability to secrete cytokines
upon encounter with their cognate antigen [16]. The pheno-
types associated with replicatively senescent CD8" T lympho-
cytes are not well defined [17, 18] but are generally attributed
to lack of CD28 or expression of CD57 [19-24]. This prolifer-
ative defect had been shown in all lymphocyte subsets, which
express CD57 (CD4" and CD8" T lymphocytes and NK cells)
and with some relevant exception [25], was not overcome by
addition of IL-2 or IL-15. Despite neural crest and T-lineage
restriction, in chickens, CD57 is considered as a B cell activa-
tion marker for bursal lymphocytes [26].

Doubts about real replicative inability of CD57" T lympho-
cytes were first raised when Chong et al. [27] demonstrated
that CD8"CD57" T lymphocytes are capable of rapid expan-
sion using multiple techniques (including *H-thymidine up-
take, flow cytometric bead-based enumeration, and standard
hemocytometer counting). Previous reports can be explained
by marked inhibition of activation-induced expansion and in-
creased 7-amino-actinomycin D uptake by CD8"CD57 " T lym-
phocytes following treatment with CFSE, a dye used previously
to measure their proliferation, combined with specific media
requirements for the growth of this cell subset. The ability of

1. Correspondence: Division of Hematology, Azienda Ospedaliera Santa Chi-
ara, University of Pisa, via Roma 56, 56100 Pisa, Italy. E-mail: dfocosi@
tin.it

Volume 87, January 2010 Journal of Leukocyte Biology 107



JLB

HNK-1
Epitope
SO

34

B3 p3

pa B1-3 GlucuronosyIT 4 3-SulfoT 4

R R '
UDP-&  UDP PAPS PAP

Figure 1. Synthesis of the HNK epitope. Squares represent N-acetylglu-
cosamine, circles represent galactose, and rhombs represent GlcA
(modified from ref. [1]). GlucuronosylT, Glucuronosyltransferase; Sul-
foT, sulfotransferase; UDP, uridine diphosphate; R, radical; PAPS, 3'-
phosphoadenosine-5"-phosphosulfate; PAP, adenosine 3',5-diphos-
phate.

CD8"CD57" T lymphocytes to differentiate further is high-
lighted by a distinct cytokine profile late after activation that
includes the unexpected release of high levels of IL-5 [27].

Although in vivo, data are still lacking, what remains true is
that expression of CD57 on CD4" and CD8" T lymphocytes is
a general marker of proliferative instability, correlating directly
with the number of cell divisions and inversely with telomere
length, with a sensitivity greater than the presence of CCR7 or
lack of CD28 [15]. CD57 expression correlates strongly with
simultaneous expression of granzymes A, B, and perforin so
that FACS provides a means to isolate viable cells easily with
high cytolytic potential, without the need for lethal fixation/
permeabilization techniques [28].

In healthy controls, CD57 antigen is expressed normally
only by a minority of peripheral blood CD8* T lymphocytes.
The transcriptional profiles of CD8*CD57" and CD8"CD57~
T lymphocytes differ substantially. CD8"CD57" T lymphocytes
have high cytotoxic effector potential including perforin, gran-
zymes, and granulysin, regardless of HIV status. At the messen-
ger and protein levels, CD8"CD57" T lymphocytes express
more adhesion molecules and fewer chemokine receptors
(CCR7 and CXCR4) than CD8"CD57" T lymphocytes but ex-
press CX3CR1 preferentially. The lower expression level of
genes involved in cell-cycle regulation supports the limited
proliferation capacities of CD8"CD57" T lymphocytes, even
in response to TCR and IL-2, IL-7, and IL-15 stimulation. In
conclusion, CD8"CD57" T lymphocytes from HIV and un-
infected subjects maintain effective cytotoxic potentials but
are destined to migrate to nonlymphoid tissues without fur-
ther cycling [29].

As detailed below, these CD8"CD57" T lymphocytes are com-
monly found in individuals with chronic immune activation and
increase in frequency with age (from absence in newborns to 15—
20% in adults), but the percentage of CD8*"CD57" cells has
been shown to increase in a series of clinical conditions whose
common denominator is functional immune deficiency, includ-
ing HIV and CMV infection, common variable immunodefi-
ciency, hematological cancers, and autoimmune diseases, and

108 Journal of Leukocyte Biology Volume 87, January 2010

especially after HSCT (in which expression can peak up to
50% of all T lymphocytes [30]). These expansions have been
characterized first in AIDS patients, where CD8"CD57" lym-
phocytes specific for many epitopes of HIV proteins produce
IFN-y but in the presence of costimulation, are unable to pro-
liferate in response to peptides for which they are specific: In
such patients, HIV-specific CD8" T cells contribute to up to
80% of the total CD8"CD57" population. CD57 is also ex-
pressed on a small subset of CD4" lymphocytes populating the
GC of lymph nodes, termed GC-T}, cells, but gene-expression
profiling studies have shown that these are remotely related to
peripheral blood CD57" T lymphocytes in global gene expres-
sion [31]. On the basis of data from ICOS-deficient mice, it
has been proposed that circulating CD57"CXCR5™" T cells are
GC-derived and thus, may serve as a surrogate marker for the
presence of functional GCs in humans [32]. Similarly to circu-
lating CD57" T cells, Marinova et al. [33] showed that
CD4"CD45RO"CD57" T cells have a high propensity for apo-
ptosis in vivo. Anyway, CD4"CD57" T cells derived from pe-
ripheral blood do not support Ig production by B cells
[34]. Another difference between circulating and GC
CD57" T cells is expression of CD28, occurring only in the
second subset [35].

Most importantly, a lectin-binding soluble factor released by
CD8*CD57" lymphocytes inhibits cytolytic functions of effec-
tor cells, including CD8*CD57-, in HSCT recipients and HIV
patients, creating an immunodeficient status [17, 30, 36].

So, CD57" T lymphocytes percentage estimation in periph-
eral blood could be a new surrogate marker to evaluate the
quality of functional cell-mediated immune competence and
immune reconstitution, suggesting the existence of a threshold
beyond which the risk for opportunistic infections becomes
significant, and prophylactic measures and strict clinical fol-
low-up are required. Even in the case in which oligoclonal ex-
pansion [17, 37] of such a cell subset would not be the predis-
posing condition but rather, the result of antigen selection
during a persistent disseminated infection [19, 38], CD57
quantification could correlate with the risk for more infectious
complications.

We review below the main conditions associated with in-
creased CD57" lymphocyte count in peripheral blood.

CD57" T LYMPHOCYTES IN NORMAL
PHYSIOLOGY

Stress

Stress per se can affect the immune system, an interaction that
is studied by a branch of immunology called psychoneuroim-
munology. Physical and emotional stress can increase CD57 "
T lymphocytes in peripheral blood, potentially explaining the
increased susceptibility to viral infections (e.g., herpes virus
reactivations) seen in stressed individuals.

Physical stress. When eight male runners performed an in-
tensive treadmill-running protocol until volitional exhaustion,
mobilized T lymphocyte populations expressing KLRG1 and
CD57 appeared to be removed from the bloodstream after 1 h
of recovery [39]. The magnitude of change was not age-depen-
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dent [40]. These data were confirmed by Campbell et al. [41],
who estimated the increase in CD57" T lymphocytes at
+450%.

Psychological stress. Parental psychiatric symptom scores
are associated with increased percentages of CD8*CD28~
CD57" cells in the blood of CMV-seropositive children [42].

Aging

Healthy aging leads to accumulation of memory cells [43, 44],
which may fill the “immunological space” and block release of
naive T cells to the periphery, resulting in a shrunken T cell
repertoire for new antigens. HCMV pp65-specific CD8" T cells
express CD28 on <10% of cells in the elderly and >75% in
the young. The elderly commonly possess oligoclonal expan-
sions of T cells, especially of CD8 cells, which surprisingly, are
associated with HCMV seropositivity (as detailed below). This
in turn is associated with many of the same phenotypic and
functional alterations to T cell immunity that have been sug-
gested as biomarkers of immune system aging. Some authors
have tried to summarize risk factors in an IRP (Table 1) [43].
In fact, HCMV, not age per se, is the prime driving force be-
hind many or most of the oligoclonal expansions and altered
phenotypes and functions of CD8 cells in the elderly [45]. The
Swedish Octogenarian (OCTO) and Nonagenarian (NONA)
longitudinal studies distinguished an IRP [46], one important
component of it being HCMV seropositivity [47-49]. Cente-
narian donors are an example of the successfully aged HCMV
repertoire more similar to that of the young than the old.

CD57" T LYMPHOCYTES IN INFECTIOUS
DISEASES

AIDS

AIDS is mostly a quantitative deficiency of CD4* T lympho-
cytes. Actually, before such a cell subset drops down, CD57" T
lymphocyte expansions are commonly detected [560-52], which

TABLE 1. Marker of the So-Called “IRP”

Alterations with age non-IRP IRP
Markers of cells
CD:CDS8 ratio >1 <1
T cell Normal Reduced
proliferation
CD28 Increased Reduced
CD57 Reduced Increased
CD45RA Increased Reduced
CD45RO Reduced Normal
KLRGI1 Reduced Increased
Cytokines and
growth factor
IL-2 Increased Reduced
IL-10 Stable Stable
IFN-y Increased Reduced
CMV/EBYV status
CMV+-cells Lower frequencies, Higher frequencies,
mostly KLRG1+ mostly KLRG1+
EBV+cells Lower frequencies Higher frequencies
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can also be observed in long-term nonprogressors [53]. The
clonal exhaustion hypothesis of CD8" T lymphocytes was first
formulated in AIDS patients, after observation that HIV-spe-
cific CD8" T lymphocytes produce cytokines in response to
cognate antigen but are unable to divide and die during a
48-h in vitro culture [16, 54]. Percentages of CD4" CD57"
CCR7™ T lymphocytes are significantly higher in untreated
HIV-l-infected subjects than in HIV-1-seronegative donors, and
CD57 expression does not normalize in subjects receiving at
least 6 months of effective antiretroviral therapy. HIV-1-specific
CD4" T lymphocytes, producing only IFN-y, have the highest
expression of CD57, whereas few cells producing IL-2 alone
express CD57 [55, 56]. During long-term HAART, HIV-1 is
able to persist in CD4" CD57" T lymphocytes as proviral
DNA: Anyway, viral evolution was restricted; and in 80% of the
patients with undetectable viremia, no sign of viral replication
can be detected [57]. The percentage of CD4"CD57" T lym-
phocytes correlates negatively with CD4" count change during
treatment interruption [58].

Changes in clonal dominance (clonal turnover) of HIV-spe-
cific CD8" T lymphocyte are related to the replacement of
clonotypes that approach replicative senescence, reflected by
CD57 expression [59]. The high prevalence of these dysfunc-
tional lymphocyte subsets could explain the occurrence of op-
portunistic infections and cancers in HIV patients with normal
lymphocyte counts, such as Kaposi’s sarcoma [60]. Expansion
of suppressive CD8"CD57" T lymphocytes has been shown in
the lungs of HIV-infected subjects with advanced disease [61].
HCV coinfection reduces expression of perforin and CD57 on
HIV-specific CD8" T lymphocytes [62]. A large-scale gene ar-
ray analysis (3158 genes) found no distinction in the transcrip-
tional profiles of CD8"CD57" T lymphocytes from HIV-in-
fected and uninfected subjects. In both groups, these cells
showed specificity for multiple antigens and produced large
amounts of IFN-y and TNF-a [29]. On the contrary of
CD4"CD57" T lymphocytes, CD8"CD57" T lymphocytes have
a significant decrease during follow-up of salvage antiretroviral
therapy with lopinavir/ritonavir [63], and pediatric patients
responsive to HAART produce similar percentages of
CD8"CD57" T lymphocytes compared with controls [64]. The
functional meaning of CD8"CD57" T lymphocytes in HIV in-
fection is still under debate: In contrast to maturation of EBV-
and CMV-specific memory CD8" T lymphocytes, HIV-1-specific
CD8" T lymphocytes do not display coordinated down-regula-
tion of CD27 and up-regulation of CD57 and accumulate in an
atypical CD27"8"CD57"" subset. Moreover, accumulation of
CD27"8"CD57'" HIV-1-specific CD8" T cells positively corre-
lates with HIV-1 plasma viremia [65].

Accordingly, CD57 is expressed on CD8"CD45RA*CCR7~
CD28™ effector memory T lymphocytes, which retain a long
half-life and accumulate in the face of progressive HIV dis-
ease [66].

Recently, Petrovas et al. [67] have reported that CD57 is
linked to higher apoptosis resistance in CD8" T lymphocytes
during HIV infection, and cells expressing a PD-1'>"CD57"'s"
phenotype exhibit lower levels of cell death. The majority of
HIV-specific CD8" T cells expresses a PD-1"8"CD57'™ or
PD-1"8"CD57"5" phenotype. Contrary to CD57, high expres-
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sion of PD-1 was characterized by translocation of PD-1 into
the area of CD95/Fas-capping, an early, necessary step of
CD95 /Fas-induced apoptosis [67].

HCMV

HCMYV infection is associated with the emergence of the larg-
est long-term memory populations with the most “mature”
phenotype, CD27/CD28'™, CD57"8", and often perforin ™.
The vast majority of resting CD8" T lymphocytes capable of
rapid induction of IFN-y and TNF-« synthesis in response to
HCMYV peptides was found in a subset characterized by inter-
mediate-to-high expression of CD57, down-regulation/loss of
CD27, and varying degrees of reversal of the classical “mem-
ory” CD45ROP" 8" /RAM™ phenotype [68]. HCMV seropositiv-
ity is associated with marked changes in the phenotype of the
overall CD4™" T cell repertoire in healthy, aged donors, includ-
ing an increase in CD57" expression and a decrease in CD28
and CD27 expression, a phenotypic profile characteristic of
immune senescence. This “memory inflation” of CMV-specific
CD4" T cells contributes to evidence that HCMV infection
may be damaging to immune function in elderly individuals
[69]. The expression of CD28 was decreased, whereas CD57
expression was increased in pp65(495-503)-loaded HLA-
A(*)0201 tetramer-negative CD8™ T cells in the elderly when
compared with the young group. However, neither of these
changes was found within tetramer-positive cell populations
[70]. One of the strongest indirect evidences that these lym-
phocytes could actually be immunosuppressive is that young
and adult nonresponders to anti-influenza vaccination have
higher levels of anti-HCMV IgG [71] and higher percentages
of CD57" T lymphocytes together with increased concentra-
tions of TNF-a and I1.-6 and decreased levels of cortisol [71].
Similarly, CMV-seropositive patients fail more commonly to
control HIV in progression to AIDS [72]. Curiously, in alloge-
neic peripheral blood HSCT recipients, significant expansion
of CD8"CD57" T lymphocyte subsets is associated with recov-
ery from viremia and no progression to HCMV disease [73].
In common variable immunodeficiency patients, there is an
association between a high percentage of circulating
CD8'CD57" T lymphocytes and HCMV infection [74]. Finally,
cases of transient monoclonal CD8"CD57" T lymphocytosis
with LGL morphology have been reported after primary
HCMYV infection [75]. Alterations occur within 8 weeks after
primary CMV infection [46], and of interest in congenital
CMV infection, CD28 expression is decreased already in fetal
CD8™" T lymphocytes [76]. Less differentiated CD27"CD57~
CMV-specific memory T cells are more likely to persist in the
recipient post-HSCT compared with more terminally differenti-
ated CD27 CD57" CMV-specific memory T cells [77].

Measles virus

Natural measles virus infection is recognized to induce immu-
nosuppression, contributing to an increased susceptibility to
other infections. Elevated proportions of CD8*CD57" cells
were found in the peripheral blood of children with natural
measles early after infection (P<<0.05), whereas the proportion
of other cell surface markers remained stable. No correspond-
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ing change in CD8"CD57" lymphocytes was noted in measles,
mumps, and rubella-vaccinated children or in healthy controls,
suggesting that the live attenuated vaccine does not induce
immunosuppression [78].

Hepatitis B virus

Most CD4"CD28™" T cells showed a CD27 CD45RA~
CD45RO™" surface phenotype. The markers CD56, CD57, and
KIR were detected on CD4"CD28™" T cells, but the majority
was positive for CD57 [79].

HCV

IFN-a therapy of HCV infection enhances the differentiation
of CD8" T lymphocytes toward a late differentiation pheno-
type (CD28°CD57"), which disappears in cases of virus elimi-
nation [80]. The same phenomenon occurs in the livers of
those with chronic HCV after combined treatment with IFN-
@y, and ribavirin [81]. CD57" HCV-specific CTLs in periph-
eral blood and livers also express KIRs [82] and the inhibitory
molecule PD-1 [83]. Interestingly, PD-1 in vitro blockade by
mADb specific to its ligands (PDL-1 and PDL-2) results in resto-
ration of functional competence (proliferation and IFN-vy, IL-2
secretion), even in those individuals who lack HCV-specific
CD4" T lymphocyte help [83]. The proportions of effector-
senescent CD8"CD45RO"CD57" T lymphocytes and of those
near to apoptosis are significantly higher in patients with liver
cirrhosis [84].

B,, virus

CD8" T lymphocyte responses increase in magnitude over the
first year post-B,, infection, despite resolution of clinical symp-
toms and control of viremia, and T cell populations specific
for individual epitopes comprise up to 4% of CD8" T cells.
B,gspecific T cells develop and maintain an activated CD38™
phenotype, with strong expression of perforin and CD57 and
down-regulation of CD28 and CD27. CD57 expression levels
increase over time in almost all acutely infected individuals.
These cells possess strong effector function and intact prolifer-
ative capacity (in line with recent evidences [27]). Individuals
tested many years after infection exhibit lower frequencies of
B, gspecific cytotoxic T lymphocytes (typically 0.05-0.5% of
CDS8™ T cells), with low levels of CD57 expression [85].

TTV

Our group reported recently that changes in CD857" T lym-
phocyte expansions after autologous HSCT correlate with
changes in TTV viremia [86], suggesting that this lymphocyte
subset can also play a role at control of orphan endogenous
viruses. We showed recently that the kinetics of TTV viremia
are highly predictable and could serve as surrogate markers
for functional immune reconstitution [87].

TB

TB patients show an increase in CD8"CD57" T lymphocytes
compared with age-matched healthy donors (P<<0.0001) [68].
CD8"CD57" T lymphocytes from TB patients express CD69,
perforin, granzyme-A, and a CD28"CD62L."CD161~ phenotype
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without recognition for the a-galactosylceramide-CD1d com-
plex. This cell subset also expresses TNF-a and IFN-y under
PMA /ionomycin stimulation. Interestingly, the cytotoxicity
against autologous monocytes in the presence of Mycobacterium
tuberculosis H37Rv culture filtrate is higher in CD57~ cells from
TB patients and donors than their CD57" counterparts, but
only CD8"CD57" T lymphocytes from TB patients exhibit
spontaneous cytotoxicity against monocytes in the absence of
antigen [88]. Anyway, Jafari et al. [89] showed that compared
with a group of control patients with alternative pulmonary
pathologies, there was no significant difference in lymphocyte
subpopulations in bronchoalveolar lavage fluid.

Trypanosomiasis

There is a correlation between disease severity and the fre-
quency of Trypanosoma cruzispecific, IFN-y-producing CD4" T
lymphocytes. The high expression of CD27 and CD28 with a
relative low expression of CD57 found on CD4*IFN-y* T cells
suggests that the effector T lymphocyte pool in chronic 7.
cruzi infection includes a high proportion of newly recruited T
cells but a low frequency of long-term memory cells. The total
CD4" T cell compartment shows signs of senescence and later
stages of differentiation associated with more severe stages of
the disease. These findings support the hypothesis that long-
term 7. cruzi infection in humans might exhaust long-lived
memory T cells.

Alcoholism

Chronic human alcoholics are often immunodeficient and
have a correspondingly increased incidence of infectious dis-
eases [96]. A clinically important example is an up to fourfold
increase in pneumonia that occurs in alcoholics across various
ethnic and racial backgrounds. There is a large, additional
group of infectious diseases that preferentially afflicts alcohol-
ics, including TB. Most alcoholics (with or without liver dis-
ease) have stably increased T cell expression of the carbohy-
drate-rich marker, CD57 (HNK-1, Leu-7) [97, 98].

CD57" T LYMPHOCYTES IN
AUTOIMMUNE DISEASES

Wegener's granulomatosis
Peripheral blood T lymphocytes in Wegener’s granulomatosis

are characterized by mono/oligoclonal CD4" T lymphocyte
expansions expressing CD57 and CCR5 (CD195) [99].

Pars planitis

CD57" T lymphocyte subsets are increased (P=0.002). The
majority of CD4"CD57" T lymphocytes includes CCR7-CD27~
CD28 CD45RO™, and the most CD8CD57" T cells are
CCR7-CD27"CD28 CD45RA". The number of cells positive for
intracellular IFN-y and IL-4 is higher in the CD57" T cell pop-
ulations. A greater number of CD8"CD57" T cells than
CD8"CD57" T cells were positive to perforin (P=0.006) and
granzyme-A (P=0.01) [100].
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CD57" T LYMPHOCYTES IN CANCER

One of the most intriguing evidences about the role of CD57™"
T lymphocytes in cancer comes from the fact that metastasis-
free regional lymph nodes draining different human epithelial

tumors present a reduction in almost all immune cells, except
CD57" lymphocytes [101]. CD8"CD28°CD57" T lymphocyte
clones may be the result of persistent stimulation by tumor-
associated antigens, combined with a reduced cellular death
rate secondary to reduced expression of the apoptosis-related
molecule CD95 [20, 102, 103].

Solid cancers

Melanoma. A retrospective analysis in 16 IFN-a-treated mel-
anoma patients with resected regional lymph node metastases
showed that the median survival time of patients with >23%
CD8"#"CD57* lymphocytes prior to treatment with IFN-a was
14.2 months, whereas the median survival time of patients with
<23% CD8"8"CD57" lymphocytes was not reached at the
time of analysis (median follow-up 24.6 months) [104].

Advanced gastric cancers. Akagi and Baba [105] showed
that an increased proportion (=18%) of CD57" T lymphocyte
in the peripheral blood of patients with advanced gastric carci-
nomas (Stages III and IV) could indicate a shorter overall sur-
vival.

RCC. Advanced RCC patients with higher than 30%
CD8™CD57* lymphocytes in the CD8" subset had shorter sur-
vival compared with patients with <30% CD8"'CD57" lympho-
cytes in the CD8" subset. Treatment with IFN-ay,, increased

overall survival only in the former subgroup of RCC patients
[106].

Hematological malignancies

In 1998, Van den Hove et al. [107] showed that in untreated
hemato-oncological patients (n=48) with lymphomas, acute
and chronic myeloid, and lymphocytic leukemias; monoclonal
gammopathy of undetermined significance; and multiple my-
eloma, 42% had (nonmalignant) lymphocyte profiles clearly
distinct from healthy donors, with a notably similar pattern of
increased CD3" CD57" and CD8" CD57" lymphocytes, sug-
gesting systemic activation of the T cell compartment. Since
then, more evidences have cumulated for selected hematologi-
cal malignancies.

FL. The tumor microenvironment has been shown to play a
major role for FL. Gene microarray analyses have shown that
two specific patterns exist in the reactive microenvironment of
FL: an immunosurveillance pattern (T lymphocytes and mac-
rophages) and an immune-escape pattern (CD57" T cells),
which were associated directly with the clinicobiologic features
of these patients (such as more “B” symptoms and bone mar-
row involvement) [108]. CD57" cells are observed predomi-
nantly outside of the neoplastic follicle in FL on the contrary
of the diffuse infiltration seen in reactive follicular hyperplasia
[109-111].

Hodgkin lymphoma. Atayar et al. [90] showed that
CD4*CD57" T lymphocyte rosettes occur around neoplastic cells
and throughout the nodules in NLPHD [112]. CD4"CD57" oc-
cur in an average of 19% of the small lymphocytes in the nod-
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ules of NLPHD compared with 4% in nodular sclerosing
Hodgkin’s disease, 4.3% in T cell-rich B cell lymphoma, and
2.1% in FL. Moreover, CD57" small lymphocytes often showed
a distinctive pattern in NLPHD, forming a ring of cells around
the large luteinizing-hormone cells [113].

Multiple myeloma. A long-lived population of
CD8' CD57*CD28™ perforin® T lymphocyte clones has been
reported in the peripheral blood of patients with multiple
myeloma: Despite being more commonly found in patients
with progressive and advanced-stage disease, this population
was associated with superior survival [102]. In patients with
relapsed/refractory multiple myeloma treated with thalido-
mide, multivariate analysis showed that inferior survival was
associated with low pretreatment bone marrow CD57" cells
(P<0.001), and overall, CD8"CD57" T lymphocytes account
for up to 25% of the marrow T cell population [114]. Such
CD8"CD57" T lymphocytes have been shown to suppress T
cell functions in multiple myeloma [115, 116].

Myelodysplastic syndromes and acute myeloid leukemia.
Clonal CD8" /CD57"/CD28/CD62L"/ NKG2D " /CD244 "
effector T lymphocytes occur in 50% of myelodysplastic syn-
drome patients (r=>52) compared with 5% of age-matched
normal controls [117-119]. Similarly, Meers et al. [120]
showed recently increased surface expression of activation
markers (HLA-DR™, CD57", CD28~, CD62L") on T lympho-
cytes in peripheral blood and bone marrow (n=131). T lym-
phocyte activation was not restricted to any relevant clinical
subgroup (French-American-British, International Prognostic
Scoring System, cytogenetics) and did not correlate with blood
counts or need for treatment. In vitro clonogenic growth of
marrow mononuclear cells (n=18) was not influenced by T
lymphocytes expressing these markers [120]. Accordingly, in
acute myeloid leukemia, CD4+ naive and memory T lympho-
cyte distribution is normal, but the cytotoxic CD8"CD57" sub-
set is increased significantly (P<0.001) [121].

CLL. Terstappen et al. [122] first reported in 1990 that
CD57" lymphocytes in the lymph nodes of B-CLL patients had
abnormal orthogonal light-scattering signals and an abnormal
density of CD57" receptors in comparison with their periph-
eral blood CD57" lymphocytes or the CD57" lymphocytes in
the peripheral blood, bone marrow, and tonsils of hematologi-
cal normal donors. Katrinakis et al. [123] then reported in
1995 that B-CLL patients with neutropenia had higher num-
bers of peripheral blood CD8"CD57" T lymphocytes than the
non-neutropenic ones. Finally, in 1997, Serrano et al. [124]
showed that oligoclonality was substantially more frequent in
the CD4" and CD8" T lymphocyte populations of B-CLL pa-
tients than in the age-matched controls (P<<0.001). The fre-
quency of the CD57 marker on CD4" T cells was increased in
the setting of CLL (% CD57=14.8+13.0%) compared with
that in normal controls (% CD57=3.3+3.0%; P<0.001). An
elevated frequency of CD4"CD57" T cells was correlated with
more advanced disease. Similarly, the most extreme oligo-
clonal expansions of CD4"CD57" T lymphocytes occurred in
CLL patients who had progressed beyond Rai stage 0 [124].
Anyway, in 1997, Martin et al. [125] showed that the percent-
age of CD3"CD57" T lymphocytes in low blood lymphocyte-
count patients was higher than those found in high blood lym-
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phocyte-count patients. Porakishvili et al. [126] showed in
2001 that up to 50% of blood CD4" T lymphocytes in B-CLL
patients have a cytotoxicity-related CD28°CD57" phenotype
and high content of granzyme B and perforin, suggesting a
mature population. The same phenotype in CD8" T cells is
characteristic of mature cytotoxic T cells. However, in contrast
to the CD8™ T cells, the CD4" T cells were CD45RO™" more
frequently than CD45RA ™, indicating prior antigen experi-
ence. In contrast, this population lacked expression of CD69
or HLA-DR, arguing that they were not activated or that they
are an abnormal population of T lymphocytes. Their constitu-
tive cytokine levels showed them to contain mainly IL-4 and
not IFN-v, suggesting a T,2 phenotype. The role of the CD4™"
perforin® T cell population is at present uncertain. However,
this potentially cytotoxic T cell population could contribute to
enhancing survival of the B-CLL cells through production of
IL-4 and to the immunodeficient state seen frequently in pa-
tients with this tumor, independent of drug treatment [126].
Porakishvili et al. [127] also showed in 2004 that these CD4™
CD57" T lymphocytes are able to kill autologous B-CLL cells
ex vivo, through bispecific antibodies and via a perforin-medi-
ated mechanism.

LGL leukemia of T cell type. T cell LGL is characterized by
the CD3" CD57"CD56™ immunophenotype and the clonal
rearrangement of the af or yd [128] TCR genes, which sug-
gests that senescent cells have the potential anyway for neo-
plastic transformation, although the prognosis is usually excel-
lent, with some cases of spontaneous remission. Kaplanski
et al. [129] showed in 1992 that hypogammaglobulinemia ob-
served in a patient may be related to a cytotoxic effect exerted
on B lymphocytes by a CD3"CD8" CD57" CD16~ LGL prolif-
eration.

PNH. The percentage of CD8"CD57" T lymphocytes in
PNH is similar to healthy controls, but most patients share at
least one clonotype. The presence of T cell clones bearing a
set of highly homologous TCR-3 molecules in most patients
with hemolytic PNH is consistent with an immune process
driven by the same (or similar) antigen(s): probably a nonpep-
tide antigen, as patients sharing clonotypes do not all share
identical HLA alleles. These data support the hypothesis that
the expansion of the GPI blood-cell population in PNH is a
result of selective damage to normal hematopoiesis, mediated
by an autoimmune attack against a nonpeptide antigen(s) that
could be the GPI anchor itself [130].

CD57" T LYMPHOCYTES IN
ALLOGENEIC TRANSPLANTATION

Sabnani et al. [131] showed that 71% of cardiac transplant
patients and 44% of renal transplant patients, without evi-

dence of allograft rejection or a viral syndrome, have monoclo-
nal expansion of CD8"CD57" T lymphocytes.

Liver transplantation recipients receiving induction therapy
with ATG showed persistently higher levels of CD8"CD57 "
lymphocytes in the late postoperative phase than recipients
not treated with ATG, which was not associated with any clini-
cal effect [132]. The same effect was seen in pediatric renal
transplant recipients [133].
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CONCLUSIONS

Since its first description in 1981 [2], the CD57 glycoepitope
has gained much interest in fields as different as the immunol-
ogy of aging and chronic infectious diseases to immunooncol-
ogy, with often-relevant clinical implications. We foresee that
large screening of CD57" subpopulations in selected oncologi-
cal cohorts could confirm their prognostic value, and hope-
fully, such measurements could be incorporated in predictive
scores. Such scores could prove most useful in patients at high
risk for opportunistic infections (such as hemato-oncological
patients) and could guide decisionmaking, e.g., in discontinua-
tion of antimicrobial prophylaxis or planning retreatment for

consolidation chemotherapy [86, 87].
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