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Abstract 
Background: The nitrogen mustard derivative of estradiol-17β-phosphate estramustine is 
used for the treatment of prostate cancer. Estramustine may trigger suicidal death of cancer 
cells. Side effects of estramustine include anemia. At least in theory, estramustine could 
cause anemia by stimulation of eryptosis, the suicidal death of erythrocytes. Hallmarks of 
eryptosis include cell shrinkage, increased cytosolic Ca2+ activity ([Ca2+]), ceramide formation 
and phosphatidylserine translocation to the outer leaflet of the cell membrane with 
phosphatidylserine exposure at the erythrocyte surface. Eryptosis is stimulated by increase 
of cytosolic Ca2+ activity ([Ca2+]i). The present study explored whether estramustine triggers 
eryptosis. Methods: [Ca2+]i was estimated from Fluo3 fluorescence, cell volume from forward 
scatter, phosphatidylserine exposure from annexin V binding, and hemolysis from hemoglobin 
release. Results: A 24 h exposure to estramustine (≤ 100 µM) significantly increased [Ca2+]i,  
increased annexin V binding and increased hemoglobin release. The effect of estramustine 
on annexin V binding was significantly blunted by removal of extracellular Ca2+. Conclusions: 
Estramustine stimulates both, eryptosis and hemolysis. The estramustine induced translocation 
of phosphatidylserine to the cell surface is at least partially due to increase of cytosolic Ca2+ 
activity. 
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Introduction

Estramustine, a nitrogen mustard derivative of estradiol-17β-phosphate, is widely used 
alone or in combination with other anticancer drugs for the treatment of prostate cancer 
[1, 2]. Estramustine is effective by suppressimg the dynamics of microtubules [1] thus 
interfering with mitosis [3]. Moreover, estramustine has been shown to trigger apoptosis [1, 
4, 5]. Side effects of treatment with combinations containing estramustine include anemia 
[6-10], which is a risk factor of patient survival [11].

At least in theory, anemia following cytostatic treatment could involve suicidal 
erythrocyte death or eryptosis, which is characterized by erythrocyte shrinkage and 
breakdown of phosphatidylserine asymmetry of the erythrocyte cell membrane [12, 13]. 
Eryptosis may be triggered by Ca2+ entry through Ca2+ permeable cation channels with 
subsequent increase of cytosolic Ca2+ activity ([Ca2+]i) [14, 15]. The increase of [Ca2+]i leads 
to activation of Ca2+ sensitive K+ channels [16], K+ exit, hyperpolarization, Cl-  exit and thus 
cell shrinkage due to  cellular loss of KCl with osmotically obliged water [17]. The increase 
of [Ca2+]i further triggers translocation of phosphatidylserine to the outer leaflet of the 
erythrocyte cell membrane with exposure of phosphatidylserine at the erythrocyte surface 
[18]. Ca2+ sensitivity of eryptosis is increased by ceramide [19]. Eryptosis can further be 
stimulated by energy depletion [20] and caspase activation [21-25]. Regulation of eryptosis 
further involves AMP activated kinase AMPK [15], cGMP dependent protein kinase [26], 
Janus activated kinase JAK3 [27], casein kinase 1α [28, 29], p38 kinase [30], PAK2 kinase 
[31] as well as sorafenib [32] and sunitinib [33] sensitive kinases.

Eryptosis may be stimulated by a wide variety of xenobiotics [33-64]. Moreover, 
excessive eryptosis contributes to the pathophysiology of several clinical disorders [12] 
including diabetes [25, 65, 66], renal insufficiency [67], hemolytic uremic syndrome [68], 
sepsis [69], malaria [70-74], sickle cell disease [75], Wilson’s disease [73], iron deficiency 
[76], malignancy [77], phosphate depletion [78], and metabolic syndrome [60].

The present study explored, whether estramustine triggers eryptosis, and if so, whether 
the effect involves alterations of erythrocyte [Ca2+]i.

Materials and Methods 

Erythrocytes, solutions and chemicals
Leukocyte depleted erythrocytes were kindly provided by the blood bank of the University of Tübingen. 

The study is approved by the ethics committee of the University of Tübingen (184/2003V). Erythrocytes 
were incubated in vitro at a hematocrit of 0.4% in Ringer solution containing (in mM) 125 NaCl, 5 KCl, 1 
MgSO4, 32 N 2 hydroxyethylpiperazine N 2 ethanesulfonic acid (HEPES), 5 glucose, 1 CaCl2; pH 7.4 at 37°C for 
48 h. Where indicated, erythrocytes were exposed to estramustine (Sigma-Aldrich, Germany) at the indicated 
concentrations. Estramustine was dissolved in H2O and added at concentrations of up to 100 µM. The addition 
of estramustine increased osmolarity by < 0.05%, an effect not leading to appreciable cell shrinkage and not 
sufficient to trigger eryptosis [79]. In Ca2+ free Ringer solution, 1 mM CaCl2 was substituted by 1 mM glycol bis(2 
aminoethylether) N,N,N',N' tetraacetic acid (EGTA). 

FACS analysis of annexin V binding and forward scatter 
After incubation under the respective experimental condition, 50 µl cell suspension was washed in 

Ringer solution containing 5 mM CaCl2 and then stained with Annexin V FITC (1:200 dilution; ImmunoTools, 
Friesoythe, Germany) in this solution at 37°C for 20 min under protection from light. In the following, the 
forward scatter (FSC) of the cells was determined, and annexin V fluorescence intensity was measured in FL 
1 with an excitation wavelength of 488 nm and an emission wavelength of 530 nm on a FACS Calibur (BD, 
Heidelberg, Germany).
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Measurement of intracellular Ca2+

After incubation erythrocytes were washed in Ringer solution and then loaded with Fluo 3/AM 
(Biotium, Hayward, USA) in Ringer solution containing 5 mM CaCl2 and 2 µM Fluo 3/AM. The cells were 
incubated at 37°C for 30 min and washed twice in Ringer solution containing 5 mM CaCl2. The Fluo 3/AM 
loaded erythrocytes were resuspended in 200 µl Ringer. Then, Ca2+ dependent fluorescence intensity was 
measured in fluorescence channel FL 1 in FACS analysis.

Measurement of hemolysis
For the determination of hemolysis the samples were centrifuged (3 min at 400 g, room temperature) 

after incubation, and the supernatants were harvested. As a measure of hemolysis, the hemoglobin (Hb) 
concentration of the supernatant was determined photometrically at 405 nm. The absorption of the 
supernatant of erythrocytes lysed in distilled water was defined as 100% hemolysis.

Determination of ceramide formation
For the determination of ceramide, a monoclonal antibody-based assay was used. To this end, cells 

were stained for 1 hour at 37°C with 1 µg/ml anti ceramide antibody (clone MID 15B4, Alexis, Grünberg, 
Germany) in PBS containing 0.1% bovine serum albumin (BSA) at a dilution of 1:5. The samples were 
washed twice with PBS-BSA. Subsequently, the cells were stained for 30 minutes with polyclonal fluorescein 
isothiocyanate (FITC) conjugated goat anti-mouse IgG and IgM specific antibody (Pharmingen, Hamburg, 
Germany) diluted 1:50 in PBS-BSA. Unbound secondary antibody was removed by repeated washing with 
PBS-BSA. The samples were then analyzed by flow cytometric analysis with an excitation wavelength of 488 
nm and an emission wavelength of 530 nm. As control, secondary antibody alone was used.

Statistics
Data are expressed as arithmetic means ± SEM. As indicated in the figure legends, statistical analysis was 

made using ANOVA with Tukey’s test as post test and t test as appropriate. n denotes the number of different 
erythrocyte specimens studied. Since different erythrocyte specimens used in distinct experiments are 
differently susceptible to triggers of eryptosis, the same erythrocyte specimens have been used for control and 
experimental conditions.

Results

The present study was designed to explore, whether estramustine stimulates eryptosis, 
the suicidal death of erythrocytes. As eryptosis is triggered by increase of cytosolic Ca2+ activity 
([Ca2+]i), Fluo3 fluorescence was employed to estimate [Ca2+]i. To this end, the erythrocytes 
were incubated in Ringer solution without or with estramustine (≤ 100 µM), loaded with 
Fluo3 AM and Fluo3 fluorescence quantified by FACS analysis. As illustrated in Fig. 1, a 24 
hours exposure of human erythrocytes to estramustine was followed by an increase of Fluo3 
fluorescence, an effect reaching statistical significance at 100 µM estramustine concentration. 
Thus, estramustine treatment was followed by increase of [Ca2+]i in human erythrocytes.

An increase of [Ca2+]i is expected to activate Ca2+ sensitive K+ channels leading to cellular 
loss of KCl together with osmotically obliged water and thus to cell shrinkage. Accordingly, 
cell volume was estimated from forward scatter in FACS analysis. As shown in Fig. 2, a 24 
hours treatment with estramustine did not result in a decrease of forward scatter.

An increase of [Ca2+]i is further expected to trigger cell membrane scrambling with 
breakdown of phosphatidylserine asymmetry of the cell membrane and appearance of 
phosphatidsylserine at the cell surface. Accordingly, phosphatidylserine abundance at the 
cell surface was estimated utilizing annexin V binding in FACS analysis. As shown in Fig. 3, 
a 24 h estramustine treatment increased the percentage of annexin V binding erythrocytes, 
an effect reaching statistical significance at 50 µM estramustine concentration. Accordingly, 
estramustine triggered cell membrane scrambling.

In order to quantify the effect of estramustine exposure on hemolysis, the percentage of 
hemolysed erythrocytes was determined from hemoglobin concentration in the supernatant. 
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According to hemoglobin concentration in the supernatant, estramustine treatment resulted 
in hemolysis, an effect reaching statistical significance at 75 µM estramustine concentration 
(Fig. 4).

Further experiments were performed to test, whether the stimulation of cell membrane 
scrambling following estramustine treatment was partially or even fully explained by Ca2+ 

entry from the extracellular space. To this end, erythrocytes were exposed to 100 µM 

Fig. 1. Effect of estramustine on erythrocyte cytosolic 
Ca2+ concentration. A. Original histogram of Fluo3 
fluorescence in erythrocytes following exposure for 
24 h to Ringer solution without (grey shadow) and 
with (black line) presence of  100 µM estramustine. 
B. Arithmetic means ± SEM (n = 15) of the Fluo3 
fluorescence (arbitrary units) in erythrocytes 
exposed for 24 h to Ringer solution without (white 
bar) or with (black bars) estramustine (2- 100  µM). 
***(p<0.001) indicates significant difference from 
the absence of estramustine (ANOVA). C. Arithmetic 
means ± SEM (n = 5) of Fluo-3 fluorescence 
(arbitrary units) in erythrocytes exposed for 24-72 
h to Ringer solution without (white triangles) or 
with 50 µM estramustine (black squares). * (p<0.05) 
indicates significant difference from the absence of 
estramustine.

Fig. 2. Effect of estramustine on erythrocyte forward 
scatter. A. Original histogram of forward scatter of 
erythrocytes following exposure for 24 h to Ringer 
solution without (grey shadow) and with (black line) 
presence of  100 µM estramustine. B. Arithmetic 
means ± SEM (n = 15) of the normalized erythrocyte 
forward scatter (FSC) following incubation for 24 h 
to Ringer solution without (white bar) or with (black 
bars) estramustine (2-100 µM). C. Arithmetic means 
± SEM (n=5) of forward scatter (arbitrary units) in 
erythrocytes exposed for 24-72 h to Ringer solution 
without (white triangles) or with 50 µM estramustine 
(black squares). * (p<0.05) indicates significant 
difference from the absence of estramustine.
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estramustine for 24 hours in either the presence of 1 mM extracellular Ca2+ or in the absence 
of extracellular Ca2+ and presence of the Ca2+ chelator EGTA (1 mM). As shown in Fig. 4, 
removal of extracellular Ca2+ significantly blunted the effect of estramustine on annexin 
V binding. However, in the absence of extracellular Ca2+ the percentage annexin V binding 
erythrocytes was still slightly, but significantly increased by estramustine treatment (Fig. 5). 
Thus, estramustine induced cell membrane scambling was in large part but not completely 
dependent on the presence of extracellular Ca2+.

A final series of experiments explored the effect of estramustine treatment on the 
formation of ceramide, which would be similarly expected to trigger cell membrane 
scrambling. Ceramide formation was quantified utilizing FITC-labeled anti-ceramide 

Fig. 3. Effect of estramustine on  phosphatidylserine 
exposure. A. Original histogram of annexin V binding 
of erythrocytes following exposure for 24 h to Ringer 
solution without (grey shadow) and with (black line) 
presence of  100 µM estramustine. B. Arithmetic 
means ± SEM (n = 15) of erythrocyte annexin V bind-
ing following incubation for 24 h to Ringer solution 
without (white bar) or with (black bars) presence 
of estramustine (2- 100 µM). C. Arithmetic means ± 
SEM (n=5) of annexin V binding erythrocytes (arbi-
trary units) following exposure for 24-72 h to Ringer 
solution without (white triangles) or with 50 µM es-
tramustine (black squares). *** (p<0.001) indicates 
significant difference from the absence of estramus-
tine.

Fig. 4. Effect of estramustine on hemolysis. 
Arithmetic means ± SEM (n=5) of hemolysis after a 
24 h incubation in Ringer solution without (white 
bar) or with (black bars) 2- 100 µM estramustine. 
*** (p<0.001) indicates significant difference from 
the control (absence of estramustine) (ANOVA).

Fig. 5. Effect of Ca2+ withdrawal on estramustine  
induced annexin V binding. Arithmetic means ± 
SEM (n = 9) of the percentage of annexin V binding 
erythrocytes after a 24 h treatment with Ringer 
solution without (white bar) or with (black bars) 
100 µM estramustine in the presence (left bars, 
+ Calcium) and absence (right bars, - Calcium) of 
calcium. ***(p<0.001) indicates significant difference 
from the absence of estramustine (ANOVA), ### 
(p<0.001) indicates significant difference from the 
respective values in the presence of Ca2+.
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antibodies. As illustrated in Figure 6, the ceramide-dependent fluorescence was significantly 
higher following a 24 h exposure to Ringer containing 100 µM estramustine than following 
exposure to Ringer solution without estramustine. Utilizing the secondary antibody alone, 
the fluorescence did not change significantly upon treatment with estramustine (-3.8 ± 1.4%, 
n = 5). Thus, estramustine indeed significantly enhanced ceramide formation.

Discussion

The present study explored, whether estramustine triggers eryptosis, the suicidal death 
of erythrocytes. The results reveal that estramustine treatment of erythrocytes drawn from 
healthy volunteers is followed by breakdown of phosphatidylserine asymmetry of the cell 
membrane, a hallmark of eryptosis. The concentrations required to trigger eryptosis are in the 
range of those concentrations encountered in vivo, which may exceed 100 µM [80].

The erythrocyte shrinkage following estramustine treatment is most likely the result of 
increased cytosolic Ca2+ activity, which activates Ca2+ sensitive K+ channels [16, 81] leading to 
cell membrane hyperpolarization. The increased electrical driving force drives Cl-  exit and thus 
leads to cellular loss of KCl with osmotically obliged water [17].

The breakdown of phosphatidylserine asymmetry of the erythrocyte cell membrane was 
significantly blunted in the absence of extracellular Ca2+ and was thus again at least in part due 
to increase of cytosolic Ca2+ activity ([Ca2+]i). An increase of [Ca2+]i is well known to stimulate 
cell membrane scrambling with  phosphatidylserine translocation from the inner leaflet of the 
cell membrane to the outer leaflet of the cell membrane [12]. Mechanisms underlying Ca2+ 
entry include Ca2+ permeable non selective cation channels involving the transient receptor 
potential channel TRPC6 [14]. The Ca2+ permeable erythrocyte cation channels are activated 
by oxidative stress [82].

Estramustine-induced phosphatidylserine translocation is blunted but not abolished in 
the nominal absence of extracellular Ca2+, pointing to involvement of additional mechanisms. 
Those mechanisms include formation of ceramide, which is known to increase Ca2+ sensitivity 
of cell membrane scrambling. Moreover, at least in theory, estramustine may influence the 

Fig. 6. Effect of estramustine on ceramide 
formation. A. Original histogram of anti-ceramide 
FITC fluorescence in erythrocytes after exposure 
for 24 h to Ringer solution without (grey shadow) 
and with (black line) presence of 100 µM 
estramustine. B. Arithmetic means ± SEM (n=5) 
of ceramide abundance after a 24 h incubation in 
Ringer solution without (white bar) or with (black 
bars) estramustine (100 µM). *(p<0.05) indicates 
significant difference from the control (absence of 
estramustine) (ANOVA).
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activity of eryptosis regulating kinases such as AMP activated kinase AMPK [15], casein 
kinase 1α [28, 29], cGMP dependent protein kinase [26], Janus activated kinase JAK3 [27], 
p38 kinase [30] and/or PAK2 kinase [31].

Triggering of eryptosis has been observed following treatment of erythrocytes with 
further anticancer drugs [64], including carmustine [83], sorafenib [32], sunitinib [33], 
cisplatin [84], and paclitaxel [85]. Moreover, eryptosis is enhanced in malignancy [77].

Consequences of enhanced eryptosis include anemia. In vivo, eryptotic erythrocytes are 
mainly trapped in the spleen and thus rapidly removed from from circulating blood [12]. 
As soon as the loss of erythrocytes by triggering of eryptosis is not matched by a similar 
enhancement of erythropoiesis, anemia develops [12]. 

Consequences of enhanced eryptosis further include adhesion of  phosphatidylserine 
exposing erythrocytes to endothelial CXCL16/SR PSO [86]. The adhesion of erythrocytes 
to the vascular wall could at least in theory compromize microcirculation and thus 
interfere with blood flow [86-91]. The effect may be compounded by the stimulating effect 
of  phosphatidylserine exposure on blood clotting, which may foster the development 
of thrombosis [87, 92, 93]. Along those lines, the treatement with estramustine may be 
associated with an increased risk of thromboembolic events [2].

In conclusion, estramustine triggers Ca2+ entry with subsequent suicidal erythrocyte 
death or eryptosis. The stimulation of eryptosis may contribute to the development of anemia 
following estramustine treatment.
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