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Efficient adaptive constrained control with
time-varying predefined performance
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Abstract
A novel low-complexity adaptive control method, capable of guaranteeing the transient and steady-state tracking per-
formance in the presence of unknown nonlinearities and actuator saturation, is investigated for the longitudinal dynamics
of a generic hypersonic flight vehicle. In order to attenuate the negative effects of classical predefined performance
function for unknown initial tracking errors, a modified predefined performance function with time-varying design
parameters is presented. Under the newly developed predefined performance function, two novel adaptive controllers
with low-complexity computation are proposed for velocity and altitude subsystems of the hypersonic flight vehicle,
respectively. Wherein, different from neural network-based approximation, a least square support vector machine with
only two design parameters is utilized to approximate the unknown hypersonic dynamics. And the relevant ideal weights
are obtained by solving a linear system without resorting to specialized optimization algorithms. Based on the approx-
imation by least square support vector machine, only two adaptive scalars are required to be updated online in the
parameter projection method. Besides, a new finite-time-convergent differentiator, with a quite simple structure, is
proposed to estimate the unknown generated state variables in the newly established normal output-feedback for-
mulation of altitude subsystem. Moreover, it is also employed to obtain accurate estimations for the derivatives of virtual
controllers in a recursive design. This avoids the inherent drawback of backstepping — “explosion of terms” and makes
the proposed control method achievable for the hypersonic flight vehicle. Further, the compensation design is employed
when the saturations of the actuator occur. Finally, the numerical simulations validate the efficiency of the proposed finite-
time-convergent differentiator and control method.
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Introduction

Recently hypersonic flight vehicles (HFVs) have drawn

growing attention since they are promising to provide a

reliable and cost-efficient way to explore space for critical

military and commercial applications.1 However, owing to

the peculiarities of vehicle dynamics such as high nonli-

nearity, parametric uncertainties and complex coupling, the

resulting control system design is a very challenging task

and remains open.2
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Currently only the longitudinal models of HFVs are

broadly studied considering the tedious complexity of their

dynamics.3–7 Benefiting from the cascade structure of HFV

dynamics, a strict-feedback form of the altitude subsystem

was obtained and then a backstepping technique was uti-

lized to devise the state-feedback controller in the work by

Wu and Meng and Xu et al.8–10 Although the backstepping

technique has been evolved as an efficient control method for

HFVs, tedious and complex analysis is required for virtual

controllers and their repeated derivatives. This is the inherent

drawback of backstepping, also referred to as “explosion of

terms”.11 In order to overcome this demerit, dynamic surface

control was employed to facilitate the controller design by

letting the virtual command pass through a first-order fil-

ter.11–14 In order to further eliminate the complexity of the

immediate controllers in the recursive design, a hyperbolic-

sine-function-based tracking differentiator was constructed to

obtain good estimations for the derivatives of virtual control-

lers involved in the control system design of an air-breathing

hypersonic vehicle (AHV) in the work by Bu et al.15 How-

ever, some issues are still open for differentiators such as a

good dynamic response and high estimation accuracy.

Considering the unknown nonlinearities existing in

HFVs, the neural network (NN) is widely used as an efficient

tool for nonlinear approximation.9–13,16 But reducing the

complexity of NN-based approximators is necessary and is

needed for HFVs because of their fast dynamic characteris-

tics. Meanwhile, due to the learning mechanism of the NN,

its training process is based on empirical risk minimization

which means the learning of NN seeks the smallest learning

errors. This tends to induce under-fitting and over-fitting

phenomena. To obtain a simple approximator for unknown

dynamics existing in a HFV, some new techniques are

needed. Thanks to Vapnik’s support vector machine (SVM)

theory,17 good generalization ability is observed and it can

solve small sample problems based on the principles of

structural risk minimization. Besides, a SVM can overcome

the intrinsic demerits including the under-fitting and over-

fitting phenomena. However, the required constrained

optimization programming leads to a higher computational

burden, which is the major drawback of a SVM. In order to

surmount this drawback, least square SVM (LS-SVM), a

computationally attractive machine learning technique, was

proposed by Suykens and Vandewalle, which works with

equality instead of inequality constraints in the optimiza-

tion.18 This greatly simplifies the optimization problem such

that the relevant optimal solution is characterized by a linear

system according to the first-order Karush–Kuhn–Tucker

(KKT) optimality conditions. Through solving the linear

system, the optimal solution can be obtained efficiently.

Comparing with the NN, the optimal solution is global with-

out any help from other optimization techniques such as the

quadratic programming method and the dynamic program-

ming method. Thus, the LS-SVM was widely utilized in the

approximation of unknown dynamics.19–21 Owing to the

attractively computational advantage, the LS-SVM is more

advantageous in handling the approximation of unknown

hypersonic dynamics.

Another crucial issue associated with the adaptive control

of a HFV is the transient (such as overshoot, undershoot, and

convergence rate) and steady-state tracking performance. In

practice, ensuring a high fidelity transient and steady-state

tracking performance is very challenging. Recently, Bechliou-

lis and Rovithakis developed a new control design and synth-

esis methodology,22, 23 in which the transient and steady-state

performance is quantitatively characterized and limited by an

appropriate predefined (or prescribed) performance function

(labeled as classical predefined performance function

[CPPF]). This control method was further explored for

nonlinear systems subject to input nonlinearity24–26.

However, in particular, there exists very little work which

aims to quantitatively and accurately compute the transi-

ent tracking performance of a HFV. Yang and Chen

applied a CPPF to realize the predefined performance

attitude tracking control of near-space vehicles.27 Bu et al.

utilized a CPPF to construct two guaranteed transient

performance-based adaptive neural controllers for velocity

and altitude subsystems of AHVs, respectively.28 However,

some limitations are encountered in the CPPF. The first one

is that the initial tracking errors of the controlled system

must be remained strictly within a predefined region. In

general, however, the initial tracking errors are hard to

obtain in the presence of the uncertainties and external dis-

turbances, especially for a HFV with strong uncertainties.

Thus, it is hard to guarantee that the initial tracking errors

are enveloped within the predefined region formed by the

designed CPPF. Besides, the fixed parameters in a CPPF

result in a much larger conservative estimation of the track-

ing performance bound. Therefore, a novel predefined per-

formance function is required to avoid these limitations.

In this article, we mainly focus on the adaptive tracking

controller with a low complexity design for a HFV subject to

unknown nonlinearities and actuator saturation. In order to

lower the conservativeness of the CPPF, eliminate the grow-

ing complexity of backstepping, tackle the state observation,

and reduce computational complexity of the NN in approx-

imating unknown hypersonic dynamics, we propose a novel

adaptive control method with only two adaptive scalars that

need to be updated online. Simultaneously, there are only two

design parameters contained in the LS-SVM-based approxi-

mators. Compared with the previous studies, the adaptive

mechanism and nonlinear approximation with a much simpler

structure are achievable for HFV. Thus, the computational

burden is lighter. The contribution of our work is threefold.

1. A time-varying predefined performance function

(TPPF) is first proposed. Compared with the CPPF,

it can address the problem of unknown initial tracking

errors and lower the conservativeness of the CPPF

over the estimation of the performance bound. The

design of the controllers is carried out under the pro-

posed TPPF throughout the entire article.
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2. A novel finite-time-convergent differentiator

(FTCD) with a simple structure is proposed. The

newly established FTCD is applied to obtain good

estimations of the derivatives of the virtual control-

lers rapidly, with high accuracy. This conquers the

inherent drawback of backstepping – “explosion of

terms”. Besides, the newly defined state variables

in the normal output-feedback system are observed

precisely by the proposed FTCD.

3. Two LS-SVM based approximators are constructed

to approximate the unknown hypersonic dynamics.

No specialized optimization algorithms are required

because the relevant ideal weights are obtained by

solving a linear system. This significantly decreases

the computational complexity of nonlinear approxi-

mation. Besides, by estimating the norm of ideal

weights rather than their elements, only two adaptive

parameters are updated online in the parameter pro-

jection method which simplifies the adaptation laws.

Problem statement and preliminaries

Model description

The longitudinal dynamics of a generic HFV developed by

Parker et al. is considered in this article.29 This model

involves five rigid-body variables X ¼ ½V ; h; �; g; q� and

two saturated system inputs U ¼ ½de;��T. The equations

of motion of this model are expressed by

_V ¼ Tcos�� D

m
� g sing

_h ¼ V sing

_g ¼ Lþ T sin�

mV
� gcosg

V

_� ¼ q� _g

_q ¼ Myy

Iyy

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

(1)

with T � T�ð�Þ�þ T0ð�Þ ¼ ð�1�þ �2Þ�3 þ ð�3�þ �4Þ�2þ
ð�5�þ �6Þ�þ ð�7�þ �8Þ; L � �qSaðC�

L�þ C0
LÞ; D � �qSa

ðC�2

D �2þC�
D�þC0

DÞ; Myy� zT Tþ�qSa�cðC�2

M �2þ C�
M�þ C0

M Þþ
�qSa�cC

de

Mde; �q ¼ 1
2
�V 2; � ¼ �0 e�ðh�h0Þ=hs :

Assume that the five state variables are available for

measurement. The system inputs de;� are subject to the

following asymmetric or symmetric saturations

de ¼ satðvde
Þ ¼

uþM 1; if vde
� uþM 1

vde
; otherwise

u�M 1; if vde
� u�M 1

;

8>><
>>:

� ¼ satðv�Þ ¼
uþM 2; if v� � uþM 2

v�; otherwise

u�M 2; if v� � u�M 2

8>><
>>: (2)

where juþMij; ju�Mijði ¼ 1; 2Þ are the bounds of the system

inputs.

Based on functional decomposition, the dynamics in

equation (1) can be divided into a velocity subsystem and

a altitude subsystem. For the velocity subsystem, for brev-

ity, it can be written as

_V ¼ fV þ �

yV ¼ V

(
(3)

where yV is the output of the velocity subsystem.

fV ¼ ðTcos�� DÞ=m� g sing� � is assumed to be com-

pletely unknown and needs to be estimated by a LS-SVM-

based approximator.

As for the altitude subsystem, define the altitude tracking

error as ~h ¼ h� hr. From equation (1), one can find that when

g tracks the given commandgd , then ~h can be regulated to zero

stably. Therefore, the task of altitude subsystem is to design an

approximate controller v� to track the command gd whose

detailed form is given later. First, define

x1 ¼ g; x2 ¼ �þ g; x3 ¼ q, then we can obtain

_x1 ¼ fh1ð�x2Þ þ x2

_x2 ¼ x3

_x3 ¼ fh2ð�x3Þ þ de

yh ¼ x1

8>>><
>>>:

(4)

where yh is the output of the altitude system, �xi¼
½x1; . . . ; xi�Tði ¼ 2; 3Þ, fh1ð�x2Þ ¼ ðLþ T sin�Þ=ðmV Þ�
gcosg=V � x2, fh2ð�x3Þ ¼ Myy=Iyy � de. Inspired by Xu

et al.,30 in order to reduce the number of LS-SVM-based

approximators for unknown terms fh1; fh2, an output-

feedback system in a norm form is developed as follows

instead of the state-feedback one in equation (4), that is

_z1 ¼ z2

_z2 ¼ z3

_z3 ¼ að�x3Þ þ de

8><
>: (5)

with að�x3Þ ¼ qbð�x3Þ
qx1
ðfh1ð�x2Þ þ x2Þ þ qbð�x3Þ

qx2
x3 þ qbð�x3Þ

qx3
ðfh2ð�x3Þ þ deÞþ

fh2ð�x3Þ; bð�x3Þ ¼ qfh1ð�x2Þ
qx1
ð fh1ð�x2Þ þ x2Þþ qfh1ð�x2Þ

qx2
x3. (z1 ¼ yh; z2 ¼ _yh;

z3 ¼ €yh).

Seeing from equation (5), only one LS-SVM-based

approximator needs to design for unknown term að�x3Þ
rather than two ones for the unknown fh1; fh2. However,

the newly defined state variables z2; z3 are not available

for measurement except when z1 ¼ g. Thus, a FTCD is

devised to observe them.

Control objective

The objective pursued in this work is to shrink the tracking

errors ~V ¼ V � Vr and ~h stably with a time-varying

bounded transient and steady-state performance in spite

of the coexistence of unknown nonlinearities and input

saturation. In detail, the objective is twofold:

Wei et al. 3



(a) design a low-complexity LS-SVM-based adaptive

controller v� to steer the velocity V to track its

command Vr stably in the presence of unknown

fV and saturation of fuel equivalence ratio with

guaranteed prescribed performance;

(b) design a LS-SVM-based adaptive controller vde

with low complexity to steer g to track its com-

mand gd stably subject to unknown að�x3Þ and

saturation of the elevator deflection with guaran-

teed prescribed performance.

Time-varying predefined performance function

To quantitatively study the transient and steady-state

performance of the tracking error eðtÞ, a smooth, strictly

positive decaying function �ðtÞ : R�0 ! Rþ with

lim
t!1

�ðtÞ ¼ �1 > 0 is chosen as the predefined function,

just like a CPPF. It is sufficient to achieve the transient and

steady-state performance if the following condition holds

�d1ðtÞ�ðtÞ < eðtÞ < d2ðtÞ�ðtÞ (6)

where d1ðtÞ; d2ðtÞ are the positive design time-varying

parameters and �ðtÞ; d1ðtÞ; d2ðtÞ in this work are chosen as

�ðtÞ ¼ ð�0 � �1Þe�k0t þ �1
d1ðtÞ ¼ ðd10 � d11Þe�k1t þ d11

d2ðtÞ ¼ ðd20 � d21Þe�k2t þ d21

8><
>: (7)

where �0; �1; d10; d11; d20; d21 k0; k1; k2 are positive

design constants.

Remark 1. Different from a CPPF with fixed d1; d2 in

previously reported works,22–28 in this work, d1ðtÞ; d2ðtÞ
are time-varying rather than time-invariant. This implies

that the ultimate tracking accuracies defined by the

TPPF and CPPF are limited in the following bounds,

respectively

�d11�1 < lim
t!1

eðtÞ < d21�1 (8a)

��1 < lim
t!1

eðtÞ < �1 (8b)

Comparing equations (8a) and (8b), we can find the

bound of ultimate tracking accuracy defined by the TPPF

has lower conservativeness due to the additional para-

meters d11, d21. Namely, if d11; d21 � 1, a higher

tracking accuracy can be achieved without considering

the limitations of a control input under a TPPF. Under

the proposed TPPF, define the tracking error

eðtÞb�ðtÞPðsðtÞÞ, where s is the transformed error.

Choose the function PðsÞ as

PðsðtÞÞ ¼ d2ðtÞes � d1ðtÞe�s

es þ e�s
(9)

It is easy to find that lim
s!1

PðsÞ ¼ d2ðtÞ;
lim
s!�1

PðsÞ ¼ �d1ðtÞ. Whilst, the chosen function PðsÞ is

strictly monotonic increasing and satisfies Pð0Þ 6¼ 0. Thus,

the transformed error sðtÞ can be obtained as

sðtÞ ¼ 1

2
ln

d1 þ L
d2 � L

� �
; Lb

eðtÞ
�ðtÞ (10)

Take its derivative as

_sðtÞ ¼ qsðtÞ
qLðtÞ �

dLðtÞ
dt
þ qsðtÞ
qd1ðtÞ

� dd1ðtÞ
dt
þ qsðtÞ
qd2ðtÞ

� dd2ðtÞ
dt

¼ "½ _e1ðtÞ � L _�ðtÞ þ dc="�
(11)

with " ¼ 1
2�ðtÞ � 1

d1þLðtÞ þ
1

d2�LðtÞ

� �
; dc ¼ 1

2
1

d1þLðtÞ
_d1 � 1

d2�LðtÞ
_d2

� �
.

Equation (11) is applied to construct the transformed

tracking errors of ~V ; ~h under TPPF in the following work,

respectively.

LS-SVM-based approximation

To approximate the unknown nonlinearities, the LS-SVM

is adopted due to its powerful generalization superiority

and fast computational efficiency. The process of approx-

imating the unknown nonlinear function with LS-SVM is

as follows.18

First, choose the training sample set SE ¼ fpi; Yij;
pi 2 Rn; Yi 2 R; i ¼1; 2; . . . ;Ng with pi; Yi; and N

being, respectively, the input vectors, output, and total

number of the training samples of the LS-SVM-based

approximator. The relevant estimation problem is

expressed by

Y ðpÞ ¼ W TKðpÞ þ p (12)

where the superscript T denotes the transpose of a vec-

tor or matrix. Kð�Þ : Rn ! Rnh is a known function map-

ping the input vector into a feature space of high

dimension. W and p represent the weight and bias,

respectively. Then the corresponding optimization prob-

lem of equation (12) to determine the ideal weight is

expressed by

VðW ;p;$Þ ¼
1

2
kWk2 þ c0

2

XN

i¼1
$2

i

s :t : YiðpiÞ ¼ W TKðpiÞ þ pþ$i

(13)

where c0 and $i denote the positive regulation parameter

and ith approximation error, respectively. The Lagrange

function of equation (13) is

La ¼ 1

2
kWk2 þ c0

2

XN

i¼1
$2

i

�
XN

i¼1
��i

�
W TKðpiÞ þ pþ$i � YiðpiÞ

�
(14)

where ��i are the Lagrange multipliers. The first-order KKT

optimality conditions of equation (14) are obtained as
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qLa

qW
¼ 0) W ¼

XN

i¼1
��iKðpiÞ

qLa

qp
¼ 0)

XN

i¼1
��i ¼ 0

qLa

q$i

¼ 0) c0$i � ��i ¼ 0

qLa

q��i

¼ 0) W TKðpiÞ þ pþ$i � YiðpiÞ ¼ 0

8>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>:

(15)

Further, equation (15) is equivalent to the following

linear system

0 ~1
T

~1 Oþ c�1
0 I

" #
p

��

� �
¼

0

Y

� �
(16)

where ~1 ¼ ½1; . . . ; 1�T 2 RN . Oij ¼ ’ðpi; pjÞ ¼ K TðpiÞ�
KðpjÞ ði; j ¼ 1; 2; . . . ;NÞ is the kernel function.

Yb½Y1;Y2; . . . ; YN �T and ��b½��1; ��2; . . . ; ��N �T. In our

work, the Gaussian kernel function ’ðp; piÞ ¼
e½�ðp�piÞTðp�piÞT=ð2� 2Þ� is chosen, where �2 is the square band-

width of the receptive field. Define AbOþ c�1
0 I and A as

invertible considering Oij � 0; c > 0. Then we can obtain

p ¼
~1

T
A�1Y

~1
T
A�1~1

�� ¼ A�1ðY� p~1Þ

8>><
>>: (17)

Then, the approximation function in equation (12) is

equal to

Y ðpÞ ¼
XN

i¼1
��i’ðp; piÞ þ p (18)

For brevity, equation (18) is defined as

Y ðpÞb�’ðpÞ
�b½��1; ��2; . . . ; ��N ; p�T

’ðpÞb½’ðp; p1Þ; ’ðp; p2Þ; . . . ; ’ðp; pN Þ; 1�T

8><
>: (19)

Based on equation (19), considering the approximation error

$̂, the actuate approximation for the unknown nonlinear

function over a compact set Sp � Rn can be expressed by

Ŷ ðpÞ ¼ �̂T
’ðpÞ þ $̂ (20)

The ideal weight value �	 of equation (20) is given by

�	 ¼ arg min
�2Sf

sup
p2Sp

Ŷ
�
pjð�̂Þ

�
� Y ðpÞ

��� ���
" #

(21)

where Sf ¼ f�̂ : j�̂j � M^�
g is a valid field of the estimate

parameter �̂ with M^�
being a design parameter. Using the

ideal weight value �	 yields

Y ðpÞ ¼ �	T’ðpÞ þ$	; j$	j � $max (22)

where $	 is the optimal approximation error and $max is

the upper bound of $	.
Remark 2. Note that the newly defined weight � in equa-

tion (19) is obtained by solving a linear function in equation

(16) based on the first-order optimality conditions in equation

(15). In this procedure, no optimization methods such as the

quadratic programming method or the dynamic programming

method, which are often applied to NN-based approximation,

are needed. Namely, only two design parameters c0 and � are

required in the estimation for unknown nonlinear functions.

Hence, this simplifies the optimization of the weight � in the

nonlinear approximation dramatically and is suitable for the

online estimation of unknown hypersonic dynamics. Besides,

it can be seen from equations (16) and (17) that the value of �
is globally optimal in the LS-SVM, which bypasses local

minima during the training process. Moreover, when small-

scale training samples (N is small) are chosen, high confi-

dence levels of the approximation can be obtained as well

according to Vapnik and Suykens and Vandewalle.17,18 Thus,

it is advantageous to adopt the LS-SVM to approximate the

unknown nonlinearities in equations (3) and (5) so the HFV

benefits from its attractive computational property.

Based on the model description and preliminaries above,

in what follows, two LS-SVM-based adaptive controllers

under a TPPF are designed for velocity and altitude sub-

systems, respectively.

LS-SVM-based adaptive controller design

Before devising the LS-SVM-based adaptive controllers

under a TPPF, a control saturation approximation and a

newly developed FTCD based on a hyperbolic tangent sig-

moid function (HTSF) are given. A HTSF often works as a

transfer function in a NN owing to its good properties such

as mapping the large input into the small domain (�1, 1).

Saturation approximation based on HTSF

For the asymmetric or symmetric control saturations in equa-

tion (3), it is easy to find that there exists a sharp corner

between the applied control ½de;�� and the control input

½vde
; v�� when vde

¼ uþM 1ð or u�M 1Þ; v� ¼ uþM 2ð or u�M 2Þ.
Hence, the classical backstepping technique cannot be

directly applied in the relevant controller design. In order

to attenuate the negative effect induced by the sharp corner,

the applied control ½de;�� can be approximated by the HTSF

in a general form like

u ¼ satðvÞ ¼ u1 þ u2

u1 ¼ �0	
�
�1ðv� �2Þ

�
þ �2

	
�
�1ðv� �2Þ

�
¼ 2

1þ e�2	�1ðv��2Þ
� 1

�0 ¼ ðuþM � u�MÞ=2; �2 ¼ ðuþM þ u�M Þ=2

8>>>>>>><
>>>>>>>:

(23)
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where �1 2 ð0;1Þ is a positive design constant determin-

ing the approximation accuracy. u1 is the approximation

term of the saturated control u. u2 represents the approx-

imation error. v; uþM ; and u�M have similar concepts with

ones in equation (3). Along equation (23), the bound of the

approximation error u2 is restricted to

ju2j ¼ ju� u1j ¼ jsatðvÞ � u1j

¼
����satðvÞ �

�
�0

2

1þ e�2	�1ðv��2Þ
þ �2 � �0

�����
� ðuþM � u�MÞ

�
1� 1

1þ e�2	�1ðu�M��2Þ

�
beu max

(24)

In our work, considering the practical actuator con-

strains of a HFV, de 2 ½�15
; 15
�; � 2 ½0:05; 1:2�,11 the

relevant approximations are given in Figures 1 and 2.

As portrayed in Figures 1 and 2, the saturation approx-

imation errors by the HTSF are bounded. And by adjusting

the parameter �1, the approximation error can be made

arbitrarily small.

Novel finite-time-convergent differentiator

A novel FTCD with a simple structure is developed using

the HTSF in this part. The newly developed FTCD (labeled

as hyperbolic finite-time-convergent differentiator

[HFTCD]) has two good properties as follows.

1. The structure of the HFTCD is comparatively sim-

ple and can track the desired signal and its high-

order derivatives accurately with global asymptotic

stability within a finite time.

2. In the estimation for the desired signal, a good

dynamic response and high accuracy can be

obtained using the HFTCD. Besides, the chattering

near the trim point is weakened, or even eliminated,

under the proposed HFTCD.

Prior to the design of HFTCD, some necessary concepts

are given.

Definition 1.31,34 Consider a time-invariant autonomous

system expressed by

_w ¼ h- ðwÞ; h- ð0Þ ¼ 0; w ¼ ½w1; w2; . . . ; wn�T 2 Rn

(25)

where h- : Sw ! Rn is continuous on an open neighborhood

Sw0 of the origin ð0; 0Þ. Without loss of generality, the origin

½0�n�1 is assumed to be the trim point of the system given by

equation (25) and the finite-time stability is obtained if:

(a) it is asymptotically stable in Sw with Sw � Sw0;

(b) it is finite-time convergent in Sw, that is, there exists

a setting time Ts > 0 such that every solution wðtÞ
of the system given by equation (25) is kept on

Sw jf0g for any initial condition wð0Þ 2 Sw jf0g;
and for all t 2 ½0; 1Þ, it satisfies

lim
t!Ts

wðtÞ ¼ 0; and wðtÞ ¼ 0; 8 t 2 ½Ts; þ1Þ (26)

Note that when Sw ¼ Rn, the system given by equation

(25) is globally finite-time stable at the origin when satis-

fying the aforementioned conditions.

Lemma 1. (Bhat and Bernstein32) Suppose there exists a

positively continuous function J1 : Sw0 ! R satisfying the

following condition

_J 1ðwÞ þ I
�

J1ðwÞ
�#
� 0; w 2 Sw � Sw0 jf0g (27)

where I > 0; # 2 ð0; 1Þ are constants. The rest of the

parameters are the same as the ones in Definition 1. Then

the system given by equation (25) is finite-time stable at the

origin and the setting time Ts satisfies

Ts �
1

Ið1� #Þ ðJ1ðwÞÞ1�# (28)
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Figure 1. Saturation approximation for de ð�1 ¼ 0:08Þ.
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Apart from the aforementioned definition and lemma, some necessary and useful assumptions are given.

Assumption 1. Given that the smooth function h- ðwÞ satisfies

jh- ð~w1; ~w2; . . . ; ~wnÞ � h- ð�w1; �w2; . . . ; �wnÞj � c1

Xn

i¼1
j~wi � �wij& ; c1 > 0; & 2 ð0; 1� (29)

where c1 and & are constants. Besides, the positively continuous function J1 is Lipschitz with a Lipschitz constant Mc.

Based on the previous discussions, construct the following system in the form of

_wi ¼ wiþ1; i ¼ 1; 2; . . . ; n� 1

_wn ¼ h- ðw1; w2; . . . ; wnÞ ¼ �l1	ð‘1w1Þ � l2	ð‘2w2Þ � � � � � ln	ð‘nwnÞ

	
(30)

where w ¼ ½w1; w2; . . . ; wn� 2 Sw. li; ‘i ði ¼ 1; 2; . . . ; nÞ are the positive design constants.

Theorem 1. When the Lyapunov function candidate incorporating with the continuous function h- is chosen as

J1 ¼
Rw1

0
l1	ð‘1tÞdtþ

Rw2

w1
o2	ð‘2tÞdtþ � � � þ

Rwn�1

wn�2
on�1	ð‘n�1tÞdtþ w2

n þ c2

0 < w1 < w2 < � � � < wn < wmax; oiþ1 ¼ maxfl1; . . . ; liþ1g; ‘i � ‘iþ1; c2 � 1; i ¼ 1; 2; . . . ; n� 2

(
(31)

where wmax is a positive constant, the system given by equation (30) is finite-time stable and the setting time Ts satisfies the

inequality given by equation (30).

Proof. Taking time derivative of J1 and we can obtain

_J 1 ¼ l1	ð‘1w1Þ _w1 þ ðo2	ð‘2w2Þ _w2 � o2	ð‘2w1Þ _w1Þ þ � � � þ ðon�1	ð‘n�1wn�1Þ _wn�1 � on�1	ð‘n�1wn�2Þ _wn�2Þ þ 2wn _wn

¼ ðl1	ð‘1w1Þ � o2	ð‘2w1ÞÞ _w1 þ ðo2	ð‘2w2Þ � o3	ð‘3w2ÞÞ _w2 þ � � � þ on�1	ð‘n�1wn�1Þ _wn�1 þ 2wn _wn

� on�1	ð‘n�1wn�1Þ _wn�1 þ 2wn _wn

¼ on�1	ð‘n�1wn�1Þwn þ 2wnð�l1	ð‘1w1Þ � l2	ð‘2w2Þ � � � � � ln�1	ð‘n�1wn�1Þ � ln	ð‘nwnÞÞ
� �l1	ð‘1w1Þwn � l2	ð‘2w2Þwn � � � � � ln�1	ð‘n�1wn�1Þwn � ln	ð‘nwnÞwn

� �l1	ð‘1w1Þw1 � l2	ð‘2w2Þw2 � � � � � ln	ð‘nwnÞwn

(32)

Employing the “mean value theorem of integrals”, the following inequalities can be obtainedR w1

0
l1	ð‘1tÞdt � l1	ð‘1w1Þw1R wiþ1

wi
oiþ1	ð‘iþ1tÞdt � oiþ1	ð‘iþ1wiþ1Þwiþ1; i ¼ 1; 2; . . . ; n� 2

(33)

Along the inequalities given by equation (33), the inequality given by equation (32) becomes

_J 1 � �
R w1

0
l1	ð‘1tÞdt�

R w2

w1
l2	ð‘2tÞdt� � � � �

R wn�1

wn�2
ln�1	ð‘n�1tÞdt

¼ �J1 þ DJ1

DJ1 ¼
R w2

w1
ðo2 � l2Þ	ð‘2tÞdtþ � � � þ

R wn�1

wn�2
ðon�1 � ln�1Þ	ð‘n�1tÞdtþ w2

n þ c2 � 0

8><
>: (34)

It is easy to obtain J1 � 1 based on equation (31). Invok-

ing the inequality given by equation (34), there exist

I > 0; # 2 ð0; 1Þ and the following inequality holds

�J1 þ DJ1 ¼ �IðJ1Þ# (35)

Further, we can obtain

_J 1 þ IðJ1Þ# � 0 (36)

According to Lemma 1, then the setting time Ts satisfies

the inequality given by equation (28). This completes the

proof of Theorem 1.

Note that when wn < wn�1 < � � � < w1 < 0, Theorem 1

holds as well. The process of the proof is similar to the

previous one.

When h- is chosen as the form of equation (30), Assump-

tion 1 is satisfied and the relevant proof is as follows.

Proof. Take time derivative of 	ð‘wÞ
d	ð‘wÞ

dw
¼ d

dw
2

1þ e�2‘w � 1

� �
¼ 4‘e�2‘w

ð1þ e�2‘wÞ2

� ‘ ð1þ e�2‘wÞ2

ð1þ e�2‘wÞ2
¼ ‘ (37)

Then h- satisfies

Wei et al. 7



jh- ð~w1 ;~w2; . . . ;~wnÞ � h- ð�w1;�w2 ; . . . ;�wnÞj ¼ j
�
l1	ð‘1�w1Þ � l1	ð‘1~w1Þ

�
þ
�
l2	ð‘2�w2Þ � l2	ð‘2~w2Þ

�
þ � � �

þ
�
ln	ð‘n�wnÞ � ln	ð‘n~wnÞ

�
j

� l1j	ð‘1�w1Þ � 	ð‘1~w1Þjþ l2j	ð‘2�w2Þ � 	ð‘2~w2Þj þ � � � þ lnj	ð‘n�wnÞ� 	ð‘n~wnÞj
� l1‘1j~w1 � �w1j þ l2‘2j~w2 � �w2j þ � � � þ ln‘nj~wn � �wnj
� lmax

Xn

i¼1
j~wi � �wij; lmax ¼ maxfl1‘1 ; l2‘2 ; . . . ; ln‘ng

(38)

Thereby, the inequality given by equation (29) is

satisfied when h- is chosen as the form of equation

(30). Consequently, it is easy to prove that J1 is

Lipschitz.

In order to obtain the HFTCD, the bounded and integr-

able input signal }ðtÞ should satisfy the following the

assumption.

Assumption 2.33 The bounded and integrable input sig-

nal }ðtÞ has (n� 2)-order derivative on the whole time

domain. At some time instants, its (n� 1)-order derivative

may not exists, but its (n� 1)-order left and right deriva-

tives exist and do not equal.

Theorem 2. When Assumptions 1 and 2 hold, based on

Theorem 1, the following system

_
i ¼ 
iþ1; i ¼ 1; 2; . . . ; n� 1

_
n ¼ �Rn

�
l1	
�
‘1ð
1 � }Þ

�
þ l2	

�
‘2
2

R

�
þ � � � þ ln	

�
‘n
n

Rn�1

��
8><
>: (39)

is finite-time stable and there exists > 0; 71s > n such that


i � }i�1 ¼ O
�
ð1=RÞ71s�iþ1

�
ði ¼ 1; 2; . . . ; nÞ s ¼ 1�72

72

;

72 2 ð0; 720Þ; 720 ¼ min 71

71þn
; 1

2

n o
; 8n � 2, where R is a

positive design constant and the rest of the parameters are the

same as ones in Theorem 1. O
�
ð1=RÞ71s�iþ1

�
represents the

relevant high-order approximation error.

Proof. Invoking Theorem 1 above, and according to

Theorem 1 in the work by Bu et al. and Wang et al.,28,33

it is easy to conclude that Theorem 2 holds.

Remark 3. Theorem 2 gives the detailed form

of the HFTCD and equation (39) reveals that

lim
R!þ1

ð
i � }i�1Þ ¼ 0; 8i ¼ 1; 2; . . . ; n. Practically, }i�1

can be estimated precisely under appropriate parameter

R. Further, one can conclude that the HFTCD has

the properties mentioned at beginning of this subsection.

LS-SVM-based adaptive controller subject to actuator
saturation for the velocity subsystem

For the velocity subsystem given by equation (3), under the

TPPF in equation (6), the transformed error of the velocity

tracking error ~V can be obtained based on equation (10)

expressed by

sV ¼
1

2
ln

dV 1 þ LV

dV 2 � LV

� �
; LV ¼

~V

�V

(40)

The derivative of sV is

_sV ¼
qsV ðtÞ
qLV

dLV

dt
þ qsV ðtÞ

qdV 1

ddV 1

dt
þ qsV ðtÞ

qdV 2

ddV 2

dt

¼ "V ð fV þ �� _V r � LV _�V þ dV="V Þ
(41)

where "V ¼ 1
2�

V

1
dV 1þLV

þ 1
dV 2�LV

� �
and dV ¼

1
2

1
dV 1þLV

_dV 1 � 1
dV 2�LV

_dV 2

� �
: dV 1; dV 2 and �V are design

smooth decaying functions. The unknown nonlinearity fV
in equation (41) can be estimated by a LS-SVM-based

approximator according to equation (22)

fV ¼ �	T
V 	ð �VÞ þ$	1; j$	1j � $1 max; k�	Vk

2 � �V max

(42)

where �V ¼ ½T ;D; �; g;��. �	V 2 RN1þ1 and $	1 2 R are,

respectively, the ideal weight and the approximation error

with N1 being the total number of training samples of the

LS-SVM. To reduce the complexity of the online adapta-

tion of ðN1 þ 1Þ-dimensional weight �	V , alternatively,

define �	V ¼ k�	Vk
2

as the new estimation parameter.

Herein, only one scalar needs to be reduced online which

drops the computational load dramatically.

For compensating the input saturation of the fuel equiva-

lence ratio, defining eV ¼ sV � sV 0 with sV 0 being an aux-

iliary state, a new system can be formed as

_eV ¼ _sV � _sV 0 ¼ "V ðfV þ sV 0 � _V r � LV _�V þ dV="V þ v�Þ
¼ "V

�
�	T

1 ’ð �V Þ þ$	1 þ sV 0 � _V r � LV _�V þ dV="V þ v�

�
(43)
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with

_sV 0 ¼ �"V sV 0 þ "V ðsatðv�Þ � v�Þ (44)

Note that "V > 0 holds in the whole time domain. When

the newly defined system state eV is bounded, considering

the boundedness of sV 0, sV can preserve its transient and

steady-state performance defined by TPPF in equation (40).

Therefore, the task of the velocity subsystem is to design an

appropriate control input v� to shrink the newly defined

error eV to a small domain. The LS-SVM-based adaptive

controller v� is devised as

v� ¼ �kV 1eV � kV 2

Z t

0

eV ðtÞdtþ _V r � ‘V 1eV �̂V’
Tð �V Þ’ð �V Þ

þ ‘V 2�̂V þ LV _�V � dV="V � sV 0

(45)

where kV 1; kV 2; ‘V 1; ‘V 2; and GV denote the positive

design constants. �̂V is the estimation of �	V , and its adap-

tive scheme is

_̂�V ¼ Proj
�
GV

�
� ‘V 2eV þ ‘V 1e2

V’
Tð �VÞ’ð �VÞ

��
(46)

where the parameter projection Projð�Þ satisfies

Proj�ð�Þ ¼
0; if � ¼ � min; � < 0

0; if � ¼ � max; � > 0

�; otherwise

8><
>: (47)

Under the LS-SVM-based adaptive controller equation

(45), the stability analysis of the system given by equation

(43) is given as follows.

Theorem 3. Consider the closed-loop system com-

prising of the plant equation (43) with the LS-SVM-

based approximation for nonlinearity in equation (42),

designed controller in equation (45), adaptive scheme in

equation (46), then all the signals involved are bounded

and the velocity tracking error can preserve its transient

and steady-state performance defined by the TPPF in

equation (40).

Proof. Construct the following Lyapunov function can-

didate as

JV ¼
1

2"V

e2
V þ

1

2
kV 2

Z t

0

eV ðtÞdt
� �2

þ 1

2GV

~�2
V (48)

where ~�V ¼ �̂V � �	V . According to equations (44) to (47),

the derivative of JV satisfies

_JV ¼
1

"V

eV _eV �
_"V

2"2
V

e2
V þ kV 2eV

Z t

0

eV ðtÞdtþ
1

GV

~�V
_~�V

¼ eV

�
�	T

V ’ð �VÞ þ$	1 þ sV 0 � _V r � LV _�V þ dV="V þ v�

�
� _"V

2"2
V

e2
V þ kV 2eV

Z t

0

eV ðtÞdtþ
1

GV

~�V
_~�V

¼ �
�

kV 1 þ
_"V

2"2
V

�
e2

V þ eV�
	T
V ’ð �VÞ � ‘V 1e2

V �̂V’
Tð �VÞ’ð �VÞ þ ‘V 2�̂V eV þ

1

GV

~�V
_~�V þ eV$

	
1

� �
�

kV 1 � ‘V 1 þ
_"V

2"2
V

�
e2

V þ ‘V 1e2
V�
	
V’

Tð �VÞ’ð �VÞ � ‘V 1e2
V �̂V’

Tð �VÞ’ð �VÞ þ 1

GV

~�V
_~�V þ ‘V 2�̂V eV þ

1þ$	21

4‘V 1

¼ �
�

kV 1 � ‘V 1 þ
_"V

2"2
V

�
e2

V � ‘V 1e2
V ~�V’

T ð �VÞ’ð �VÞ þ ‘V 2~�V eV þ ‘V 2�
	
V eV þ

1

GV

~�V
_~�V þ

1þ$	21

4‘V 1

¼ �
�

kV 1 � ‘V 1 þ
_"V

2"2
V

�
e2

V � ~�V IV þ ~�V

�
1

GV

ProjðGV IV Þ
�
þ ‘V 2�

	
V eV þ

1þ$	21

4‘V 1

¼ �
�

kV 1 � ‘V 1 þ
_"V

2"2
V

�
e2

V � ~�V

�
IV �

1

GV

ProjðGV IV Þ
�
þ ‘V 2�

	
V eV þ

1þ$	21

4‘V 1

� �
�

kV 1 � ‘V 1 � ‘V 2 þ
_"V

2"2
V

�
e2

V þ
‘V 2�

	2
V

4
þ 1þ$2

1 max

4‘V 1

� ��kV 1e2
V þ

‘V 2�
	2
V

4
þ 1þ$2

1 max

4‘V 1

(49)

where �kV 1bkV 1 � ‘V 1 � ‘V 2 þ _"V=ð2"2
V Þ; IV b� ‘V 2eVþ

‘V 1e2
V’

Tð �VÞ’ð �VÞ. Let kV 1> maxf‘V 1 þ ‘V 2 � _"V=ð2"2
V Þg,

then eV is invariant to the following set

OeV
¼ eV jeV j �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
‘V 2�

	2
V

4
þ 1þ$	21 max

4‘V 1

� �
=�kV 1

s�����
)(

(50)
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When a sufficiently large �kV 1 is chosen, the radius of

OeV
can be made arbitrarily small. According to the

inequalities given by equations (49) and (50), it can be seen

that the designed adaptive controller in equation (45) can

steer the newly defined state eV to a small invariant stably.

This guarantees eV and sV 0 are bounded. Thereby, the velo-

city tracking error ~V can preserve its transient and steady-

state performance defined by TPPF. This completes the

proof of Theorem 3.

LS-SVM-based adaptive controller subject to actuator
saturation for the altitude subsystem

As for the tracking control for altitude subsystem, under the

TPPF in equation (6), the transformed error of the altitude

tracking error ~h can be obtained based on equation (10)

expressing by

sh ¼
1

2
ln

dh1 þ Lh

dh2 � Lh

� �
; Lh ¼

~h

�h

(51)

Along equations (1) and (51), take the derivative of sh as

_sh ¼
qshðtÞ
qLh

dLh

dt
þ qshðtÞ

qdh1

ddh1

dt
þ qshðtÞ

qdh2

ddh2

dt

¼ "hðV sing� _hr � Lh _�h þ dh="hÞ
(52)

with "h ¼ 1
2�h

1
dh1þLh

þ 1
dh2�Lh

� �
and dh ¼ 1

2
1

dh1þLh

_dh1 � 1
dh2�Lh

_dh2

� �
,

where dh1; dh2; and�h are design smooth decaying func-

tions. Then define the command of gd as

gd ¼
�kh1sh � kh2

R t

0
shðtÞdtþ _hr þ Lh _�h � dh="h

V
(53)

with

_gd �
�kh1 _sh � kh2sh þ €hr þ Lh€�h þ _Lh _�h � ð _dh"h � dh _"hÞ="2

h

V

(54)

where kh1 and kh2 are positive design constants. As dis-

cussed in the ‘Problem statement and preliminaries’ sec-

tion, when g can track the given command gd , then the

altitude tracking error ~h can be regulated to zero stably

while preserving its transient and steady-state performance

depicted in equation (51). When tracking the given com-

mand gd defined in equation (53), two problems encoun-

tered in equation (5) should be addressed ahead of

designing the relevant controller. One is the observation

of the newly defined state variables z2 and z3. Another is

the estimation of að�x3Þ.

For the first problem, according to Theorem 2, the newly

developed HFTCD can be applied to obtain the estimation

for z2 and z3 in the following form

_
i ¼ 
iþ1; i ¼ 1; 2

_
3 ¼ �R3ðlh1	ð‘h1ð
1 � z1ÞÞ þ lh2	ð‘h2
2=RÞ þ lh3	ð‘h3
3=R2ÞÞ

(

(55)

where R; lhi; and ‘hi ði ¼ 1; 2; 3Þ are positive design con-

stants, and ‘hi satisfies the condition given in Theorem 1.

The estimation errors for z2 and z3 refer to Theorem 2.

Then the tracking error based on equation (5) and the

HFTCD-based tracking error based on equation (55) for

g can be obtained as

eb½e1; e2; e3� ¼ ½z1 � gd ; z2 � _gd ; z3 � €gd �
êb½ê1; ê2; ê3� ¼ ½
1 � gd ; 
2 � _gd ; 
3 � €gd �
~ebê� e ¼ ½0; ~e2; ~e3�

8><
>: (56)

Note that the tracking error of the initial system (5) for g
is not changed considering 
1 ¼ z1 ¼ yh.

According to equation (56), the corresponding error sys-

tem is constructed in the following form based on the back-

stepping technique.

Step 1. Define eh1 ¼ e1 and take its derivative as

_eh1 ¼ _
1 � _gd � ~e2 ¼ eh2 þ vd1 � _gd � ~e2 (57)

by defining eh2 ¼ 
2 � vd1 with vd1 being the virtual con-

trol term. Design the virtual control as vd1 ¼ �kg1eh1 þ _gd

with kg1 being a positive design constant. Then equation

(60) equals to

_eh1 ¼ �kg1eh1 þ eh2 � ~e2 (58)

Construct the following Lyapunov function candidate as

Jh1 ¼
1

2
e2

h1 (59)

Based on equation (59), the derivative of Jh1 satisfies

_Jh1 ¼ eh1 _eh1 ¼ eh1ð�kg1eh1 þ eh2 � ~e2Þ

� �ðkg1 � 1Þe2
h1 þ eh1eh2 þ

1

4
~e2

2

¼ ��kg1e2
h1 þ eh1eh2 þ Oh1

(60)

where �kg1bkg1 � 1 > 0 and Oh1b~e2
2=4.

Step 2. Define eh3 ¼ 
3 � vd2 � eh0 with vd2 and eh0

being, respectively, the virtual control term and the auxili-

ary state given later. The derivative of eh2 is

_eh2 ¼ _
2 � _vd1 ¼ eh3 þ vd2 þ eh0 � _vd1 (61)
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Devise the virtual control vd2 as

vd2 ¼ �kg2eh2 þ _vd1 � eh1 � eh0 (62)

where kg2 is a positive design constant. In order to avoid

intricate analysis and computation for _vd1 containing €gd and

_vd1 can be estimated by a two-order HFTCD proposed

above in the following form

_w11 ¼ w12

_w12 ¼ �R2
11ðl11	ð‘11ðw11 � vd1ÞÞ þ l12	ð‘12w12=R11ÞÞ

	
(63)

where R11; l1i; and ‘1iði ¼ 1; 2Þ are positive design

constants. According to Theorem 2, w12 � _vd1 ¼
O
�
ð1=R11Þ711s11�iþ1

�
bO12. Then vd2 ¼ �kg2eh2þ

w12 � eh1 � eh0 and equation (60) equals to

_eh2 ¼ �kg2eh2 � eh1 þ eh3 þ O12 (64)

Construct the following Lyapunov function candidate as

Jh2 ¼
1

2
e2

h2 (65)

Based on equation (64), the derivative of Jh2 satisfies

_Jh2 ¼ eh2 _eh2 ¼ eh2ð�kg2eh2 � eh1 þ eh3 þ O12Þ

� �ðkg2 � 1Þe2
h2 � eh1eh2 þ eh2eh3 þ

1

4
O2

12

¼ ��kg2e2
h2 � eh1eh2 þ eh2eh3 þ Oh2

(66)

where �kg2bkg2 � 1 > 0, Oh2bO2
12=4.

Step 3. eh3 ¼ 
3 � vd2 � eh0. When the unknown non-

linearity is estimated by a LS-SVM-based approximator in

equation (22), then the derivative of eh3 can be written as

_eh3 ¼ _
3 � _vd2 � _eh0 ¼ að�x3Þ þ de þ O3 � _vd2 � _eh0

¼ �	T
h ’ð�hÞ þ$	2 þ de þ O3 � _vd2 � _eh0

(67)

with an auxiliary system for compensating the saturation of

elevator deflection

_eh0 ¼ �eh0 þ satðvde
Þ � vde

(68)

where O3 is the approximation error between _
3 and _z3.

�	h 2 RN2þ1 is the ideal weight with N2 being the total num-

ber of training samples of LS-SVM. �h ¼ �x3. Similarly, _vd2

is estimated by a two-order HFTCD in the following form

_w21 ¼ w22

_w22 ¼ �R2
22ðl21	ð‘21ðw21 � vd2ÞÞ þ l22	ð‘22w22=R22ÞÞ

	
(69)

where R22; l2i; and ‘2iði ¼ 1; 2Þ are positive design con-

stants. Based on Theorem 2, the estimation error satisfies

w22 � _vd2 ¼ O
�
ð1=R22Þ722s22�iþ1

�
bO22. Then along

equation (68), equation (67) equals to

_eh3 ¼ �	T
h ’ð�hÞ þ eh0 þ vd � w22 þ$	2 þ Oc3 (70)

with Oc3bO3 þ O22. Likewise, for reducing the complex-

ity of regulating ðN2 þ 1Þ-dimensional ideal weight �	h,

defining �	h ¼ k�	hk
2
, then only one parameter needs to be

updated adaptively online.

Based on equation (70), the actual LS-SVM-based adap-

tive controller vde
is devised as

vde
¼ �kg3eh3 � ‘g1eh3�̂h’

Tð�hÞ’ð�hÞ þ ‘g2�̂h þ w22 � eh0 � eh2

(71)

where kg3; ‘g1; and ‘g2 are positive design constants. �̂h is

the estimation for �	h and its corresponding adaptive

scheme is

_̂�h ¼ ProjðGhð�‘g2eh3 þ ‘g1e2
h3’

Tð�hÞ’ð�hÞÞÞ (72)

where Gh is a positive design constant. Substituting equa-

tion (70) into (69) yields

_eh3 ¼ �	T
h ’ð�hÞ � kg3eh3 � ‘g1eh3�̂h’

Tð�hÞ’ð�hÞ þ ‘g2�̂h

� eh2 þ$	2 þ Oc3

(73)

Then construct the following Lyapunov function candi-

date as

Jh3 ¼
1

2
e2

h3 þ
1

2Gh

~�2
h (74)
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where ~�h ¼ �̂h � �	h. Along equations (72) and (73), the derivative of Jh3 satisfies

_Jh3 ¼ eh3 _eh3 þ
1

Gh

~�h
_~�h

¼ eh3

�
�	T

h ’ð�hÞ � kg3eh3 � ‘g1eh3�̂h’
Tð�hÞ’ð�hÞ þ ‘g2�̂h � eh2 þ$	2 þ Oc3

�
þ 1

Gh

~�h
_~�h

� �ðkg3 � ‘g1 � ‘g2Þe2
h3 þ ‘g1e2

h3�
	
h’

Tð�hÞ’ð�hÞ � ‘g2e2
h3�̂h’

Tð�hÞ’ð�hÞ þ ‘g2�̂heh3 � eh2eh3 þ
1

Gh

~�h
_~�h

þ 1þ$	22

4‘g1

þ 1

4‘g2

O2
c3

� �ðkg3 � ‘g1 � ‘g2Þe2
h3 � ‘g1e2

h3~�h’
Tð�hÞ’ð�hÞ þ ‘g2�̂heh3 þ

1

Gh

~�h
_~�h þ

1þ$2
2 max

4‘g1

þ 1

4‘g2

O2
c3 � eh2eh3

¼ �ðkg3 � ‘g1 � ‘g2Þe2
h3 � ~�hIh þ ~�h

�
1

Gh

ProjðGhIhÞ
�
þ ‘g2�

	
heh3 þ

1þ$2
2 max

4‘g1

þ 1

4‘g2

O2
c3 � eh2eh3

� �ðkg3 � ‘g1 � 2‘g2Þe2
h3 � ~�h

�
Ih �

1

Gh

ProjðGhIhÞ
�
þ
‘g2�

	2
h

4
þ 1þ$2

2 max

4‘g1

þ 1

4‘g2

O2
c3 � eh2eh3

¼ ��kg3e2
h3 þ

‘g2�
	2
h

4
þ 1þ$2

2 max

4‘g1

� eh2eh3 þ Oh3

(75)

with �kg3bkg3 � ‘g1 � 2‘g2 > 0; Ihb� ‘g2eh3þ
‘g1e2

h3’
Tð�hÞ’ð�hÞ; and Oh3bO2

c3=4‘g2. Based on afore-

mentioned three steps, one of main results in this work is

given as follows.

Theorem 4. Consider the system consisting of the plants

given by equations (4) and (5) with the HFTCD in equation

(55) based on Theorem 2, the adaptation scheme of �̂h in

equation (72), the virtual control in euqtions (57) and (62)

and the actual control in equation (71), all the signals

involved are bounded with semi-global stability of the

closed-loop system. Then, the altitude tracking error ~h can

achieve the time-varing predefined performance pre-

planned by the TPPF in equation (51) under actuator

saturation.

Proof. Construct the following Lyapunov function can-

didate as

Jh ¼ Jh1 þ Jh2 þ Jh3 (76)

Invoking the inequalities given by equations (60), (66)

and (75), the derivative of Jh satisfies

_Jh � ��kg1e2
h1 þ eh1eh2 þ Oh1 � �kg2e2

h2 � eh1eh2 þ eh2eh3 þ Oh2 � �kg3e2
h3 þ

‘g2�
	2
h

4
þ 1þ$2

2 max

4‘g1

� eh2eh3 þ Oh3

¼ ��kg1e2
h1 � �kg2e2

h2 � �kg3e2
h3 þ

‘g2�
	2
h

4
þ 1þ$2

2 max

4‘g1

þ Oh

� �gJh þ C

(77)

where g ¼ minf�kg1; �kg2; �kg3g; C ¼ ‘g2�
	2
h =4þ ð1þ$2

2 maxÞ=
ð4‘g1Þ þ Oh; OhbOh1 þ Oh2 þ Oh3. Then the closed-loop

system (5) is semi-globally stable and all the signals

involved are bounded. Wherein, the tracking error between

g and gd is invariant to the following set

Oeh1
¼ eh1 jeh1j �

ffiffiffiffiffiffiffiffiffi
C=g

p��� on
(78)

The radius of Oeh1
can be made arbitrarily small by

choosing sufficiently large �kg1, or �kg2 or �kg3. When

g! gd , then h! hr as seen from equation (1). And the

transient and steady-performance defined in equation (51)

can be preserved. This completes the proof of Theorem 4.

Remark 4. Compared with previous works,10–13 only

two parameters need to be reduced online in the
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nonlinearity approximation. Meanwhile, only two design

parameters are required in two LS-SVM-based approxima-

tors and the relevant solutions to the weights are addressed

by solving two linear functions without specific optimiza-

tion algorithms. This drops the complexity of computation

dramatically. Thus, the LS-SVM-based approximation is

advantageous for the online approximation of unknown

hypersonic dynamics.

Remark 5. The newly developed HFTCD are applied to

obtain the estimation for the newly defined state variables

and the derivatives of the devised virtual controllers with

small estimation errors within finite time. Whilst, the

tedious analysis and repeated derivations of the virtual con-

trollers are avoided. Thus, the inherent limitation of the

backstepping technique — “explosion of terms” is

conquered.

Figure 3 shows the control scheme constructed in this

work, which will be validated in the following numerical

simulations.

Numerical simulations

The proposed controllers in equations (45) and (71) with

the adaptation schemes in equations (46) and (72) are tested

for the system given by equation (1). Wherein, the newly

developed HFTCD is tested by estimating the unknown

state variables, and the derivatives of virtual controllers.

The aerodynamic coefficients and model parameters refer

to the work by Xu et al.11 The reference commands are

generated by the following filter

Vr

Vc

¼ 0:5� 0:32

ðsþ 0:5Þðs2 þ 2� 0:7� 0:3sþ 0:32Þ
(79a)

hr

hc

¼ 0:5� 0:22

ðsþ 0:5Þðs2 þ 2� 0:7� 0:2sþ 0:22Þ
(79b)

The detailed chosen parameters involved in the control

system are provided in Table 1. Wherein, the design para-

meters of both two LS-SVM-based approximators are set as

the same.

The initial values involved in the simulations are set,

respectively, as V0 ¼ 7850 ft/s, h0 ¼ 86000 ft, g0 ¼ 0,

q0 ¼ 0, and � ¼ 3:5
. The velocity tracks the given step

command with 200 ft/s every 60 s. Whilst, the altitude

tracks the square command with a period of 120 s and and

amplitude of 1000 ft. The actuator saturations of � and de

considered in the simulation are depicted in Figures 1 and

2, respectively.

The simulation results are portrayed from Figures 4 to

15. In detail, one can conclude the following.

1. Seeing from Figures 4 to 8, under the LS-SVM-

based adaptive controllers subject to actuator

saturation, the velocity and altitude commands are

rapidly tracked, respectively. And the steady-state

tracking errors lie in a small domain near the origin

which satisfy the limitations induced by the TPPF.

2. As portrayed in Figures 9 to 11, the devised LS-

SVM-based approximator and HFTCD obtain good

approximations for unknown nonlinear functions,

state variables, and the derivatives of the virtual

controllers with high accuracy, respectively. Con-

sequently, the inherent demerit of the backstepping

technique – “explosion of terms” is overcome.

3. In order to test the superiority of the proposed TPPF

compared with the CPPF, the relevant simulation

results are shown in Figures 14 and 15 under the

same initial simulation conditions. Wherein, one

can find that steady-state tracking errors attain up

to a 10�2 order of magnitude under the TPPF.

While, the steady-state tracking errors under CPPF

are at the level of 10�1. Hence, the proposed TPPF

Figure 3. The control scheme constructed in this work.
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is advantageous in obtaining high tracking accuracy

compared with the CPPF.

Based on the illustrative results, from another perspective,

one can further obtain that the proposed TPPF can be seen as

an additive time-varying semi-enclosed constraint given by

the designers. The time-varying semi-enclosed constraint

forms a tube where the transient and steady-state performance

of controlled systems is permitted. If the tube changes fast

(i.e. large positive real numbers for the parameters

k0; k1; and k2 in equation (7) are chosen) with a small upper

and lower bound (i.e. small positive real numbers for the

parameters d11; d21; and �1 in equation (7) are chosen),

a fast dynamic response and high tracking accuracy can be

Table 1. The values of the design parameters.

Equations Values

LS-SVM in equation (16) c0 ¼ 1000; �2 ¼ 0:3
TPPF in equations (40)

and (51)
kV1 ¼ 0:01; kV2 ¼ 0:01; dV10 ¼ 5;
dV20 ¼ 2:5; dV11 ¼ 0:2;
dV21 ¼ 0:2

kh1 ¼ 0:015; kh2 ¼ 0:01; dh10 ¼ 2;
dh20 ¼ 1; dh11 ¼ 0:2; dh21 ¼ 0:2

�V ¼ �h ¼ �; k� ¼ 0:05; �0 ¼ 3;
�1 ¼ 0:1

Equations (45) and (46) kV1 ¼ 2; kV2 ¼ 0:5; ‘V1 ¼ 0:02;
‘V2 ¼ 0:001; GV ¼ 1

Equations (57), (71)
and (72)

kh1 ¼ 2; kh2 ¼ 0:5; kg1 ¼ 2;
kg2 ¼ 1:5; kg3 ¼ 1

Gh ¼ 1; ‘g1 ¼ 0:01; ‘g2 ¼ 0:001
HFTCD in equations

(55), (63) and (69)
R ¼ 2:5; lh1 ¼ lh2 ¼ lh3 ¼ 2;
‘h1 ¼ 1; ‘h2 ¼ ‘h3 ¼ 3

R11 ¼ 3; l11 ¼ 5; l12 ¼ 3;
‘11 ¼ ‘12 ¼ 2

R22 ¼ 5; l21 ¼ 1; l22 ¼ 2;
‘21 ¼ ‘22 ¼ 1

LS-SVM: least square support vector machine; TPPF: time-varying prede-
fined performance function; HFTCD: hyperbolic finite-time-convergent
differentiator.
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obtained. However, large control efforts are needed and the

saturation of actuator easily occurs, just like the depiction in

Figure 6. Thus, a trade-off between the tracking accuracy and

fuel consumption as well as the system reliability should be

considered from the perspective of engineering.

Conclusions

A computationally fast adaptive control method under a TPPF

in the presence of unknown nonlinearities and actuator satura-

tion, is proposed for HFV in this article. Based on functional

decomposition, two LS-SVM-based adaptive controllers are,

respectively, devised to track the velocity and altitude com-

mands. Wherein, by applying the newly developed HFTCD

to estimate the newly defined state variables, the complex

strict-feedback formulation is completely avoided. Mean-

while, the derivatives of virtual controllers are estimated by

the newly developed HFTCD with errors at the level of 10�3.

So no tedious analysis and computation of the derivations of

the virtual controllers are needed. Thereby, the inherent draw-

back of the backstepping technique – “explosion of terms” is

conquered. Besides, only two LS-SVM-based approximators

with two adaptive scalars are required to approximate the

unknown hypersonic dynamics. Compared with the NN, only

two design parameters in the LS-SVM are needed and the

ideal weight is obtained through solving a linear system rather

than tedious optimizations. Consequently, the computational

burden is significantly reduced. Thus, the LS-SVM technique

is very advantageous in the approximation of unknown non-

linearities of the HFV online.

The simulation results demonstrate that the proposed con-

trollers can preserve the transient performance defined by

the TPPF. Moreover, the proposed controllers can track the

velocity and altitude commands with steady-state errors at

the level of 10�2, which are about 1 order of magnitude

smaller than those under the CPPF. Thus, the proposed TPPF

is superior to the CPPF in terms of the steady-state errors.
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Appendix

Notation

C�
i

D ¼ i th order coefficient of � in D
C�

i

L ¼ i th order coefficient of � in L
C�

i

M ¼ i th coefficient of � in M
Cde
M ¼ coefficient of de in M

h; hr ¼ altitude and reference altitude
h0; 1=hs ¼ nominal attitude for air density

approximation and air density decay rate
Iyy; Myy ¼ moment of inertial axis and pitch moment
m; g ¼ vehicle mass and gravitational

acceleration
R; I ¼ set of real numbers and identity matrix of

approximate dimensions
Rn ¼ n-dimensional Euclidean space
Sa; �c; zT ¼ reference area, mean aerodynamic chord

and thrust moment arm
T; L; D ¼ thrust, lift and drag
V; Vr ¼ velocity and reference velocity
�iði ¼ 1; 2; . . . ; 8Þ ¼ thrust fit coefficient
de; � ¼ elevator deflection and fuel equivalence

ratio
g; �; q ¼ flight path angle, attack angle, pitch rate
�q; gd ¼ dynamic pressure and reference flight

path angle
�; �0 ¼ density of air and nominal air density at

the altitude h0

j � j ¼ the absolute value of a scalar
k � k ¼ 2-norm of a vector
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