
 

 

The renin-angiotensin system (RAS) 
 
The renin-angiotensin system (RAS) was initially 
considered as a circulating humoral system, 
which function is the regulation of blood pres-
sure and sodium and water homeostasis. This 
circulating RAS induces vasoconstriction by en-
hancing norepinephrine release from sympa-
thetic terminals, and also activates the release 
of aldosterone from the adrenal cortex and 
antidiuretic hormone from the neurohypophysis. 
Angiotensin II (AII) is the most important effector 
peptide, and is formed by the sequential action 
of two enzymes, renin and angiotensin convert-
ing enzyme (ACE), on the precursor glycoprotein 

angiotensinogen. The actions of AII are medi-
ated by two main cell receptors: AII type 1 and 2 
(AT1 and AT2) receptors [1, 2]. The AT1 receptor 
belongs to the superfamily of seven transmem-
brane domain, and the human AT1 gene is lo-
cated in chromosome 3q and codes for a pro-
tein of 40-42KDa (359 amino acids). AT1 recep-
tors mediate most of the classical peripheral 
actions of AII, including vasoconstriction, renal 
water and salt retention and facilitation of sym-
pathetic transmission. The AT2 receptor con-
sists of a protein made up of 363 aminoacids 
with seven hydrophobic transmembrane do-
mains [3, 4] and the human AT2 gene is located 
on the X chromosome [5]. However, the function 
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Abstract: The pathogenic mechanism of Parkinson’s disease (PD) appears to be multifactorial. However, oxidative 
stress and neuroinflammation, including activation of NADPH-dependent oxidases, play a major role in the progres-
sion of dopaminergic cell death. The renin-angiotensin system (RAS) was described as a circulating humoral system 
that regulates blood pressure and water homeostasis. However, there exist local RAS in many tissues, and locally 
formed angiotensin activates NADPH-dependent oxidases, which are a major source of superoxide and are upregu-
lated in major aging-related diseases such as hypertension, diabetes and atherosclerosis. Furthermore, an intracellu-
lar or intracrine RAS, with still unknown functions, has been identified in several cell types. The brain has an inde-
pendent local RAS, which has been involved in several brain disorders, including neurodegenerative diseases. It is 
particularly interesting for PD the important interaction observed between angiotensin and dopamine, which counter-
regulate each other in renal cells and also in the striatum and substantia nigra. In recent studies, we have observed 
both a local and an intracellular RAS in the rodent, monkey and human substantia nigra, and that dopamine deple-
tion induced RAS upregulation possibly as a compensatory mechanism. However, RAS hyperactivation also exacer-
bated oxidative stress and neuroinflammation, which contributed to progression of dopaminergic degeneration. In 
addition, we observed increased RAS activity in the nigra of animals with higher vulnerability of dopaminergic neurons 
to degeneration, such as aged males, menopausal females and rats subjected to chronic brain hypoperfusion. RAS 
activity and dopaminergic vulnerability were significantly reduced by treatment with angiotensin type I receptor an-
tagonists. Manipulation of the brain RAS may constitute an effective neuroprotective strategy against dopaminergic 
degeneration in PD. 
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of AT2 receptors remains more elusive and con-
troversial. It is known that AT2 is ubiquitously 
expressed in developing fetal tissues, including 
brain, and decreases after birth to remain at 
lower levels in adult tissues. AT2 has been asso-
ciated with modulation of cell proliferation, cell 
differentiation, apoptosis and regenerative proc-
esses [6-8]. Several recent studies have ob-
served that AT2 receptors are expressed at a 
low density in many healthy adult tissues, but 
are upregulated in pathological circumstances. 
It is generally considered that AII, via AT2 recep-
tor, exerts actions directly opposed to those 
mediated by AT1 receptors thus antagonizing 
many of the effects of the latter [9, 10]. How-
ever, the relationships between AT1 and AT2 
are probably more complex and remain to be 
totally clarified. The classical circulating RAS 
has been considered phylogenetically one of the 
oldest hormone systems, which played a major 
role in the survival of mammals and in human 
evolution [11, 12], and renin was one of the 
first substances shown to exert physiological 
effects [13-15]. 
 
Over the last 2 decades, it has been shown that 
in addition to the “classical” humoral RAS there 
exists a second RAS or local or tissular RAS in 
many tissues, including brain tissue [16, 17]. 
This local system contains the different compo-
nents previously described for the circulating 
RAS. The locally formed AII plays an important 
functional role in these tissues, and is particu-
larly involved in local pathological changes (see 
below), as the local AII regulates many sub-
stances such as growth factors and cytokines, 
which are involved in processes such as cell 
growth/apoptosis and inflammation [18, 19]. 
Furthermore, it has been shown that reactive 
oxygen species (ROS) play a crucial role in the 
signaling of AII, via AT1 receptors, in several cell 
types [20, 21]. Local AII, via AT1 receptors, is 
known to contribute to oxidative stress (OS) 
damage as a major activator of the NADPH-
oxidase complex in several types of cells and 
tissues [20, 22]. The NADPH oxidase complex is 
the most important intracellular source of ROS 
other than mitochondria [23, 24]. Furthermore, 
ROS originated by NADPH oxidases favour their 
own production via mitochondria, intracellular 
iron uptake and other intracellular sources [25]. 
In addition, a number of studies have shown a 
ROS-mediated relationship (i.e. cross-talk sig-
nalling) between the NADPH oxidase complex 
and the mitochondria [26-28]. These feed-

forward mechanisms form a vicious circle and 
may amplify and sustain ROS thus contributing 
to cell death. NADPH-dependent oxidases are 
upregulated in major aging-related diseases 
such as hypertension, diabetes and atheroscle-
rosis [29, 30]. It is usually considered that AT2 
receptor activation inhibits NADPH-oxidase acti-
vation and counteracts the deleterious effects 
of AT1 activation.  
 
A better knowledge of the local RAS has led to 
identification of a number of new components 
of the RAS and new mechanisms involved in the 
RAS function. In addition to ACE, some homo-
logue components such as ACE2 and Chymase 
have been described in several cell types [31-
33]. In addition to AII, several angiotensin pep-
tides such as angiotensin (1-7), angiotensin III 
and angiotensin IV have been involved in the 
functional effects of RAS [10]. Angiotensin IV 
has been suggested to exert functional effects 
via specific AT4 receptors [34], and angiotensin 
(1-7) appears to act via a new G-protein coupled 
receptor, Mas [35], which may counteract or 
downregulate the effects of stimulation of AT1 
via AII, at least in some types of cells [36, 37]. 
The recent identification of a specific receptor 
for renin and its precursor prorenin (PRR) is 
particularly interesting [38, 39]. The receptor is 
expressed at relatively high levels in heart, 
brain, placenta and adipocytes, and at lower 
levels in other tissues [40, 41]. The presence of 
PRRs may explain that inhibition of AII was not 
sufficient to block the RAS activity entirely in 
several experimental situations [42, 43]. This 
receptor exerts dual molecular functions [38, 
44]: (i) AII-dependent actions: binding of renin to 
its receptor increases the catalytic activity of 
renin by about 4-5 times, and binding of the 
precursor prorenin induces catalytic activity 
similar to that of renin to hydrolyse angiotensi-
nogen into angiotensin, and (ii) AII-independent 
actions by triggering its own intracellular signal-
ing cascade to induce effects similar to those 
demonstrated for AT1 receptors [45, 46]. A pep-
tide called “handle region peptide” (HRP), which 
mimics part of the prosegment of prorenin is a 
potential inhibitor of PRRs [47, 48]. 
 
In addition to the “classical” humoral RAS and 
the local or tissue RAS, a number of recent stud-
ies support the existence of third level of RAS in 
several types of cells [49]: the intracellular or 
intracrine RAS. Several transmembrane recep-
tors are known to accumulate in nuclei, particu-
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larly in nuclear membranes, and in the cyto-
plasm. Cells such as cardiomyocytes possess AII 
receptors that couple to nuclear signaling path-
ways and regulate transcription. The observed 
intracellular location supports the possibility of 
an intracellular function for AII, in addition to the 
effects induced by activation of cell surface AT1 
and AT2 receptors. Extracellular AII may act in-
tracellularly by binding to AT1 receptors, which 
are subsequently internalized, or AII may be 
synthesized within the cell. AT1R-dependent 
internalization of AII has been described in a 
number of different cell types [50-52]. However, 
a number of recent observations in several 
types of cells suggest some AII may be formed 
and act intracellularly [49]. Furthermore, AII has 
been suggested to induce transcription of angio-
tensinogen and renin in response to binding to 
nuclear AT1 receptors in some cell types [51]. 
The existence of functional intracellular RAS 
opens up new perspectives for understanding 
the effects of the RAS and for the management 
of RAS-related diseases [53, 54]. 
 
The brain renin-angiotensin system 
 
The effects of the circulating RAS on the brain 
were initially associated with areas involved in 
the central control of blood pressure and so-
dium and water homeostasis [55-58]. As active 
components of RAS, particularly AII, do not 
cross the barrier [59], AII receptors identified in 
circumventricular organs, which lack the blood-
brain barrier, and in cerebrovascular endothelial 
cells, were considered responsible for a number 
of central responses induced by peripheral or 
circulating AII. However, AII receptors were also 
located in neurons and glial cells inside the 
blood-brain barrier, which suggested that brain 
has an independent local or tissue RAS. Over 
the last two decades, all components of the 
classical RAS have been identified in the brain 
[55-58]. It has been suggested that brain levels 
of AII are higher than circulating levels [60], and 
RAS components such as ACE, AT1, AT2, and 
AT4 receptors have been observed in different 
brain areas (see for review: 55-58). It is known 
that the precursor protein angiotensinogen is 
mainly produced by astrocytes [61, 62], al-
though it is also produced at low levels in neu-
rons [63, 64]. The existence of brain renin has 
been, a controversial matter since it was initially 
reported by Ganten in 1971 [65]. The controver-
sial results were probably due to the low expres-
sion levels of renin, which were below the detec-

tion threshold of some immunohistochemical 
studies and other standard assays. However, 
immunoreactive renin has been observed in 
neurons and glial cells in numerous areas of 
mouse and rat brain [66, 67], and in all areas 
examined in the human brain, including basal 
ganglia [68]. Expression of renin mRNA by in 
situ hybridization was also observed in the brain 
[69, 70]. More recently the expression of renin 
in neurons and glial cells was clearly confirmed 
by the use of transgenic models [71-74]. How-
ever, it has been suggested that brain levels of 
AII may be too high in comparison with the lev-
els of renin. This may now be explained by the 
recent location of prorenin/renin receptor (PRR) 
in the brain. High levels of PRR mRNA expres-
sion were initially observed in brain homoge-
nates [38], and we have recently shown by in 
situ hybridization and immunofluorescent label-
ing abundant PRR in dopaminergic and non 
dopaminergic neurons and glial cells in the 
monkey and rat brain [75]. Binding of prorenin 
(i.e. a previously considered inactive precursor 
of renin) activates its catalytic activity, and 
prorenin to renin ratios are 5-10 times higher, 
and even up to 20-200 times higher in patho-
logical conditions [76]. Finally, other compo-
nents involved in the effects of AII observed in 
several peripheral tissues such as NADPH-
oxidase have been shown to be widely distrib-
uted throughout the brain, and it was also ob-
served that NADPH-oxidase-derived ROS also 
play a major role in AII signaling in neurons [77, 
78] and glial cells [79, 80]. 
 
In the basal ganglia, the presence of RAS com-
ponents has been reported in several studies 
over the last decades. Autoradiographic studies 
reported AT1 receptors in dopaminergic neu-
rons, both in cell bodies in the substantia nigra 
compacta (SNc) and their terminal fields in the 
striatum of different mammals, including hu-
mans [1, 81-83]. It was suggested that the den-
sity of AT1 receptors is very high in human stria-
tum and substantia nigra, in comparison with 
those in rats and other mammals [1, 81]. In a 
series of recent studies [75, 84, 85], we demon-
strated, by immunofluorescence and laser con-
focal microscopy, the presence of AT1 and AT2 
receptors in nigral dopaminergic neurons and 
glial cells (i.e. astrocytes and microglia) in ro-
dents and primates, including human [86], as 
well as in primary mesencephalic cell cultures 
[7, 84, 85]. The presence of AT1 and AT2 mRNA 
was also confirmed by in situ hybridization and 
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real time quantitative PCR [84, 85]. High con-
centrations of ACE have been observed in the 
striatum and substantia nigra of mammals in-
cluding rats and humans and angiotensinogen 
was observed in astrocytes [81, 87-89]. Further-
more, we demonstrated, by immunofluores-
cence and biochemical methods, the presence 
of different cytoplasmatic and membrane sub-
units of the NADPH complex in mesencephalic 
dopaminergic neurons, astrocytes and micro-
glia, as well as NADPH-complex activity in the 
nigra and striatum [84, 85, 90]. Recently, we 
have described for the first time prorenin recep-
tors (PRRs) in nigral dopaminergic neurons and 
microglial cells in monkeys and rats by use of 
immunofluorescence and in situ hybridization 
[75]. Interestingly, the labelling for PRR, AT1 and 
AT2 receptors was located not only at the cell 
surface but also intracellularly in dopaminergic 
neurons and glial cells in the substantia nigra of 
mammals, including monkeys and humans [86]. 
Therefore, our observations support the exis-
tence of an intracellular/intracrine RAS in the 
brain, and in the SNc in particular, as previously 
been suggested for other cell types [73, 91]. 
 
The brain renin angiotensin system in aging and 
disease 
 
Recent studies in different tissues have shown 
that normal aging is associated with a proin-
flammatory and pro-oxidant state that may fa-
vour an exaggerated response to injury and de-
generative diseases [92-94], and that local RAS, 
via AT1 receptors, is involved in age related de-
generative changes [95-98]. Under normal 
physiological conditions, the capacity of AII to 
promote ROS appears to be tightly regulated 
[22, 99, 100]. However aging has been shown 
to be associated with overactivation of RAS in a 
number of tissues [101-103]. In accordance 
with this, recent studies with AT1 receptor defi-
cient mice indicate that disruption of AT1 pro-
motes longevity through attenuation of OS and 
additional mechanisms such as upregulation of 
the prosurvival gene sirtuin 3 and mitochondrial 
protection [100, 104, 105]. Similarly, the ab-
sence of AT1 receptors has been shown to pro-
tect against the aging-related progression of 
atherosclerosis [106]. NADPH oxidases are 
upregulated in several age-related diseases 
such as hypertension, diabetes, atherosclerosis, 
cardiac fibrosis, and renal disease [29, 30, 77, 
107], and RAS is a major activator of the 
NADPH-oxidase complex (see above). In addi-

tion, AII, via AT1 receptors, mediates several key 
events in inflammatory processes that play a 
major role in most of these diseases [20, 94, 
108-110]. 
 
Similarly, numerous recent studies have in-
volved brain RAS in disorders such as anxiety 
and stress [111], depressive illness [112], cog-
nitive dysfunctions, and alcohol intake [113]. 
Inhibition of AT1 receptors has been reported to 
improve learning, spatial working memory and 
motor performance in aged rats [114, 115]. In 
addition, the presence of NADPH oxidase has 
been shown in neurons and glial cells [20, 22, 
116, 117]. Several studies have shown that, as 
observed in peripheral organs [18, 19], AT1 re-
ceptor blockers and ACE inhibitors also de-
creased the inflammatory response in the cen-
tral nervous system (CNS) [118, 119]. In accor-
dance with their inhibitory effect on brain in-
flammation, beneficial effects AT1 inhibition 
have been observed in a number of processes 
mediated by microglial activation and neuroin-
flammation, including animal models of Alz-
heimer’s disease [120, 121], brain ischemia 
[122, 123] and multiple sclerosis [118, 119]. In 
addition, we have obtained a considerable 
amount of experimental data that suggest a 
major role for the brain RAS in Parkinson’s dis-
ease (PD), as detailed below. 
 
Interaction between dopamine and angiotensin 
for regulation of peripheral tissue and brain 
functions 
 
It is well known that the neurotransmitter dopa-
mine is synthesized by mesencephalic neurons 
in the SNc and ventral tegmental area, and by 
some other groups of neurons such as hypotha-
lamic neurons in the arcuate and periventricular 
nuclei [124]. SNc neurons innervate the stria-
tum through the nigrostriatal pathway. Dopa-
mine acts as a neuromodulator that controls 
important physiological functions such as volun-
tary movements, motivated behavior, learning 
and hormone production. Alterations in dopa-
minergic innervation are known to be involved 
in a number of diseases including depression, 
attention deficit disorders, schizophrenia, epi-
lepsy, pituitary tumors, Huntington’s disease 
and, particularly, PD. However, is usually not 
taken into account by neuroscientists that dopa-
mine and dopamine receptors are located in a 
large number of peripheral tissues where they 
also play important functions. The interaction 
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between the RAS and the dopaminergic system 
is particularly interesting with regard to the 
regulation of renal sodium excretion and several 
cardiovascular functions [125-127]. Recent 
evidence suggests that dopamine and angio-
tensin systems directly counterregulate each 
other in renal cells [126] and that abnormal 
counterregulatory interactions between dopa-
mine and AII play a major role in renal degen-
erative changes and hypertension [128]. In re-
nal proximal tubule cells, important interactions 
between several types of dopamine receptors 
and AT1 receptors, as well as dimerization of 
AT1 receptors and dopamine receptors such as 
D1, D3 or D5 have been observed [125-127].  
 
In the brain, an interaction between AII and do-
pamine was initially suggested by the results of 
early microdialysis studies, which showed that 
acute AII perfusion induces dopamine release, 
which was blocked by AT1 antagonists [129, 
130]. The mechanism responsible for the AII-
induced dopamine release has not been clari-
fied, although the possible involvement of D2 
autoreceptors has been suggested [129]. This 
suggestion is supported by a number of recent 
studies in peripheral tissues in which direct 
counter-regulatory interaction between AT1 re-
ceptors and D2 dopamine receptors has been 
observed [131, 132]. Interestingly, chronic inhi-
bition of RAS by the use of ACE inhibitors or AT1 
blockers resulted in increased dopamine levels 
[133-135], possibly as a consequence of com-
pensatory changes in dopamine or AII receptors 
that remain to be clarified [133, 134]. In a re-
cent study [136], we have shown similar func-
tional interactions and counterregulatory 
mechanisms in the striatum and substantia 
nigra of rodents. We studied the effect of transi-
tory reserpine-induced dopamine depletion and 
chronic 6-hydroxydopamine (6-OHDA)-induced 
dopaminergic degeneration on the expression 
of AII receptors and NADPH complex activation 
in the nigra and striatum. Depletion of dopa-
mine with reserpine induced a significant in-
crease in the expression of AT1, AT2 receptors 
and the NADPH-oxidase complex activity, which 
decreased as the dopamine function was re-
stored. Similarly, 6-OHDA-induced chronic dopa-
minergic denervation led to significant increase 
in expression of AT1, AT2, receptors and NADPH-
oxidase complex activity, which decreased with 
administration of L-dopa. Our data [136] sug-
gest that the AT1 receptor expression is closely 
linked to dopamine levels. In accordance with 
previous studies [9, 137, 138], oxidative stress 

induced via AT1 receptors was apparently coun-
teracted by protective counterregulatory AT2 

upregulation. Therefore, an upregulation of AT1 
receptors in the substantia nigra and striatum 
after decrease in dopamine levels (i.e. initial 
stages of PD) may be related to counterregula-
tory mechanisms to increase dopamine levels. 
However, the resulting RAS hyperactivation may 
also exacerbate the oxidative stress and micro-
glial inflammatory response and contribute to 
further progression of dopaminergic neuron loss 
(see below).  
 
Brain RAS and dopaminergic degeneration 
 
In addition to the above mentioned interaction 
between RAS and dopamine in the basal gan-
glia, a number of data suggest that alteration in 
interactions between both systems may play a 
major role in PD. A number of recent studies 
suggest that neuroinflammation and oxidative 
stress play a pivotal role at least in the progres-
sion of PD, and RAS plays a key role in the initia-
tion and perpetuation of inflammation and oxi-
dative damage in several tissues (see above) 
[29, 18, 19, 21]. The pathogenic mechanism of 
PD appears to be multifactorial. It has been 
shown that several genes are mutated or de-
leted in familial PD. However, the etiology of 
sporadic, idiopathic PD, which accounts for 
most cases of PD cases, is still unclear. A num-
ber of mechanisms have been involved in dopa-
minergic neuron degeneration in PD, including 
mitochondrial dysfunction, oxidative stress, in-
flammation, and impairment of the ubiquitin-
proteosome system [139]. These pathogenic 
factors are not mutually exclusive, and one of 
the key aims of current PD research is to dis-
cover the mechanisms involved in possible in-
teractions between these pathways, which re-
sult in dopaminergic neuron degeneration. Sev-
eral studies have provided evidence that OS 
plays a major role in all forms of PD [140-143]. 
There has been some discussion as to whether 
OS is a primary event or a consequence of other 
pathogenic factors. However, dopaminergic de-
generation is unquestionably mediated by over-
production of ROS and reactive nitrogen species 
(RNS). A number of factors are thought to be 
involved in the higher vulnerability of dopa-
minergic neurons to OS, including increased 
iron content, reduced antioxidant capacity or 
factors associated with the dopamine synthe-
sized, released and metabolized in these neu-
rons. The protective defense mechanisms for 
dopaminergic neurons may be overwhelmed by 
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additional deleterious factors in neurons al-
ready particularly vulnerable (i.e. a “synergistic 
effect hypothesis”). Furthermore, neuroinflam-
mation plays a major role in the progression of 
dopaminergic cell death, since a marked micro-
glial reaction has been observed in the nigra 
and striatum of brains from both PD patients 
[144] and PD animal models [90, 145, 146]. It 
has been suggested that this may be a re-
sponse to dopaminergic cell death in order to 
eliminate dead neurons and other debris, as 
observed in several autoimmune diseases 
[147]. However, several experimental studies 
have shown that microglial activation and micro-
glial NADPH-derived ROS constitute an early 
component of dopaminergic cell death and that 
both factors act synergistically with other factors 
to induce dopaminergic cell death at early 
stages of the lesion process [79, 80, 90, 148]. 
We suggest that the brain RAS plays a major 
role in this process, since several major factors 
involved in dopaminergic degeneration (i.e. 
main sources of ROS such as NADPH-oxidase 
complex and inflammation) have been shown to 
be enhanced by RAS activation in several pe-
ripheral tissues, and more recently in the SNc, 
as detailed below. 
 
In a series of studies in animal models of PD 
and cultures of dopaminergic neurons or glial 
cells we have shown that AII, via AT1 receptors, 
exacerbates dopaminergic cell death and may 
play a synergistic role in the pathogenesis and 
progression of PD. Firstly, we treated animal 
models of PD (rats lesioned with the dopaminer-
gic neurotoxin 6-OHDA and mice lesioned with 
the dopaminergic neurotoxin MPTP) with ACE 
inhibitors (ACEi) [149, 150]. The animals 
treated with ACEi showed a significant decrease 
in the loss of dopaminergic neurons in the nigra 
and dopaminergic terminals in the striatum, as 
well as a significant decrease in the levels of 
oxidative stress indicators (lipid peroxidation 
and protein oxidation) induced by the dopa-
minergic neurotoxins in the ventral mesen-
cephalon and striatum. Secondly, rats lesioned 
with 6-OHDA and mice lesioned with MPTP were 
treated with angiotensin and AT1 or AT2 receptor 
antagonists [84, 85, 151]. We observed that AII 
increased the neurotoxic effect induced by 
dopaminergic neurotoxins, and that blockage of 
AT1 receptors led to significant reduction in the 
loss of dopaminergic neurons and levels of pro-
tein oxidation and lipid peroxidation induced by 
the neurotoxins. Interestingly, the neuronal loss 
was also reduced by apocynin, an inhibitor of 

the NADPH-oxidase activation, which suggested 
that NADPH activation and NADPH-derived ROS 
were involved in the dopaminergic neuron 
death. This was confirmed in subsequent ex-
periments focused on the mechanisms involved 
in the observed effects of AII and detailed be-
low.  
 
In contrast with the considerable amount of 
recent experimental data from our laboratory 
and others [152, 153] supporting the involve-
ment of brain RAS in dopaminergic degenera-
tion, data from clinical studies are still scarce. 
Early neuropathological studies reported a 
marked reduction in AT1 receptors in the stria-
tum of PD patients, which was attributed to the 
loss of dopaminergic terminals [1, 81], although 
our data in animal models treated with L-dopa 
[136] suggest that it was possibly more closely 
related to the L-dopa treatment received by 
those patients. More interestingly, increased 
ACE activity in the cerebrospinal fluid of patients 
with PD has been reported [154], as well as an 
association between genetic polymorphism of 
the ACE gene and PD [155]. The use of several 
types of antihypertensive drugs and risk of PD 
was evaluated in a case-control analysis [156]. 
It was concluded that the risk was not materially 
altered for users of ACE inhibitors, and that the 
exposure to AT1 antagonists only was too low 
for a meaningful analysis. However, the method-
ology of this study has been questioned as the 
authors focused their main analyses on “current 
use” of antihypertensives (at least one prescrip-
tion during the 90 days preceding the date of 
the first recording of a diagnosis of PD), and not 
during a relevant period of exposure [157]. 
Other studies in Parkinson’s disease patients 
treated with the ACE inhibitor Perindopril re-
vealed positive effects and improved motor re-
sponses to L-dopa [135], and positive or nega-
tive effects of ACE inhibitors or AT1 antagonists 
have been observed in single case reports 
[158]. Additional clinical studies with a more 
robust design are necessary. 
 
Enhanced RAS activity and dopaminergic 
vulnerability. Aging, menopause and brain 
hypoperfusion 
 
Brain RAS, aging and dopaminergic 
vulnerability 
 
In additional series of experiments, we studied 
if enhanced RAS activity in the nigra may be 
involved in the increased vulnerability of dopa-
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minergic neurons to degeneration observed in 
aging, post-menopause or chronic cerebral hy-
poperfusion. Aging is the most prominent risk 
factor for PD and other neurodegenerative dis-
eases [159-161]. Furthermore, the progressive 
motor impairment that occurs during normal 
aging has been associated with nigrostriatal 
dysfunction, and several studies have shown 
that the dopaminergic system is altered during 
normal aging [159, 162]. There is no consensus 
about how advancing age may affect PD. Sev-
eral factors such as neurotoxicity derived from 
dopamine metabolism (i.e. the “dopamine oxi-
dative stress hypothesis”) or an aging-related 
decrease in neurotrophic factors may be in-
volved. In summary, several recent studies sug-
gest that in the nigra, as in other tissues (see 
above), normal aging is associated with a proin-
flammatory and pro-oxidant state that may fa-
vour an exaggerated response to injury and de-
generative diseases [92-94], and act synergisti-
cally with other factors to induce dopaminergic 
cell death. Aging has been shown to be associ-
ated with overactivation of RAS in a number of 
tissues [101-103], and AII, via AT1 receptors, 
contributes to OS damage and inflammatory 
responses in several types of cells and tissues 
[20, 22, 95-98]. Here, we suggest that aging-
enhanced activity of nigral RAS plays a major 
role in this process, which was confirmed in 
animal models of PD. 
 
In a recent study with aged male rats [163], we 
have confirmed that aging enhances the dopa-
minergic cell death induced by dopaminergic 
neurotoxins [94, 159, 161, 164], and that ni-
gral RAS is involved. We observed increased 
activation of the NADPH oxidase complex and 
increased levels of the pro-inflammatory cyto-
kines IL-1β and TNF-α in aged rat, which indi-
cated a pro-oxidative and pro-inflammatory 
state in the nigra. This was associated with in-
creased expression of AT1 receptors and de-
creased expression of AT2 receptors, and was 
reduced by treatment with the AT1 antagonist 
candesartan. The observed upregulation of AT1 
receptors in aged rats may contribute to in-
creased dopaminergic cell vulnerability to de-
generation. This is supported by experiments 
with PD animal models [84, 85, 151], in which 
we have observed that AII enhanced neuroin-
flammation, NADPH-derived OS and dopaminer-
gic cell death via AT1 receptors. However, it is 
also interesting that we observed decreased 
expression of AT2 receptors in aged rats. It is 

known that AT2 receptors counterbalance the 
deleterious effect of AT1 receptor stimulation, 
and functional interactions between the two 
receptor subtypes may determine the AII-
induced effects [165]. In aged rats, there was 
an apparent absence of a counterregulatory 
increase in AT2 expression (i.e. the expression of 
AT2 mRNA and protein was decreased) despite 
increased expression of AT1 receptors and in-
creased NADPH activation [136, 163]. Interest-
ingly AT2 expression was increased by treat-
ment with candesartan. A decreased expression 
of AT2 receptors in aged animals may contrib-
ute to further enhancement of a pro-oxidative, 
pro-inflammatory state and dopaminergic cell 
vulnerability in aged animals. However, changes 
in AT2 receptor expression may be involved in 
unknown mechanisms that remain to be clari-
fied. The mechanism responsible for the in-
creased RAS activity in the nigra of aged ani-
mals has not been clarified. Interestingly, sev-
eral studies have shown that there is an aging-
related decrease in dopamine release, which 
cannot be totally counteracted by functional 
compensatory changes and results in a progres-
sive decrease in motor activity [160, 166]. Fur-
thermore, dopamine and AII systems directly 
counterregulate each other and there is a nega-
tive reciprocity between dopamine and AT1 re-
ceptors [136]. Therefore, the upregulation of 
AT1 receptors that we observed in aged rats 
[163] may be part of the compensatory changes 
to increase dopamine levels. However, in-
creased RAS activity via AT1 receptors may also 
induce the above mentioned pro-inflammatory, 
pro-oxidative state, which may be further en-
hanced by a lack of compensatory upregulation 
of AT2 receptors in aged rats. Other mecha-
nisms may also be involved in aging-related 
enhanced RAS activity, since increased RAS 
activity has been observed in other aged tissues 
(i.e. apparently non dopamine-related tissues) 
[95-97]. 
 
Brain RAS, menopause and dopaminergic 
vulnerability 
 
In addition to aging, menopause has also been 
identified as a prominent risk factor for PD. Nu-
merous experimental studies have shown that 
oestrogen exerts protective effects against 
dopaminergic cell degeneration [167, 168], and 
a number of epidemiological studies have re-
ported that the incidence and prevalence of PD 
is higher in postmenopausal than in premeno-
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pausal women of similar age [169-171]. How-
ever, controversial effects of estrogen replace-
ment therapy have been also reported [172, 
173], and the age of the women receiving the 
treatment appears to be a major factor in the 
discrepancies. The mechanism by which estro-
gen protect dopaminergic neurons has not been 
clarified, although recent studies have sug-
gested that modulation of the glial neuroinflam-
matory response by estrogen is involved [174, 
175]. Interestingly, estrogen-induced regulation 
of the RAS mediates beneficial effects of oestro-
gen in several tissues [176-178], and interac-
tions between oestrogen and AII receptors have 
also been observed [179-182]. Therefore, the 
lack of oestrogen may act as an additional fac-
tor for increasing RAS activity in the nigra in 
aged females. In a recent study [183], we used 
young ovariectomized rats to investigate this 
question (i.e. in the absence of other potential 
aging-related factors). We studied the effect of 
ovariectomy and estrogen replacement on the 
nigral RAS and on dopaminergic degeneration 
induced by intrastriatal injection of 6-OHDA, and 
observed a marked loss of dopaminergic neu-
rons in ovariectomized rats lesioned with 6-
OHDA, which was significantly reduced by oes-
trogen replacement or treatment with the AT1 
receptor antagonist candesartan. We also ob-
served that estrogen replacement induced sig-
nificant downregulation of the ACE activity as 
well as downregulation of AT1 receptors, upregu-
lation of AT2 receptors and downregulation of 
the NADPH complex activity in the substantia 
nigra in comparison with untreated young ova-
riectomized rats. Together the results confirm 
that the lack of oestrogen may act as an addi-
tional factor for increasing RAS activity in the 
nigra in females. In aged females, however, ad-
ditional factors may come into play. In recent 
experiments [184], we compared the above 
mentioned results in young ovariectomized rats 
(i.e. early surgical menopause) with those ob-
tained in aged rats (i.e. natural menopause). 
Interestingly, both groups of menopausal rats 
showed increased RAS activity. However, oestro-
gen therapy significantly reduced 6-OHDA-
induced dopaminergic cell loss in young rats but 
not in aged rats, and the changes in RAS activity 
were not restored in aged rats by oestrogen to 
levels observed in young menopausal rats 
treated with oestrogen. Treatment with the AT1 
antagonist candesartan significantly reduced 
RAS activity and dopaminergic neuron loss in 
both groups of menopausal rats. These results 

may explain the reason for the discrepancies 
between some experimental studies under-
taken in young ovariectomized animals and epi-
demiological studies in aged menopausal 
women. It may also explain the discrepancies 
between observational studies that have sup-
ported the concept that oestrogen therapy in 
postmenopausal women protects against aging-
related diseases, including PD, and several ran-
domized controlled trials that reported no or 
even detrimental effects [185-187]. The vast 
majority of women who engaged in these trials 
were on average 65 years or older, and 12 
years postmenopause before oestrogen therapy 
[188, 189]; on the contrary, most women initi-
ated replacement therapy in their perimeno-
pausal period in observational studies that re-
ported beneficial effects [190-192]. 
 
Brain RAS, brain hypoperfusion and 
dopaminergic vulnerability 
 
Data from several clinical studies suggest an 
interaction between aging-related cerebrovascu-
lar disease/brain hypoperfusion and dopa-
minergic degeneration. Dopaminergic cell loss 
and parkinsonian signs have been observed in 
elders without PD (almost 40%) [193], pre-
synaptic dopaminergic function is reduced in 
the majority of patients with vascular parkinson-
ism [194], and a subset of patients with clini-
cally suspected vascular parkinsonism were 
found to have a good therapeutic response to L-
dopa [195, 196]. These clinical observations 
have experimentally been confirmed in a recent 
study with animal models of chronic brain hy-
poperfusion [197], in which we have shown that 
chronic hypoperfusion induces a significant loss 
of dopaminergic neurons and a significant de-
crease in striatal dopaminergic terminals and 
striatal dopamine levels. Furthermore, we ob-
served that hypoperfusion led to increased 
dopaminergic cell death by enhancing the dele-
terious effects of other factors (such as the low 
doses of the dopaminergic neurotoxins), which 
suggests that hypoperfusion derived from aging 
and/or vascular disease, acting synergistically 
with factors that induce PD, may increase the 
risk of development of PD (i.e. accelerate the 
onset of a latent PD) or exacerbate the progres-
sion and severity of already established PD. 
 
The mechanistic links between hypoperfusion/
vascular disease and neurodegeneration are 
unknown. However, we observed an age-
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dependent decrease in nigral vascularisation 
and nigral vascular endothelial growth factor 
(VEGF) levels [198], and that that chronic hy-
poperfusion led to increased expression of in-
flammatory markers such as IL-1β and in-
creased levels of oxidative stress markers such 
as NADPH activity [197], which have been 
shown to be involved in progression of dopa-
minergic cell death in animal models of PD and 
PD patients [80, 199]. Interestingly, these 
changes were accompanied by increased RAS 
activity in the substantia nigra, and chronic 
treatment with the AT1 receptor antagonist can-
desartan significantly reduced OS and inflam-
matory markers as well as the loss of dopa-
minergic neurons, striatal dopaminergic termi-
nals and striatal dopamine levels [197]. 
 
Mechanisms involved in the effects of brain RAS 
on dopaminergic degeneration 
 
We used 6-OHDA or MPTP models of parkinson-
ism and primary cultures of dopaminergic neu-
rons to study the possible mechanisms involved 
in the above mentioned effects [84, 85, 200, 
201]. We first treated the cultures with low 
doses of 6-OHDA or MPP+, which did not induce 
a significant loss of dopaminergic neurons, and 
observed that the loss of neurons increased 
significantly when the cultures were simultane-
ously treated with AII. This effect was blocked by 
treatment with AT1 antagonists but not with AT2 
antagonists. Interestingly the enhancing effect 
AII on dopaminergic cell death in cultures was 
also reversed by apocynin, indicating that 
NADPH activation and NADPH-derived superox-
ide anion and ROS are involved. This was also 
confirmed by real time quantitative PCR, which 
revealed that treatment with AII induced an in-
creased expression of NADPH subunits via pro-
tein kinase C [85]. The effects of AII and AII re-
ceptor antagonists on NADPH-oxidase activation 
in dopaminergic neurons and glial cells were 
studied by detection of intracellular superoxide 
anion with dihydroethidium, after treatment of 
primary mesencephalic cultures with dopa-
minergic neurotoxins (i.e. 6-OHDA or MPP+). 
Levels of intracellular superoxide increased in 
dopaminergic neurons and microglial cells after 
treatment with AII and decreased after treat-
ment with AT1 antagonists or the NADPH-
oxidase inhibitor apocynin [84, 85].  
 
As AII receptors and NADPH subunits were ob-
served in both dopaminergic neurons and glial 

cells, AII may induce dopaminergic degenera-
tion through several mechanisms, as previously 
observed in the vessel wall, where this question 
has been extensively studied as chronic inflam-
mation is the hallmark of atherosclerosis. AII 
acts in this process on at least two levels [18, 
19]. Firstly, AII acts on the resident vascular 
cells (i.e. endothelial cells, smooth muscle cells, 
or neurons in the brain), in which via AT1 recep-
tors stimulates production of low levels of intra-
cellular ROS by activation of NADPH oxidase. 
ROS act as second messengers on several sig-
nalling pathways, including those involved in 
triggering the inflammatory response and the 
migration of inflammatory cells into the lesioned 
area. Secondly, AII acts on inflammatory cells 
(such as microglial cells in the brain), in which 
NADPH oxidase produces ROS with dual func-
tions: i) high concentrations of ROS are released 
extracellularly for killing invading micro-
organisms or cells; ii) low levels of intracellular 
ROS act as a second messenger in several sig-
nalling pathways involved in the inflammatory 
response [24, 108]. As observed for vascular 
tissues, the presence of NADPH oxidase and 
AT1 and AT2 receptors was observed in nigral 
microglia and dopaminergic neurons [75, 84, 
85]. It was also shown that AII via AT1 recep-
tors, activates the microglial NADPH-complex 
and exacerbates the glial inflammatory re-
sponse [84, 85, 151]. In neurons and other non
-inflammatory cells, activation of the NADPH 
oxidase complex produces low levels of ROS for 
signalling function [24]; these ROS also modu-
late neuronal levels of ROS by interaction with 
mitochondria-derived ROS, and with ROS from 
other sources such as neurotoxins or activated 
microglia. Cross-talk signaling between NADPH 
oxidase and mitochondria has been observed in 
several types of cells. This not only includes an 
upstream role for NADPH oxidase in the modula-
tion of mitochondrial superoxide [202, 203] but 
also that mitochondrial superoxide stimulates 
extramitochondrial NADPH oxidase activity in a 
feed-forward fashion [204, 205]. This interac-
tion has recently been confirmed in a dopa-
minergic cell line treated with MPP+ and angio-
tensin [153]. Treatment with MPP+ induced mi-
tochondrial release of ROS, which induced a 
second wave of NADPH oxidase-derived ROS; 
the latter was reduced by treatment with the 
AT1 antagonist candesartan [153]. Using pri-
mary cultures of mesencephalic cells, we have 
recently shown that mitochondrial ATP-sensitive 
potassium channels play a major role in the 
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interaction between NADPH-derived ROS and 
mitochondria after treatment with AII and/or 
dopaminergic neurotoxins such as MPP+ and 6-
OHDA [206, 207]. 
 
AT1, AT2 receptors and NADPH oxidase are pre-
sent in dopaminergic neurons as well as in mi-
croglia, and inhibition of neuronal AT1 receptors 
may reduce ROS derived from neuronal NADPH, 
as indicated above. This may lead to direct inhi-
bition of dopaminergic neuron death, followed 
by a subsequent reduction in microglial activa-
tion. However, this possibility is not supported 
by our studies. Using neuron-enriched primary 
mesencephalic cultures we have observed that 
only high doses of neurotoxins can induce dopa-
minergic neuron death in the absence of glia 
[84, 90, 206, 207]. This has been confirmed in 
a recent study with a dopaminergic cell line (i.e. 
in the absence of glia [153], as significant cell 
death was only observed after treatment with 
very high doses of MPP+ (300μM). However, in 
our studies, we investigated the effects of very 
low or sublethal doses of neurotoxins, because 
the effects of these low doses may be more 
similar to the effects caused by environmental 
neurotoxins or by other deleterious factors in-
volved in PD. Low or sublethal doses of neuro-
toxins do not induce significant neuron death in 
pure neuronal cultures. However, sublethal in-
sults can induce neuron derived proinflamma-
tory signals which, in the presence of glia, trig-
ger microglial activation and the subsequent 
increase in microglia-derived ROS and cyto-
kines, which induce the progression of neuronal 
death [108, 208]. Furthermore, other studies 
have shown that microglial activation and free 
radicals derived from microglial NADPH play a 
major role in the toxicity of MPTP and possibly in 
PD, and that lesioned dopaminergic neurons 
are particularly vulnerable to microglial NADPH-
derived ROS [79, 80, 148]. 
 
A number of recent studies have revealed addi-
tional details on cellular mechanisms that medi-
ate or are involved the AII-induced effects de-
scribed above. Firstly, we have recently shown 
the presence of prorenin/renin receptors in neu-
rons and microglial cells of the SNc in primates 
and rats [75], and in primary rat mesencephalic 
cultures, we observed that PRRs contribute to 
dopaminergic neuron degeneration and poten-
tially to progression of PD. This may be due to 
the above mentioned role of PPRs in generation 
of AII by binding renin and prorenin. However, 

administration of renin with simultaneous block-
age of AT1 and AT2 receptors has also been 
found to lead to an increase in cell death in-
duced by low doses of 6-OHDA [127]. This sug-
gests that AII-independent PRR intracellular 
signaling also contributes to exacerbation of 
dopaminergic cell death, and that potential neu-
roprotective strategies to decrease RAS activity 
should address AII generation and/or signalling 
and PRR signalling. Recent studies with AT1 
antagonist telmisartan and AT1 –deficient mice 
have shown that activation of peroxisome prolif-
erator-activated receptor gamma (PPAR-γ) medi-
ates the neuroprotective and anti-inflammatory 
effects of AT1 receptor inhibition in animal mod-
els of PD [200]. It has also been shown that 
activation of the RhoA/ROCK pathway is in-
volved in the MPTP-induced dopaminergic de-
generation, and in the enhancing effect of AII/
AT1 activation on the microglial response and 
dopaminergic degeneration [201]. It is known 
that RhoA/ROCK is an important regulator of 
the actin cytoskeleton, which is particularly im-
portant for migration of inflammatory cells into 
inflamed areas [209, 210], including microglia 
[211]. It has been shown that during activation 
of inflammatory cells Rho/ROCK induces 
changes in the actin cytoskeleton that results in 
process retraction, cell spreading and changes 
in cell motility characteristics of activation of 
inflammatory cells such as microglia [212]. Fi-
nally, we have recently shown that, in addition 
to the presence of a local or tissular RAS in the 
substantia nigra, there is an intracellular or in-
tracrine RAS in dopaminergic neurons and glial 
cells of mammals, including monkeys and hu-
mans [86]. The functional role of the intracellu-
lar RAS and the functional interactions between 
both systems remain to be clarified. 
 
Conclusions 
 
Local brain RAS activation is involved in exacer-
bation of oxidative stress and neuroinflamma-
tion, which leads to progression of dopaminer-
gic degeneration and Parkinson’s disease. In-
creased RAS activity was observed in the sub-
stantia nigra of animals with high vulnerability 
of dopaminergic neurons to degeneration, such 
as aged males, menopausal females and rats 
subjected to chronic brain hypoperfusion. In-
creased RAS activity may constitute a major 
factor in the increased risk of developing PD in 
these population groups. Manipulation of the 
brain RAS may constitute an effective neuropro-
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tective strategy in population groups at high risk 
of developing PD, or for coadjutant treatment to 
reduce the progression of PD. 
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