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Abstract This paper presents a motion control for an 
autonomous robot navigation using fuzzy logic motion 
control and stereo vision based path-planning module. This 
requires the capability to maneuver in a complex unknown 
environment. The mobile robot uses intuitive fuzzy rules 
and is expected to reach a specific target or follow a 
prespecified trajectory while moving among unforeseen 
obstacles. The robot's mission depends on the choice of the 
task. In this paper, behavioral-based control architecture is 
adopted, and each local navigational task is analyzed in 
terms of primitive behaviors. Our approach is systematic 
and original in the sense that some of the fuzzy rules are not 
triggered in face of critical situations for which the stereo 
vision camera can intervene to unblock the mobile robot. 

Keywords Powerbot, Mobile Robot, Hierarchical Fuzzy 
Control, FLMC, Obstacle Avoidance, SVPPM 

1. Introduction  

Mobile robot application areas increase every day. They 
used to be found in working stations in factories. The 

growing interest in service robotics extended their use to 
include many applications. In these applications the 
environment is stationary and the mobile robot can be 
assigned a predetermined path to act on a desired task. 
However in many applications, the robot has to execute 
its task in an unstructured dynamic and complex 
environment [1]. By unstructured environment, we mean 
no prior knowledge of the space the robot is evolving and 
no prior knowledge of the disposition of the static objects 
considered as obstacles. On the other hand, dynamic 
environment is defined as an environment with changing 
surroundings such as moving objects. To achieve these 
requirements, the robot must sense the environment and 
respond to events in order to plan its path to target. This 
type of navigation is called reactive navigation.  

Many approaches for obstacle avoidance in local 
navigation can be found in the literature, they include: 
Wall following [2, 3], Edge detection [4], Potential field 
[5], Vector field histogram [6], Virtual force field [7, 8], 
Certainty grid [9] and Behavioral based approach [10]. 
Research in this area is still emerging, since there is no 
unified approach which integrates all the facilities and 
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come up with an optimized solution. Accordingly, 
several important control strategies for mobile robot 
navigation based on fuzzy logic control are being 
developed adding to an already existing works (e.g, [11, 
12]). This present interest is largely due to the successful 
applications of fuzzy logic control to a variety of 
industrial systems. Its main components are an inference 
engine and a set of linguistic If-Then rules that encode the 
behavior of the mobile robot. However, the main 
difficulty in designing a fuzzy logic controller remains 
the efficient way of formulating the fuzzy If-Then rules. 
Nevertheless, to achieve the objective of target tracking 
and obstacle avoidance, fuzzy sets and rule base are used 
to model the environment and determine the behavior of 
the robot when facing novel situations. Recently, mobile 
robot controllers based on Spiking Neural Networks 
(SNNs) which have been inspired from biological neural 
network were successfully implemented for clockwise 
and counter-clockwise wall following [13, 14]. 

This paper presents a solution to mobile robot navigation 
in an unknown environment. The mobile robot is 
equipped with three types of sensors that provide useful 
information for the system good behavior. Each behavior 
is designed to coordinate and compete with other 
behaviors to the success of the mobile robot mission. The 
ultra sonic sensors (US sensors) provide range reading, 
thus determining the distances between the robot and the 
obstacles. The US sensors can also be used to provide 
information related to wall following. The other type of 
sensors concern a vision system to assist the mobile robot 
in making the right decision in case of conflict, such as 
local minima, turn left or right, choosing a shortest path, 
etc. The inputs characterizing information on the 
environment are fuzzified and presented to the inference 
engine for generating control outputs. 

In this paper, we treat the problem of robot navigation 
with obstacle avoidance behaviors in a hierarchical way. 
We decompose the whole task into different behaviors 
and execute each one independently or in conjunction 
with the others. Each behavior is composed of a set of 
fuzzy rule statements. This is done in the framework of 
fuzzy logic inspired by the human capacity to reason 
with perception based information. Our approach is 
systematic and original in the sense that some of the rules 
are not triggered in face of critical situations. The stereo 
vision camera can substitute the fuzzy logic motion 
controller to unblock the mobile robot and providing the 
shortest free path. 

2. Behavioral-based fuzzy control architecture 

2.1 Fuzzy control 

Fuzzy logic was first introduced in 1965 by L.A. Zadeh of 
the University of California at Berkley [15]. Fuzzy control 

is then derived to deal with many applications such as 
engineering, science and data analysis. The idea behind 
using fuzzy reasoning is its ability to deal with 
approximate, ambiguous and uncertain data. There are 
mainly three steps for designing a fuzzy controller: 
Fuzzification, Inference engine and Defuzzification. 

a) Fuzzification 
Fuzzification is a mapping of a real-valued variable x to a 
fuzzy set. Membership functions constituting the fuzzy 
set may be singleton, triangular, Gaussian or trapezoidal. 
The real valued variable x can belong to one or more 
membership functions. All the values of all variables 
representing the input and the output of the system are 
fuzzified.

b) Inference engine 
Once the input and output variables are defined, fuzzy 
inference engine is used to design the rule-base composed 
of IF-THEN rules to convert the inputs into output 
membership functions. The more variables we use, the 
more rules result. However, it is not necessary to translate 
all the rules, sometimes they can be redundant. The 
degrees of membership of the inputs are combined to 
obtain the membership degree of the output variable. 

c) Defuzzification 
The last step for designing a fuzzy controller is to convert 
the fuzzy output variables into a real valued variable, this 
is called defuzzyfication. Once defuzzyfied, the real 
output variable will be the actual input for the process. 
Many methods exist, permitting the transformation of the 
fuzzy output into a real valued. More details regarding 
the fundamentals of fuzzy control and design can be 
found in many textbooks such as Wang [16], Passino and 
Yurkovich[17].

2.2 Behavior-based design. 

The idea is to decompose the whole complex behavior into 
different simple behavior modules in a subsumption 
architecture [18]. Each behavior is executed independently 
or in conjunction with the others, and is formulated as a set 
of fuzzy rule statements. Behaviors that are usually needed 
for mobile robot tasks include (Figure 1):  

• Path following and goal reaching 
• Obstacle avoidance 
• Wall following 
• Emergency 

Each behavior is represented using fuzzy logic rule base 
and the problem of behavior arbitration can be handled 
by a fuzzy mechanism. To increase the autonomy of the 
mobile robot, the task supervisor can be implemented 
using a decision function based on sensor inputs to 
decide upon the right behavior the robot should take. 
This of course could as well include human decisions in 
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case of manual control, which can be programmed. The 
motion of the robot depends on the task to be achieved. 
In this work we will be interested in implementing all the 
behaviors except wall following, since a stereovision 
camera is used to circumvent this difficulty. We will 
detail our approach for the modular organization of the 
fuzzy rule base for each of the path-following and goal 
reaching behavior and obstacle avoidance behavior. 

Figure 1. Behavioral based fuzzy control architecture 

2.2.1 Path following behavior 

Path following behavior is used to drive the robot along 
the desired planned path. This behavior allows reaching a 
target point as well. This behavior is activated when the 
acquired information from the sensors shows that there 
are no obstacles. We use the idea that consists of reducing 
the orientation error α which is the difference between 
the desired heading and the current heading. Likewise, 
we aim at reducing the distance error d of the actual robot 
position with respect to the line (Δ) as it is depicted in 
Figure 2, such that: 

        2 2( ) ( )t r t rd x x y y= − + −   (1) 

( )atan2 ( ),( )t r t ry y x xα ϕ= − − −   (2) 

The rules generated for this behavior take into account 
these two input variables and the outputs are chosen to 
be the right and left velocities of the robot wheels. The 
tracking fuzzy logic controller is implemented using 
seven membership functions for the distance and 
orientation errors and seven as well for the driving wheel 
velocities. Their forms are chosen arbitrary as it is shown 
in Figure 3, 4 and 5 respectively. 

The output linguistic variables for each fuzzy controller 
are:

Distance: d ={Z-Zero, NZ-Near Zero, N- Near;  
M- Medium, NF- Near Far, F- Far, VF- Very Far}; 

Orietation: α ={ N- Negative, NM- Negative Medium, 
NS- Negative Small, Z- Zero, PS- Positive Small,  

PM- Positive Medium, P- Positive }. 

The rule base for the target fuzzy controller is defined in 
Table 1. Example of such a fuzzy control rule is:  

If (d is M Λ α is PM) Then (vl is H Λ vr is S)

Such that, the output of this fuzzy controller are nothing 
than the left and right velocities of the driving wheels, 
implemented with seven linguistic variables defined as:  

Velocity: vl, vr ={ Z-Zero, S- Small, NM- Near Medium, 
M- Medium, NH- Near High, H- High, VH- Very High } 

To speed up the process, we choose the centroid 
deffuzyfication method to get the real values of the left 
and right driving wheels. 

2.2.2 Obstacle avoidance behavior 

For mobile robot navigation in cluttered environments, 
stereo vision cameras represent a means for the provision 
of rich and complete information, though not very 
efficient in real time applications for dynamic obstacle 
detection. Therefore, this type of sensors is inadequate for 
robots of limited computational power. This problem can 
be circumvented through the use of ultrasonic sensors 
(US) which present a viable solution and are used to 
detect objects which are able to alter the movements of 
the robot; hence both sensors are used. The use of US 
sensors and stereo-vision camera and their interaction 
allow for collision avoidance and path identification in 
case of local minima or undetermined situations (Fig 6). 
PowerBot is characterised by front and rear sonar, but we 
only consider the front one in this work. 

Figure 2. Definition of error variables 

si

Goal reaching behavior 

Wall following behavior 

Obstacle avoidance behavior 

Emergency behavior 

RobotSensors

Tasks Supervisor 

 (Δ) 

d α
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Figure 3. Membership functions of the distance

Figure 4. Membership functions of the orientation

Figure 5. Membership functions of the left and right velocities 

α 
Dis.

N NS NNZ Z NPZ SP P 

Z
LZ LZ LZ LZ LNM LNM LM

RM RNM RNM RZ RZ RZ RZ

NZ
LS LS LZ LS LM LNH LH

RH RNH RM RS RZ RS RS

N
LS LS LS LNM LH LH LVH

RVH RH RNH RNM RS RS RS

M
LS LM LS LM LH LH LVH 

RVH RH RH RM RS RS RS

NF
LS LS LS LNH LH LH LVH 

RVH RH RH RNH RS RS RS

F
LS LS LS LH LH LH LVH

RVH RH RH RH RS RS RS

VF
LS LS LNM LVH LNH LH LVH

RVH RH RNH RVH RNM RS RS

Table 1. Rule base for the target fuzzy controller

The ultrasonic sensors form the front array and consist of 
three sets, each covering three distinct regions: front, left 
and right ahead of the robot and labeled as Left_d, 
Front_d and Right_d (Fig 7).  

The front region is constituted by a set of three sensors, 
while the left and right regions are constituted by a set of 
four sensors. Inputs relative to the distance from 
PowerBot to the detected object are transmitted to the 

first layer in the hierarchical fuzzy control design. The 
farthest is retained for computation: 

dF=max(dF1,dF2,dF3), dL=max(dL1,dL2,dL3,dL4), 
dR=max(dR1,dR2,dR3,dR4),

Depending on the current orientation of PowerBot taking 
“the world frame” as a reference, the values of the 
orientation are determined with respect to each detected 
object within the defined region. The side of PowerBot 
that is closest to the obstacle has a sensitive orientation. 

1st layer: 
Four linguistic variables are considered, one for distance, 
and three for orientations. These are fuzzified separately 
when obstacles are detected in front, left and right sides 
respectively. The meaning of each linguistic value should 
be clear from its mnemonics, therefore we write: 

Distance = {N- Near, M- Medium, F- Far}. 

 

Cul-de-Sac 

 
 
 
 
 
 
 

Robot direction 
perpendicular to the wall 

Figure 6. Examples of singular configurations

Figure 7. Hierarchical fuzzy control design 

Although there is no restriction on the form of 
membership functions, the piecewise linear description is 
chosen. This is shown in Fig 8 and Fig 9. We notice that 
the universe of discourse of the front target distance takes 

Layer 3

Layer 2

Layer 1

sensor

Left d Right d Front d Orient_θ Camer

RL
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larger values than that of the left and right target 
distances. Furthermore, we define the membership 
functions associated with the input variable as: 

Left Orientation: θL = {PS- Positive Small, P- Positive}, 
Right Orientation: θR = {NS- Negative Small, N- Negative} 

Forward Orientation: θF = {NF- Negative Forward, PF- 
Positive Forward}, 

The shapes of the corresponding membership functions 
used for these linguistic variables are shown in Fig 10, 11, 
12, respectively. The output of this fuzzy controller is the 
steering angle which is implemented with five linguistic 
variables defined as: 

Steering angle: σ = {R- Right, RF- RightForward, F- 
Forward, LF- LeftForward, L- Left}. 

The membership functions are shown in Fig 13 and are 
chosen experimentally, and we can notice that they do 
not overlap. The fact that there is no overlap between 
these functions is to allow the robot to select exclusively 
one direction in order to go through it. (e.g. If Steering 
angle =R- Right, then the robot should move to right 
without overlap with the RF- RightForward.). In effect, 
these sets can be considered as classical sets with some 
degree of truth. Each of these fuzzy sub-controllers (left, 
right and front) contributes to steering PowerBot away 
from the detected obstacle. The fuzzy rules are shown in 
Tables 2, 3 and 4 respectively. Their meaning is explained
as follows: 

If (dL is N Λ θL is PS) Then (σ is R) 
If (dF is F Λ θF is NF) Then (σ is LF) 
If (dR is N Λ θR is NS) Then (σ is L) 

Figure 8. Membership functions of the front target distance 

Figure 9. Membership functions of the left and right target 
distance

Figure 10. Membership functions of the left orientation 

Figure 11. Membership functions of the right orientation

Figure 12. Membership functions of the front orientation 

Figure 13. Membership of the steering angle 

Figure 14. Membership of the left and right dc-motor velocities 

      θL 
dL 

PS P 

N R R 
M R RF 
F RF F 

Table 2. Rule base for left action 
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θR 
dR 

NS N 

N L L 
M L LF 
F LF F 

Table 3. Rule base for right action 

θF 
dF 

NF PF 

N L R 
M L R 
F LF RF 

Table 4. Rule base for front action 

Akin to target fuzzy logic controller, we choose the 
centroid deffuzyfication method to get real values of the 
steering angles responsible to guide the robot away from 
obstacles.
 
2nd layer: 
This layer is based on the inputs of the front, left and 
right fuzzy modules (controllers) of the first layer. 

Left Steering  Front Steering Right Steering vr vl 

R R L XX XX 
R R LF XX XX 
R R F PH Z 
R L L XX XX 
R L LF XX XX 
R L F XX XX 
R F L XX XX 
R F LF PH Z 
R F F PH PS 

RF R L Z Z
RF R LF PM PS 
RF R F PM PS 
RF L L Z PH 
RF L LF PS PM 
RF L F PS PH 
RF F L Z PH 
RF F LF PM PM 
RF F F PM PM 
F R L XX XX
F R LF XX XX 
F R F PH PS 
F L L Z PH 
F L LF PS PH 
F L F PS PH 
F F L Z PH 
F F LF Z PH 
F F F PM PM 

XX: undefined situation

Table 5. Rule base for obstacle avoidance 

It is used to provide the required motor inputs to steer 
the robot away from the detected obstacles. It translates 
the contribution of the three linguistic steering angles into 
left and right voltage motor outputs (Fig 14). Here the 
fuzzy rules are derived on the basis of intuitive 
deduction, and are presented in Table 5. In case PowerBot 
enters an undetermined situation marked XX, no action is 
taken by the fuzzy logic motion controller. In this 
situation, control is transferred to stereo-vision based 
path-planning module to identify the best course of 
action, while steering PowerBot towards a resolution of 
this bottleneck problem. 

The interaction between the US sensors and the stereo 
visual camera is now explained: when PowerBot finds 
itself in an undetermined situation, the controllers set the 
output voltage to zero. In this case, the robot is halted 
while control is transferred to the camera for analysis. 
The stereo-vision data are then processed and a decision 
is taken for safe passage. In case of obstruction, the 
emergency mode is activated. 

3rd layer: 
In this layer (safety layer), the left and right actuators serve 
to action the movement of PowerBot. Successful movement 
depends on the right steering angle which is used to smooth 
the path according to a set of navigation performance 
criteria. PowerBot navigates using data acquired from its 
front, left and right sensors. Any detected obstacle will result 
in offset values at the output of the second layer sub-
controller. The third layer provides the required motor 
voltages that prevent the robot from crushing into such 
obstacles, i.e., obstacle avoidance capability. In fact, as the 
robot moves it acquires information from its front, left and 
right sensors. Any detected obstacles will result in offset 
values at the output of the second layer sub-controller. The 
third layer provides the required motor voltages that 
prevent the robot not to crash into obstacles. 

Defuzzyfication 
The final output (crisp value) of the Fuzzy Logic 
controller of left wheel velocity and right wheel velocity 
can be calculated by: 

1
,

1

( ).

( )

n

i i
i

l r n

i
i

m c
v

m

μ

μ

=

=

=



 (3)

where:

μ(mi) = Firing area of left and right wheel velocity of the ith

rule. 
ci= Centroid of the area. 
n= total number of parameters. 
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2.2.3 Emergency behavior 

This behavior should have the highest priority. It is 
activated whenever the robot enters a dangerous zone in 
which the robot can probably harm its mechanical 
structure. The emergency distance is specified by the user 
to maintain the robot only in the safe navigation region. 
Information from sonar sensors on the left, right and 
front, checks for the presence of objects when (d < de);
where de is the emergency distance. Therefore this 
behavior works as follows. 

Begin

Specify de 
Get sensed distances: dL, dF,and dR 

If (dL< de OR dF< de, OR dR< de) 
Then STOP 
Else CONTINUE 
EndIf 

End

2.3 Direct Visual Controlling 

2.3.1 Method description 

This section presents a visual controlling technique as an 
alternative to US sensor controlling when the robot faces 
an undefined situations marked XX. The main idea is to 
acquire robot environment information. Once the data is 
processed, the main controller decides on the proper 
action that should be sent to DC-motors. The final 
decision is based not only on the critical situation the 
robot is found, but also on undetected hidden obstacles. 
Whenever the front, left and right side steering angle of 
the robot simultaneously detect obstacles with value XX, 
the behavior based control architecture determines that a 
Cul-de-Sac or near Cul-de-Sac scenario has occurred (as 
depicted in Figure 6). The behavior based control now 
switches control over to the stereo-vision based mapping 
and path-planning module. The job of this module is to 
perceive the environment passively using a stereo-vision 
camera until it is requested to plan a path for the purpose 
of ejecting a trapped robot out of the obstacles. The 
stereo-vision based mapping and path-planning module 
produces a set of x-y coordinate points that are handed 
over to path-following behavior described in section 2.2.1. 
These x-y coordinate points represent an obstacle-free 
path that starts from the current robot position and leads 
to the final goal position. Path-following behavior now 
takes over the robot motion control and guides the robot 
out of the trap. In case where any subsequent trap is 
encountered, the behavior based control again requests 
the stereo-vision based path-planning module (SVPPM) 
to re-plan the path in order to help the robot getting out 
from the newly found Cul-de-Sac situation. It must be 
taken into account here that stereo-vision camera 
captures and maps observations at all times. Each time a 
path-planning request is received the robot is halted and 

the stereo-vision camera captures observations from 
multiple poses that cover the front 180- degree Field of 
View(FOV) as shown in Figure 15.

2.3.2 Stereo Vision based Path-Planning Module (SVPPM) 

This module uses a variety of algorithms to achieve 
Simultaneous Localization and Mapping (SLAM). Our 
implementation uses a variant of fast SLAM. Here we use a 
particle filter based distribution model to update robot 
states and obstacle information. We use stereovision sensor 
for map building and obstacle avoidance for the obstacles 
within camera's FOV. Stereovision based map is more 
comprehensive though not as accurate as a laser scan. This 
is the same reason that our navigation algorithm is far 
more robust to complex obstacles, such as obstacles having 
irregular foot print in all 3D-axes. The data provided by 
stereo-vision sensor contains a subset of 3D points belonging 
to an obstacle lying on all axes whereas conventional laser 
scanners provide us with only a subset of 3D points lying on 
either XY,YZ or XZ plane for a certain obstacle. Data 
association is proving to be a challenge in our version of 
Fast SLAM. This is due to variations in illumination, 
specular reflection in environment and inconsistent point 
clouds due to variations in viewing angles. 

Figure 15. Stereovision based mapping and path planning 
module capturing observations at different poses 

We use median and average filter along with Bayesian 
filters to remove noise from specular reflection. A brief 
overview of SVPPM execution is shown in Figure 16. The 
stereovision observations are gathered using Bumblebee® 
XB3 Point grey camera. The camera uses an assembly 
optimized fast-correlation stereo core that performs Sum of 
Absolute Differences (SAD) stereo correlation. The method 
is well known for its speed and robustness. The 3D points 
representing the environment are down-sampled to 
achieve real-time processing speed. Finally an ROI that 
ignores the points above the robot height is selected and is 
passed onto the ROI sub-sectioning sub-module. This sub-
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sectioning module is necessary to reduce the time 
complexity required for performing point cloud 
manipulation. We were able to reduce time complexity for 
various filtering algorithm by over 9 times. Next the sub-
sectioned point clouds are passed over to filtering sub-
module. This sub-module filters the 3D point cloud for 
false positives that arise due to specular reflections and 
direct exposure to highly bright indoor lights. These 
filtered point clouds are then passed through a RANSAC 
based plane fitting method to detect floor and obstacles. 
Obstacles as small as wires, stationary and carpet 
deformities were successfully detected by our self-developed 
floor segmentation method listed in detail at [19]. The 
detected obstacles are then accurately updated on a global 
grid-map. This grid map is used to plan-paths whenever a 
path is requested from any other module within the system. 
We use a grid that covers an area of over 300 square-meters 
in experiments. Each grid-cell is limited to a size of 0.1 
square-meters. Each grid-cell holds a value that is 
normalized between 0.0 and 1.0. Here 0.0 represents an 
absolute belief that the cell contains an obstacle and 1.0 
indicates an absolute belief that the cell is free for navigation. 
A maximum threshold value of 0.4 was empirically 
determined to be the maximum value a grid-cell can have to 
be considered as an occupied grid-cell. A*-algorithm is 
used to determine the free path between two given points. 
The free paths between any two points are always optimal 
given the provided obstacle scenario is accurate. In case 
obstacle scenario is significantly changed so much so that it 
affects the planned path, A*-algorithm is used to re-plan 
the path to the goal. The planning and re-planning delays 
are less than a second long, so there are no issues for 
performance degradation within path-planning routine. 

 

Figure 16. Stereovision mapping and path-planning module 
flowchart 

2.4 Motor control 

Three movements are expected: forward, turn left, and 
turn right. Depending on the data signal received by 
sensors, we expect the robot to perform smooth 
movements given the task's distance and orientation. As a 
result of the mutual exclusivity of left and right turns, we 
can get multiple behaviors such as, wall following, goal 
reaching, obstacle avoidance and emergency behavior. 
The movement of the robot depends on the movement of 
each motor.

The angular speeds of the motors are determined on 
the basis of a fuzzy rule base where the inputs and 
outputs are the steering angles and angular speeds 
respectively.

3. Experimental results 

3.1 The mobile robot description 

The mobile robot used in this work is PowerBot, a 
wheeled mobile robot from Adept mobile robots Inc. It 
is an automated differential drive guided vehicle 
specially designed and equipped for autonomous, 
intelligent delivery and handling of large payloads 
(Figure 17). It is one of the many mobile robots Pioneer 
families, which are research and development platforms 
that share a common architecture, foundation software, 
and employ artificial intelligence-based client server 
robotics controls. The PowerBot platform operates as the 
server in a client-server environment. The Advanced 
Robotics Interface for Applications (ARIA) is the ideal 
platform for integration of the user robot-control 
software, since it really handles the lowest-level details 
of client-server interactions, including serial 
communications, command and self-information packet 
processing, cycle timing and multithreading, as well as a 
variety of accessory controls. PowerBot has a sturdy 
aluminum body, balanced drive system reversible DC 
motors. It is relatively very strong and quite large; it can 
carry a load of up to 100 Kg on its flat top surface, and 
navigate with a speed of up to 1.6m/sec [20]. PowerBot 
is provided with Ultrasonic sensors, optional vision 
system and laser range-finder accessories attach in front 
and integrates a full-size PC.

a) Sonar 
PowerBot comes standard with two sonar arrays, one in 
front and one in the rear. We depict in Figure 18 the 
PowerBot front sonar arrays. Sonar geometry is identical 
on each array, one sonar on each side. Each array contains 
12 sonar sensors partitioned around the perimeter of the 
robot with every one separated by a 10° interval, and two 
other at the side. Together, the 28 front and rear sensors 
provide 360° of nearly seamless sensing.
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Figure 17. PowerBot side view 

Figure 18. PowerBot front sonar arrays [21] 

Figure 19. Pan-Tilt Unit from FLIR 

b) The camera Bumblebee XB3  
Powerbot comes with an optional camera, however for 
our concern; we used Bumblebee XB3 camera (mounted 
on top of the robot to provide more information on the 
surrounding environment. The Bumblebee XB3 is a 3-
sensor multi-baseline IEEE-1394b (800Mb/s) stereo 
camera designed for improved flexibility and accuracy 
[22]. It features 1.3 mega-pixel sensors and has two 
baselines available for stereo processing. The extended 
baseline and high resolution provide more precision at 
longer ranges, while the narrow baseline improves close 
range matching and minimum-range limitations. It has a 
resolution 1280x960 at 15FPS, and 6mm focal length. One 
of the most important specifications of this camera is that 
it is pre-calibrated.  

c) The Pan-Tilt Unit 
The Bumblebee XB3 camera is attached to the robot by 
means of a Pan Tilt Unit (D46-17 by FLIR) (Figure 19). 
The pan-tilt unit enables the Bumblebee camera to be 
rotated and tilted at speeds up to 300-degrees per second. 
The pan-tilt resolution is 0.013 degree which is more than 
enough for our application. The tilt range available is 
from 47º to +31º from level (78º range). The available pan 
range is +/- 159º. We use custom designed module to 
communicate with the unit via RS-232. 

3.2 The Experiment Test-Bed  

The experiments for this paper have been conducted 
within a controlled lab environment. The experimentation 
area was limited to 7-meters x 4-meters (28 sq. 
meters).The area was calibrated with markings having 0.5 
meter resolution. This was done in order to double check 
the ground-truth for the robot motion control and path-
planning verification. The ground surface was an even 
carpet. The dead-reckoning related parameters for the 
robot were calibrated to keep the odometry error to the 
minimum. Lightening conditions were not particularly 
controlled but care was taken to avoid highly specular 
surfaces that can cause spurious observations for 
stereovision rectification algorithm. 

3.3 Execution time and Path-Planning Performance 

A total of 90 test runs were conducted with random 
obstacle configurations on the lab floor. Numbers of 
occupied cells were gradually increased after an interval 
of 30 tests. Numbers of occupied cells in any 
configuration were considered as a measure of map 
complexity. This measure is elaborated in detail in [23]. 
The results showing the length of the planned path and 
time consumed in path planning process are tabulated in 
Table 6. The run-time shown for each map-complexity 
level is an average of 30 run-times of path-planning 
algorithm executed for the corresponding map-
complexity level. It must be reminded here that our 
proposed motion control architecture divides the overall 
robot path into two categories of sub-paths i.e. fuzzy 
control based paths and Stereo-Vision based grid-map 
paths. Thus when compared to other grid-map based 
path planning algorithms, the proposed architecture only 
executes path-planning algorithm over the map vertices 
that cannot be traversed using fuzzy control. The length 
of overall path depicted in Table 6 includes both 
categories of paths handled by proposed architecture. The 
machine used to calculate new paths was an ASUS 
gaming laptop with an Intel Core i-7 2.20 GHz processor 
and a 12 GB RAM. 

3.4 The Experiment Scenarios and Results 

Various scenarios were set-up within the test-bed area to 
test the robustness, accuracy, adaptability and efficiency 
of the proposed system. Each scenario is described and 
relevant testing parameters and results are listed for 
reference. Note that the x-y data measurements are stored 
and used thereafter by Matlab to get the consequent 
graphs. This scenario is designed to test the Fuzzy-Logic 
motion controller. We note here that the maximum 
possible speed supported by our robot is 1,6 m/sec which 
is dangerously high for indoor environment [24].  

Given the fact that the experimentation area was limited 
to 7-meters x 4-meters (28 sq. meters) and the robot needs 
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to stop for any dynamic obstacle and also being mounted 
with a camera through which it needs to take sharp 
images, the maximum speed of the mobile robot well 
suited to such contingencies is 0.35m/s. 

Configuration 
(300x100 grid-

size) 

Average
length of 

overall path 
(meters)

Run-time for A* 
based Path-

planning 
(milliseconds) 

5% cells blocked 9.54  332 
15% cells blocked 9.72 517 
30% cells blocked 11.36 962 

Table 6. Results showing the length of the planned path and 
time consumed in path planning process 

Figure 20. No-Obstacles Scenario 

Figure 21. Profile of the velocity for the no-obstacles scenario 

• No-Obstacles Scenario 
Under this simplistic scenario the robot is expected to 
take a straight path towards the goal without any 
significant deviation from a straight line path.  

- The robot is expected to follow a smooth path. 
- The robot is expected to reach the goal following an 

optimal path. 

The result of this experiment is shown in Figure 20, 
where we can see the path of the robot from its starting 
position to the target. The velocity curve for this scenario 
is shown in Figure 21. 

• Random-Obstacles Scenario 
The obstacles are scattered in a random fashion across the 
test-bed area. The Fuzzy-Logic motion controller (FLMC) 
is expected to robustly guide the robot towards the goal 
position without collision with any of the obstacles. 

- The robot is expected to follow a smooth path. 
- The robot is expected to avoid obstacles. 
- The robot is expected to reach goal following an 

optimal or sub-optimal path. 
- The robot is expected to reach goal without requesting 

assistance from stereovision path-planning module 
(SVPPM) since the obstacles have been placed in such 
away the robot does not enter a Cul-de-Sac scenario. 

Figure 22. Random-Obstacles Scenario 

Figure 23. Profile of the velocity for the random obstacles scenario 

The result of this experiment is shown in Figure 22, 
where we depict the evolution of the mobile robot among 
static obstacle, while Figure 23 shows the profile of the 
corresponding velocity. 

• Cul-de-Sac Scenario 
The obstacles are placed within the test-bed area in such a 
way they form a Cul-de-Sac scenario for the mobile robot. 
Under this scenario the Fuzzy-Logic motion controller 
(FLMC) is expected to guide the robot towards the goal 
position until a cul-de-sac scenario is encountered. At this 
stage the robot is expected to seek path towards the goal 
from stereovision based path-planning module (SVPPM). 
The robot is expected to reach the goal while exhibiting 
the path-following behavior. At this stage: 

- The robot is expected to follow a smooth path. 
- The robot is expected to avoid obstacles. 
- The robot is expected to enter the Cul-de-Sac scenario 

following an optimal or sub-optimal path. 
- The robot is expected to reach goal via an optimal path 

produced by stereovision based path-planning 
module (SVPPM). 
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The result of this experiment is shown in Figure 24 where 
one can see the first path as a result of the FLMC and the 
second obtained by SVPPM. The corresponding velocity 
profile is as shown in Figure 25. The path generated by 
SVPPM on a grid-map for this scenario, Stereovision 
based SLAM, is shown in Figure 26. The radius of the 
circle in the figure represents the robot radius for path-
planning purposes. 

Figure 24. Cul-de-Sac Scenario 

Figure 25. Profile of the velocity for the cul-de-sac scenario 

Figure 26. SVPPM generated path on a grid-map. Green marks: 
starting position, red marks: target point. 

• Cul-de-Sac with Random Obstacles Scenario 
The obstacles are placed in a random way across the test-bed 
area. The condition for entering a cul-de-sac scenario is 
relaxed in this case so now the robot is expected to enter a 
cul-de-sac scenario even when the obstacles are farther away 
and robot is not trapped. This relaxed condition will enable 
the robot to quickly get out of areas heavily crowded with 
obstacles. Using only the fuzzy-logic motion controller 
(FLMC) to escape from such areas will consume more time 
and would cause degradation in optimality of the path. In 
this scenario the Fuzzy-Logic motion controller is expected 
to robustly guide the robot towards the goal position as far 

as possible until a relaxed cul-de-sac scenario is faced by 
the robot. The robot is expected to complete the rest of its 
path towards the goal by seeking path points from 
stereovision based path-planning module (SVPPM).  

- The robot is expected to enter the relaxed Cul-de-Sac 
scenario any time during the execution via an optimal 
or sub-optimal path. 

- The robot is expected to reach goal via an optimal path 
produced by stereovision based path-planning 
module (SVPPM). 

- The robot is expected to follow a smooth path. 
- The robot is expected to avoid obstacles. 

The result of this experiment is shown in Figure 27, 
where we can depict the path followed by the mobile 
robot which once more is the result of the FLMC and the 
SVPPM. The corresponding velocity profile is as shown 
in Figure 28. The path generated by the SVPPM for the 
above scenario, on a grid-map generated by Stereovision 
based SLAM is shown in Figure 29.  

Figure 27. Cul-de-Sac with in Random Obstacles Scenario 

Figure 28. Profile of the velocity in a Cul-de-Sac with Random 
Obstacles Scenario 

Figure 29. SVPPM generated path on a grid-map, Green marks: 
starting position, red marks: target point. 
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• Dynamic Obstacles Scenario
The dynamic obstacle in case of this scenario is a 
pedestrian. The pedestrian walks in front of the robot in a 
straight line. Only the fuzzy-logic motion controller 
(FLMC) is used to avoid the pedestrian. In case of any 
other kind of dynamic obstacles as well, the proposed 
system will allow FLMC to take precedence over SVPPM. 
In this scenario the Fuzzy-Logic motion controller is 
expected to robustly guide the robot towards the goal 
position while avoiding the walking pedestrian safely.

- The robot is expected to follow a smooth path.
- The robot is expected to avoid dynamic obstacles.
- The robot is expected to reach the goal while deviating 

from its path minimally to avoid the dynamic obstacle.

The result of this experiment is shown in Figure 30, where we 
can see the path of the pedestrian and that of the mobile robot 
generated by the FLMC. The profile of the corresponding 
velocity is shown in Figure 31. As we can observe, the robot 
stopped for a brief moment and deviated from its path 
minimally to avoid the dynamic obstacle. Three consecutive 
snapshots for such a scenario are taken for the purposes of 
illustration are reported in Figures 32, 33 and 34. 

Figure 30. Dynamic obstacle scenario. 

Figure 31. Profile of the velocity in a Dynamic obstacle scenario 

Figure 32. The pedestrian approaching the mobile robot path  

Figure 33. The pedestrian crosses the mobile robot path 

Figure 34. The pedestrian moves away safely from the robot's 
path. 

4. Comparison study and Performance metrics 

In order to evaluate our proposed scheme, we made a 
comparison with the selected approaches [25], [26] and 
[27]. Our intention is not to cover every approach; this is 
merely for sake of illustration. 

In [25], a parallel processing strategy is presented. Their 
method is based on two fuzzy based controllers where 
each input of the fuzzy units contributes to the final 
decision. The main idea of the approach combines with 
the Khatib's potential field method and brooks 
subsumption structure. Although global and local path 
planning are integrated within the system, no treatment 
of local minima is given in comparison to the method 
given in this paper, where the robot seeks the safe path, 
which is implemented by the stereovision based path 
planning module.  

Paper [26] proposed mobile robot navigation based on 
a variety of behavior algorithms implemented using 
fuzzy reasoning. The robot navigation is comprised of 
four behaviors whose outputs are the steering angle 
and the velocity of the mobile robot. To deal with 
behavior conflict, the authors added a supervision 
layer which defines the priority of each behavior. The 
proposed methodology depends largely on the 
compilation of the rules, which demand a lot of skill 
from the human expert. On the other hand, the method 
does not offer to the robot the shortest path to the goal 
in case of critical situations in contrast to our 
approach. In effect, to perceive the environment with 
better accuracy, our approach used US sensors 
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together with stereo-vision camera. The mobile robot 
senses the environment with the US sensors to 
navigate safely among obstacles, while finding the best 
path using stereo vision camera when it is in crucial 
situations. Correctness and completeness of the fuzzy 
rules are implemented in a systematic manner by using 
multilevel architecture. 

Since the proposed approach uses fast-SLAM algorithm 
in its standard form [27], we only claim our approach to 
be robust and less resource hungry. The fact that the 
proposed approach produces sub-optimal paths in 
comparison to optimal paths produced by fast-SLAM in 
conjunction with A* algorithm, makes our claim focused 
on robustness and resource optimization rather than 
path optimality. A visual comparison is presented in 
Figures 35 and 36 that shows paths followed by a robot 
using the proposed method and paths followed by the 
robot using fast-SLAM (and A* for path planning). As 
evident, the path generated by our approach is sub-
optimal but the proposed method does not rely on 
computationally expensive Stereo-vision sensors under 
normal circumstances. It is only when a critical 
threshold is breached that our method requests help 
from state-of-the art method such as (stereo-vision 
based) fast-SLAM. 

Figure 35. Comparison study in case of a cul-de-sac situation 

Figure 36. Comparison study in case of a relaxed-scattered-
cul-de-sac 

The critical threshold can be tuned in a way that 
decides the proportion between the two kinds of sub-
paths generated by our approach, i.e. fuzzy control 
based sub-paths and stereo-vision fast-SLAM based 
sub-paths. 

In addition to the previous experiments, we introduce 
some performance metrics to evaluate the proposed 
approach. For each of a total of nine experiments, 10 trials 
were conducted. This makes the total number of trials 
equal to 90. Phase 1 will have 3 experiments conducted 
while only employing sonars. Phase 2 will have 3 
experiments while only using camera and Phase 3 will 
have 3 experiments while using both sensors. In each 
phase, we will have one experiment with LONG minimum 
distance to the obstacles, one with SHORT minimum 
distance to the obstacles and one with OPTIMAL 
minimum distance to the obstacles from the robot. The 
following metrics will be recorded during all experiments.  

1. Computational time 
This parameter is the time taken by the stereo capturing 
process, communication of point cloud to the server, 
mapping, path-planning and path point generation. 

2. Robot Speed 
This parameter represents the robot velocity in units of 
meters per second during the experimentation. 

3. Minimum distance of the robot to the obstacles  
This parameter ensures that the distance between the 
robot and the obstacles in the environment does not cross 
below the defined distances from the front, left and right 
sides of the robot. Robot path (i.e. series of X-coordinate 
and Y-coordinate points) are recorded for all trials and 
are averaged to calculate an average path for each 
experiment. Obstacle configuration was not changed 
throughout the trials so that path-planning performance 
can be compared. These paths are shown in Figures 37 till 
45. Many trials were conducted and to test how close 
these values are to the average, standard deviation was 
computed and values are inserted in their corresponding 
cells in Tables 7, 8 and 9. Computational time, robot 
speed and minimum distance of the robot are calculated 
by taking average of 10 trials for each experiment. 

Results are shown in the following Tables 7, 8 and 9; 
where it can be deduced the good performances achieved 
by the algorithm that uses both sensors. One interesting 
experiment leading to a failed mission is the one 
presented in this paper. Considering Figures 40, 41 and 
42, one can remark that the robot stops, and the mission is 
aborted. This is due to the fact that robot US-sensor can 
cover only a limited zone of the look-ahead area with 
three groups of front US-sensors having each a cone of 60 
degree. For the obstacle encountered in this case, it is 
considered local minimum and the robot has no decision 
to take so it stops. The analysis of these three scenarios 
reveals the superiority of the proposed algorithm that 
uses both stereo vision camera and the US-sensor to 
execute a given mission by generating safer trajectories 
with less energy. 
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Figure 37. Sonar & Stereo-camera employed with optimal 
distance to the obstacles. 

Figure 38. Sonar & Stereo-camera employed with close 
distance to the obstacles. Out of 10 trials, 3 trials could not 
complete navigation since the location of the robot was 
dangerously close to the obstacles when the robot entered  
Cul-de-sac scenario.  

Figure 39. Sonar & Stereo-camera employed with long distance 
to the obstacles 

Figure 40. Only Sonar employed with optimal distance to the 
obstacles. In this scenario the robot was unable to continue 
navigation beyond the point shown above. The navigation was 
terminated since the fuzzy rules cannot handle such an obstacle 
scenario. 

Figure 41. Only Sonar employed with close distance to the obstacles. 
In this scenario the robot was unable to continue navigation beyond 
the point shown above. The navigation was terminated since the 
fuzzy rules cannot handle such an obstacle scenario. 

Figure 42. Only Sonar employed with long distance to the obstacles. 
In this scenario the robot was unable to continue navigation beyond 
the point shown above. The navigation was terminated since the 
fuzzy rules cannot handle such an obstacle scenario. 

Figure 43. Only Stereo camera employed with optimal distance 
to the obstacles. 

Figure 44. Only Stereo camera employed with close distance to 
the obstacles. 
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Figure 45. Only Stereo camera employed with far distance to the 
obstacles. 

Sensors Employed Close distance of obstacles in cm 
(left=40,front=50,right=40) 
Average 

Computation 
time (std. dev) 

Average Robot 
Speed (std. 

dev) 
Camera & Sonar 325.9ms(91.7) 0.21m/s(0.084) 

Sonar Only 372.3ms(131.8) 0.27m/s(0.096) 
Camera Only 434.0ms(96.2) 0.17m/s(0.060) 

Table 7. Robot performance for a short distance 

Sensors Employed Optimal distance of obstacles in cm 
(left=60,front=85,right=60) 

Average 
Computation 

time (std. dev) 

Average Robot 
Speed (std. dev) 

Camera & Sonar 312.0ms(72.3) 0.18m/s(0.101) 
Sonar Only 409.1ms(112.0) 0.27m/s(0.096) 

Camera Only 503.8ms(113.6) 0.16m/s(0.047) 

Table 8. Robot performance for an optimal distance

Sensors Employed Long distance of obstacles in cm 
(left=200,front=250,right=200) 

Average 
Computation 

time (std. dev) 

Average Robot 
Speed (std. 

dev) 
Camera & Sonar 367.32ms(99.7) 0.18m/s(0.053) 

Sonar Only 355.8ms(104.7) 0.19m/s(0.036) 
Camera Only 473.99ms(109.9) 0.16 m/s(0.061) 

Table 9. Robot performance for a long distance

5. Conclusion 

In this paper, we have described the motion control for 
autonomous robot navigation, focusing on its kinematics 
characteristics and on its behavioral based fuzzy control 
architecture. We used the ActivMedia Robotics Interface 
for Applications (ARIA) platform to integrate our C++ 
program to control Powerbot mobile robot. Path planning 
and obstacle avoidance behaviors have been presented. 
Avoidance obstacle behavior is one of the key issues for 
navigation improvement. In order to increase the 
autonomy of the robot and its ability to successfully 
execute navigation tasks in cluttered environments, we 
have presented an ordered hierarchical architecture based 
on fuzzy reasoning. Accordingly, we proposed and 

implemented a stereo vision camera to assist the US 
sensors in an undetermined situation such as a "cul-de-
sac". A number of scenarios have been experimented in 
order to demonstrate the robustness of the approach, 
leading every time to successful outcomes. This paper 
contributes for a systematic approach using fuzzy logic 
reasoning and control based on US sensors and stereo 
vision information. As an extension to this work, we aim 
at exploiting Powerbot possibilities to designing control 
laws that take into account the dynamic behavior and the 
inertia effect. We will focus on our research on outdoor 
navigation where we expect to see Powerbot operating in 
an unstructured and unknown terrain. 
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