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Abstract. Variation in the risk of predation to offspring can influence the expression of reproductive strategies
both within and among species. Appropriate expression of reproductive strategies in environments that differ in
predation risk can have clear advantages for fitness. Although adult-predation risk appears to influence glucocor-
ticosteroid levels, leading to changes in behavioral and life-history strategies, the influence of offspring-predation
risk on adult glucocorticosteroid levels remains unclear. We compared total baseline corticosterone concentrations
in Gray-headed Juncos (Junco hyemalis dorsalis) nesting on plots with and without experimentally reduced risk of
nest predation. Despite differences in risk between treatments, we failed to find differences in total baseline cor-
ticosterone concentrations. When we examined corticosterone concentrations across a suite of sympatric species,
however, higher risk of nest predation correlated with higher total baseline corticosterone levels. As found previ-
ously, total baseline corticosterone was negatively correlated with body condition and positively correlated with
date of sampling. However, we also found that corticosterone levels increased seasonally, independent of stage of
breeding. Nest predation can alter the expression of birds’ reproductive strategies, but our findings suggest that
total baseline corticosterone is not the physiological mechanism regulating these responses.

Keywords: calendar effect, corticosterone, life history, nest predation, parental care.

Variacion Intra- e Interespecifica en la Tasa de Depredacion en Nido y Niveles Circulantes
de Corticosterona

Resumen. Elriesgo de depredacion sobre la descencendia puede tener influencia en la expresion de estrategias
reproductivas a nivel intra- e interespecifico. Adecuar la expresion de estrategias reproductivas a condiciones ambi-
entales con diferente riesgo de depredacion puede resultar ventajoso en términos de “fitness” o eficacia bioldgica. El
riesgo de depredacion sobre individuos adultos parece influir en los niveles circulantes de glucocorticoides, y oca-
sionar cambios en el comportamiento y en aspectos relacionados con la estrategia de vida. Sin embargo, no esta claro
aun, cual es el efecto que puede causar el riesgo de depredacion sobre la descendencia en los niveles de glucocorti-
coides de los adultos. En este estudio comparamos los niveles basales de corticoterona en pollos de Junco hyemalis
dorsalis en bosques en los que controlamos de manera experimental el riesgo de depredacion. A pesar de que nuestro
experimento tuvo un efecto importante reduciendo el riesgo de depredacion en nido en las parcelas experimentales,
no encontramos diferencias significativas en los niveles basales de corticosterona entre los pollos de parcelas ex-
perimentales y control. Sin embargo, cuando examinamos la variacion en niveles de corticosterona en adultos de
un grupo de especies simpatricas, encontramos correlacion positiva entre el riesgo de depredacion en el nido y los
niveles basales de corticosterona. En linea con resultados de otros estudios previos, encontramos que los niveles basa-
les de corticosterona se correlacionaban negativamente con el tamafio corporal y positivamente con la fecha, aunque
la correlacion con la fecha fue independiente del estadio reproductivo en que se encontrasen los individuos. La depre-
dacion en nido puede alterar la expresion de estrategias reproductivas en aves, sin embargo nuestro estudio sugiere
que los niveles basales de corticosterona no son el mecanismo fisiologico que regula estas respuestas.

INTRODUCTION Ghalambor and Martin 2001, Fontaine and Martin 2006a).
The extent to which individuals invest in current reproduction ~ Yet the physiological mechanisms underlying these patterns
is influenced by a variety of extrinsic and intrinsic sources of are less well known (Sinervo and Svensson 1998, Ketterson
selection. In particular, sources of mortality, either to offspring and Nolan 1999). An understanding of the physiological pro-
or parents, are known to influence parental effort (Roff 1992, cesses underlying adjustments in parental effort is paramount
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to understanding the evolution of life histories and parental
care, as well as the management and conservation of species
(Clutton-Brock 1991, Sinervo and Svensson 1998, Ketterson
and Nolan 1999, Martin 2002, Ricklefs and Wikelski 2002,
Barnes and Patridge 2003, Wikelski and Cooke 2006). The hy-
pothalamus—pituitary—adrenal axis is a major component of the
endocrine system, which regulates many body processes and
may serve to mediate tradeoffs between risk of mortality and
reproductive effort (Ricklefs and Wikelski 2002, Wingfield and
Sapolsky 2003, Hau et al. 2010). However, despite the impor-
tance of the hypothalamus—pituitary—adrenal axis in pheno-
typic expression, broad experimental studies of its role in the
expression of reproductive strategies in alternative environ-
ments remain limited (Clinchy et al. 2004, Bonier et al. 2009).

Nest predation is the primary cause of reproductive fail-
ure for most birds (Ricklefs 1969, Martin 1995) and thus repre-
sents an important source of selection acting on the expression
of reproductive strategies. Indeed, correlative studies, as well
as recent experimental tests (reviewed in Lima 2009, Martin
and Briskie 2009), have shown that parents adjust reproduc-
tive strategies in response to the risk of nest predation, yet the
physiological mechanisms mediating these responses remain
unclear. In birds, exposure to adult predators can lead to ecle-
vated secretion of corticosterone (Silverin 1998, Wingfield et al.
1998, Cockrem and Silverin 2002), a steroid hormone involved
in regulating metabolic, immune, and stress responses of birds
and other vertebrates. Elevated corticosterone levels are thought
to facilitate behavioral responses to food stress or predation risk
(Wingfield et al. 1998); however, predation on offspring repre-
sents an indirect cost to adults and therefore may be mediated
differently (Wingfield 2003). Work on the Common Stonechat
(Saxicola torquatus) and Song Sparrow (Melospiza melodia)
has demonstrated that circulating corticosterone levels are posi-
tively related to nest-predator abundance and negatively related
to reproductive success and parental effort (Scheuerlein et al.
2001, Zanette et al. 2003, Clinchy et al. 2004). Unfortunately,
although these studies found that nest predation differed by
site, adult-predation risk may also have differed (Butler et al.
2009). Thus differences in corticosterone levels between sites
may reflect differences in the predation risk of adults, offspring,
or both. Furthermore, the Stonechat and Song Sparrow stud-
ies focused on fathers, which in passerine birds generally play
a lesser role in the expression of reproductive strategies than
mothers. Given the importance of nest predation and its influ-
ence on reproductive strategies (Lima 2009, Martin and Briskie
2009), the question remains whether the avian hypothala-
mus—pituitary—adrenal axis is truly sensitive to differences in
nest-predation risk and ultimately whether corticosterone can
mediate changes in avian reproductive strategies.

We explored the potential for the hypothalamus—pitu-
itary—adrenal axis to mediate nest-predation risk in a man-
ner similar to adult-predation risk by measuring total baseline
corticosterone (TBC) concentrations of six co-occurring

passerines to assess whether differences in nest-predation
risk predict differences among species in TBC and subse-
quent reproductive strategies. In the same system we then ex-
perimentally reduced nest-predation risk to test whether TBC
concentrations of one species, the Gray-headed Junco (Junco
hyemalis dorsalis), were reduced in safer nesting environ-
ments independent of adults’ predation risk.

METHODS

STUDY AREA AND SPECIES

We studied birds breeding in 20 snowmelt drainages lo-
cated along the Mogollon Rim in central Arizona from 1987
to 2004. Vegetation at the study site is typical of a western
mixed conifer forest (Martin 1998). This system is particu-
larly appropriate because nest predation accounts for 98% of
nest failure (Martin 1998) and therefore should impose direct
selection on the expression of reproductive strategies and the
proximate mechanisms that regulate them.

We examined TBC levels of nesting Gray-headed Juncos
on a series of paired plots with and without experimental re-
moval of nest predators (see next). In addition, we examined
females of five other species breeding at the same site to de-
termine if differences among species in nest-predation risk
predicted differences in TBC concentrations. We then tested
whether TBC levels predicted differences in parental care
behaviors and life-history traits (see next section).

REMOVAL OF NEST PREDATORS

From 2001 to 2004 we conducted an experiment to alter nest-
predation risk across the landscape by removing predators
from 10 plots to be compared with 10 neighboring control
plots with intact predator communities (see Fontaine and Mar-
tin 2006a for detailed description). Each plot is an individual
drainage with similar vegetation composition and structure,
separated from other drainages by ridges of different habi-
tat (Martin 1998). We paired plots on the basis of 20 years of
prior data that suggested similar assemblages of birds, preda-
tors of adults, predators of nests, and plant assemblages and
removed nest predators from ten drainages of 5—10 ha. Con-
trol and removal plots were paired to minimize possible spa-
tial influences but were separated by at least one intervening
drainage to buffer against possible carryover effects of remov-
als on control plots. We removed mammalian predators by
live trapping and transporting individuals >10 km to locations
separated from the study area by large canyons; however, be-
cause of their mobility avian predators were removed lethally
(Fontaine and Martin 2006a). We removed predators from the
same plots each year to maximize effect size.

Removals began before females of migratory species
arrived at the study site and continued throughout the breed-
ing season. The primary nest predators removed were the red
squirrel (Tamaiasciurus hudsonicus), gray-neck chipmunk
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(Eutamias cinereicollis), deer mouse (Peromyscus manicula-
tus), white-footed mouse (P. leucopus), and Steller’s Jay (Cy-
anocitta stelleri). These predators influence nest-predation
rates significantly (Martin 1998) but represent no threat to
adult birds; therefore, any differences between treatments in
TBC levels reflect risk to offspring and not adult mortality. To
evaluate the efficacy of removals, we measured nest-predation
rates and assessed nest-predator abundance throughout the
breeding season with aural surveys for Steller’s Jays and
squirrels (Fontaine and Martin 2006a).

NEST FINDING AND MONITORING

We located and monitored nests by long-standing techniques
(Martin and Geupel 1993), but we were careful to limit human
disturbance so as to not influence TBC levels inadvertently.
Whenever possible, we checked nests from afar by observing
parental behavior or when females were off during normal for-
aging. From the outcomes of nest visitations we calculated daily
mortality rates of nests for both treatments and compared them
across years with a paired r-test (Mayfield 1961, 1975, Hensler
and Nichols 1981; see Fontaine and Martin 2006a for details).
To assess the potential for nest predation to lead to differences
among species in TBC levels we used data from a much broader
sample gathered from 1987 to 2004 to make estimates of daily
nest-predation risk more robust for each species.

LIFE HISTORY AND PARENTAL CARE TRAITS

We measured the mass of eggs in nests located during nest
building or egg laying, weighing them within 2 days of clutch
completion with a calibrated digital scale accurate to 0.001 g.
We recorded clutch size for any nests found prior to hatching
because partial losses are rare in this system (Fontaine, pers.
obs.). We assessed parental behaviors by filming nests for ap-
proximately 6 hr starting within 30 min of sunrise by using a
Sony Handycam video camera concealed near the nest (Mar-
tin et al. 2000). Tapes were scored for behaviors including the
percentage of time the female spent on the nest (nest attentive-
ness) and the rate the male visited the nest to feed the incubat-
ing female (mate-feeding rate).

CAPTURE AND HANDLING TECHNIQUES

In 2004 we captured and bled a subset of parent birds. We
were careful to limit our samples to nests assumed to be first
attempts on the basis of nesting history within the territory.
All individuals were captured with a 6-m net set within 2—4 m
of nests. Females were flushed from the nest while incubating
or captured while returning to incubate. Males were captured
while returning to the nest to feed nestlings. All birds were
captured from 0600 to 1200, and blood samples were col-
lected within approximately 3 min of capture, a delay that can
be considered to reflect TBC concentrations across a variety
of species (Romero and Reed 2005) and juncos specifically
(Schoech et al. 1999). We obtained blood samples (~50 pL)
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from the brachial vein with heparinized microcapillary tubes.
Blood was kept on ice in small coolers for no more than 4 hr
before it was centrifuged and the plasma was frozen for fu-
ture analysis. We also measured body mass with a 30-g spring
scale accurate to 0.5 g and tarsus length with a digital caliper
accurate to 0.01 mm. We used morphological measurements
to develop a scaled mass index to estimate body condition

sy

(Peig and Green 2009): M’, =M, % , where M, and T, are the

mass and tarsus measurements of the individual, b,,, is the
scaling exponent estimated by the regressing of mass and tar-
sus for all individuals in the population, and 7, is the popula-
tion mean for tarsus length.

CORTICOSTERONE MEASUREMENTS

We measured TBC in plasma samples ranging from 10 to
20 uL (average 13 puL) in one radioimmunoassay with a sen-
sitivity of 1.Ing mL~! plasma (intra-assay coefficient of vari-
ation 5.7%). For the assay, tritiated corticosterone (2000 Ci
min~') was added to each plasma sample for estimation of re-
coveries (mean 76%), and samples were allowed to equilibrate
overnight at 4 °C. Steroids were extracted with 2 x 4 mL of
petroleum ether and diethylether (3:7 by volume) in minicol-
umns, and extracts were dried at 37 °C over a stream of N,. We
performed assays following protocols developed by Schwabl
(1995), using corticosterone antibody B3-163 (Esoterix Endo-
crinology, Inc.). All methods were approved and monitored
under permits from the Arizona Game and Fish Department
(SP635085), the U.S. Fish and Wildlife Service (MB791101-
3), and the University of Montana Institutional Animal Care
and Use Committee (01-04-TMCWR-033105-01).

STATISTICAL ANALYSES

We tested for differences in TBC among females of differ-
ent species with a general linear model that included species
as a factor and body condition, sampling date, and sampling
time as covariates, from which we estimated marginal means
for each species. We tested for difference among species with
post-hoc tests of least significant difference (LSD) and used
the estimated marginal means to examine whether nest-pre-
dation risk predicted differences among species in TBC and
whether TBC in turn predicted differences in behavioral and
life-history traits. Tests of behavioral and life-history traits
were corrected with a sequential Bonferroni adjustment for
multiple tests.

To test for proximate responses to nest-predation risk we
compared TBC levels by treatment for incubating female jun-
cos and males feeding nestlings with a general linear model
that included treatment and sex as factors and body condition,
sampling date, and sampling time as covariates.

To ensure that assumptions of normality were met, we
natural-log-transformed TBC concentrations and used the
transformed variable in all models and figures presented here.
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For all tests we initially tested for interactions but removed
insignificant findings from models.

RESULTS

We collected samples from 65 incubating females, 12 of the Or-
ange-crowned Warbler (Oreothlypis celata), 14 of the Red-faced
Warbler (Cardellina rubrifrons), 22 of the Gray-headed Junco, 5
of the Hermit Thrush (Catharus guttatus), 8 of the Cordilleran
Flycatcher (Empidonax occidentalis), and 4 of the House Wren
(Troglodytes aedon). Pooled across species, TBC levels were
sensitive to body condition and sampling date but were unre-
lated to sampling time (Fig. 1; species: Fy ¢4=2.095, P=0.080;
date: F1,64 =6.971, P=0.011; time: F1,64 =0.357, P =0.553; con-
dition: F ¢, =4.960, P = 0.030; interactions not significant). On
the basis of an LSD post-hoc test of estimated marginal means,
Gray-headed Juncos and Hermit Thrushes had TBC levels signifi-
cantly higher than those of all other species (Fig. 2a). Differences
among species in TBC were significantly correlated with among
species differences in nest-predation risk (Fig. 2b; F) § = 14.628,
P=0.019). After multiple tests were controlled for, TBC predicted
body mass (Fig 3a; F) ;=226.941, P<0.001) but none of the other
life history or behavioral traits (Fig 3; F' 15<12.838, P20.115).

Over 4 years we removed 3791 predators from removal
plots (Fontaine and Martin 2006a), resulting in a 13% drop
in daily capture rates of predators, a 72% average decline in
predator detections (Fontaine and Martin 2006a), and ulti-
mately a 40% decline in daily nest predation for incubating
juncos (removal, 0.03 £ 0.01; control, 0.05 + 0.01; 1,=-2.654,
P =0.039), which is consistent with previous examinations of
a broader set of species (Fontaine and Martin 2006a,b).

We successfully sampled TBC in 23 female (16 control,
7 removal) and 10 male (6 control, 4 removal) juncos. Despite
clear differences in nest-predator abundance, predator cues,

and corresponding nest-predation risk, TBC levels did not
differ by treatment or sex (female: control = 1.33 + 0.18, re-
moval = 1.35 £+ 0.28; male: control = 1.08 £ 0.29, removal =
1.18 £ 0.36). The relationship of date, however, remained sig-
nificantly positive (treatment: F, 5, = 0.032, P = 0.859; sex:
F, ;,=0.670, P=0.420; date: F| ,, = 5.347, P =0.029; condi-

tion: F, ,,=2.316, P=0.140; time: F, ,,=0437, P=0.514).

DISCUSSION

Predation is a major ecological and evolutionary force that
clearly shapes the expression of behavioral and life-history
traits both within and among species (Roff 1992, Martin 1995,
Begon et al. 1996, Pianka 2000). Moreover, behavioral and
life-history traits shift in response to changes in nest-predation
risk (Ghalambor and Martin 2002, Doligez and Clobert 2003,
Fontaine and Martin 2006a,b, Lima 2009, Martin and Briskie
2009), and glucocorticosteroids are a potential physiologi-
cal mechanism mediating these responses (Scheuerlein et al.
2001, Clinchy et al. 2004). Despite a clear decrease in nest-pre-
dation risk and corresponding changes in reproductive strate-
gies (Fontaine and Martin 2006a,b), TBC concentrations did
not differ by nest-predator treatment, suggesting that TBC
may not be the mechanism regulating adaptive responses to
nest-predation risk. Our results may initially appear surpris-
ing given the correlative (Scheuerlein et al. 2001, Clinchy et
al. 2004) and experimental (Silverin 1998, Cyr and Romero
2007) studies suggesting otherwise, but previous examina-
tions of the relationship between nest predation and the hypo-
thalamic—pituitary—adrenal axis have failed to differentiate
between threats to offspring and threats to parents (Butler et
al. 2009). By manipulating the nest-predator community only,
we demonstrated that differences in environmental mortality
risk to offspring did not to lead to differences in TBC levels,

(b) -

Total baseline corticosterone
(In[ng/ml])

-2 0 2 4
Body condition index
FIGURE 1.

Sampling date

Total baseline corticosterone levels were influenced by body condition and sampling date. Across the six species sampled, (a)

incubating females that were in better condition had lower TBC levels, while (b) females that were sampled later in the breeding season had
higher TBC levels. Data are presented as partial regression plots displayed as unstandardized residuals from a linear model after control for
species effects as well as sampling date and body condition, respectively.
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(A, Orange-crowned Warbler, 12; ¥, Red-faced Warbler, 14; @, Cordilleran Flycatcher, 8; M, House Wren, 4; €, Gray-headed Junco, 22;
¥, Hermit Thrush, 5) in TBC levels of incubating females were significantly associated with differences in (a) body size but were unrelated
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means of log-transformed TBC levels after correction for body condition and date of sampling.
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supporting similar findings demonstrating a lack of sensitivity
to acute risk of mortality to offspring (Butler et al. 2009).

We found that TBC differences among species did corre-
late with differences in nest-predation risk (Fig. 2b) and body
size (Fig. 3a) but not with the reproductive traits we examined.
The positive correlation between body size and TBC is surpris-
ing given that smaller species are expected to have higher mass-
specific metabolic rates and thus higher TBC levels (Bokony
et al. 2009, Hau et al. 2010). In our system, however, body size
was highly correlated with nest-predation risk (r; = 0.845,
P =0.03). Given the limited number of species we examined,
the body-size correlation could simply be an indirect reflec-
tion of nest-predation risk. Alternatively, it could highlight the
strong interaction between body size and nest predation (Bi-
ancucci and Martin 2010) and subsequently TBC. Ultimately,
while TBC does not appear to act as the physiological mecha-
nism regulating individuals’ plastic responses in reproductive
strategy to nest-predation risk, it is reasonable that TBC may
have evolved as part of a larger life-history strategy that is sen-
sitive to nest predation (Roff 1992, Martin 1995, 2002, Fontaine
et al. 2007). Further examination across a broader suite of spe-
cies is necessary to confirm this relationship.

Given that TBC levels appear sensitive to differences
in nest-predation risk across species, our failure to find any
relationship among individuals may suggest that instead of
changing production and secretion of corticosterone in re-
sponse to nest-predation risk, individuals may alter bioavail-
ability or sensitivity to corticosterone. We measured TBC
concentrations in plasma, which includes both free, unbound
corticosterone and corticosterone bound to corticosterone-
binding globulin (Breuner and Orchinik 2002). Free cortico-
sterone is considered the biologically active form and thus the
form expected to induce changes in reproductive strategies
(Breuner et al. 2006). In the European Starling (Sturnus vul-
garis), for example, concentrations of free corticosterone in
plasma vary with the female’s reproductive stage while TBC
concentrations remain the same (Love et al. 2004). Alterna-
tively, individuals may regulate receptors at specific targets
that influence the expression of reproductive strategies, such
as the brain (Breuner and Orchinik 2002), which can influ-
ence the sensitivity to TBC without changing TBC levels.
Thus corticosterone may influence investment in offspring or
the condition of the female in different nest-predation envi-
ronments, but through the regulation of binding globulins or
receptors (Breuner and Orchinik 2002), so its effects may not
be apparent in TBC concentrations alone.

Still, our results are surprising not only because previ-
ous studies have found correlations within a species between
nest-predation risk and TBC concentrations (Scheuerlein et
al. 2001, Clinchy et al. 2004) but also because of likely differ-
ences between our treatments in adult-food stress. The rate
that males supplied females at the nest with additional food
and the time females spent off the nest foraging for themselves

both increased on removal plots (Fontaine and Martin 2006a).
Consequently, on removal plots females were significantly
less food limited, which should decrease TBC concentrations
(Wingfield 2003, Clinchy et al. 2004). The lack of difference
in TBC concentration between treatments may suggest that
the costs of elevated TBC (Sapolsky et al. 2000, Romero 2004,
Bonier etal. 2009), even in high-risk, low-food environments,
may favor alternative physiological mechanisms for regulat-
ing reproductive responses to nest-predation risk.

Selection against elevated TBC may be particularly
high during the reproductive period not only because corti-
costeroids may suppress reproduction (Wingfield and Sapol-
sky 2003) but also because these costs may be transferred
to offspring (Bonier et al. 2009). Recent work demonstrates
the transfer of corticosterone from females to eggs (Hay-
ward and Wingfield 2004, Saino et al. 2005, Love et al. 2005,
Hayward et al. 20006), and eggs with elevated levels of corti-
costerone can have reduced hatching success, take longer to
hatch, and produce smaller, lower-quality offspring whose
stress response is stronger (Eriksen et al. 2003, Hayword and
Wingfield 2004, Rubolini et al. 2005, Saino et al. 2005, Hay-
ward et al. 2006, Bonier et al. 2009). These effects, while
generally negative, are further compounded in environments
with high rates of nest predation. For example, increasing
the length of the incubation period increases the risk of nest
predation because nest-predation risk compounds daily, but
this risk is particularly elevated in environments where nest
predation is frequent. The poor quality of offspring is also
exaggerated in such environments because parents tend to
feed less (Fontaine and Martin 2006a; reviewed in Martin
and Briskie 2009), and attempts to compensate by increas-
ing the rate of feeding can lead to increased nest-predation
risk (Skutch 1949, Martin et al. 2000). Thus the high costs
to offspring of elevated parental TBC may favor alternative
physiological mechanisms for regulating reproductive strat-
egies in environments that differ in nest-predation risk, in-
dependent of the costs to parents.

TBC levels of individuals did not differ by treatment but
decreased with increasing body condition and increased with
later date of sampling (Fig. 1), consistent with other examina-
tions of corticosterone (Wingfield et al. 1995, Kitaysky et al.
1999, Adams et al. 2005, Heidinger et al. 2006). While it ap-
pears clear that improved body condition reduces TBC levels
because individuals in better condition have greater energy
reserves and are thus better insulated from environmental
stress (Wingfield et al. 1995), it is less clear why TBC levels
vary seasonally. In birds, for example, it is widely accepted
that TBC levels are elevated during the breeding season (see
Romero 2002 for a review), and vary with stage of breeding
(Holberton and Wingfield 2003, Adams et al. 2005, Raouf
et al. 2006), but whether these differences are due to time-of-
year effects or stage effects has not been clearly established
(Heidinger et al. 2006). Here we control for stage and show a
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clear pattern of TBC levels increasing across the breeding sea-
son in females of six species of passerines (Fig. 1b).

One explanation for the seasonal pattern is that seasonal
increases in competition, predation risk, food limitation, or
parasite prevalence could lead to increased chronic stress and
thus elevate TBC levels through the breeding season. In this
case, date is simply a correlate of any of several important
ecological factors that may invoke an “emergency life history
stage” (Wingfield et al. 1998). Alternatively, as the breeding
season progresses and the time for other life stages such as
molt or migration approaches, TBC may be elevated as either
an anticipatory or a reactive response (Gwinner 1996, Styrsky
et al. 2004). For example, elevated TBC may act to suppress
the initiation of subsequent life stages despite external cues
(i.e., photoperiod) and thus allow females to continue incuba-
tion behaviors. TBC levels may also increase to prepare a fe-
male for the next life stage, particularly molt or migration that
requires increased fat deposition, or as a reaction to a dimin-
ishing window in which offspring can fledge. Elevated TBC
concentrations may improve a female’s ability to assimilate
energy (Wingfield et al. 1998) and therefore increase her re-
productive effort and ultimately her chances of successfully
rearing young. Additionally, increases in a female’s TBC
may lead to increased deposition of corticosterone in eggs
and signal the offspring to adjust its phenotypic expression to
maximize growth and development. Maternally mediated phe-
notypic adjustments of development to time of year is wide-
spread among invertebrates and vertebrates and might allow
late-born individuals to better cope with a shorter developmen-
tal period (Berthold 1996, Gwinner 1996, Styrsky et al. 2004).

Corticosteroids play an important role in regulating be-
havior, particularly when environmental conditions impose a
major threat to an individual (Wingfield et al. 1998). However,
the production and secretion of corticosteroids to mediate ex-
ternal costs must be balanced against potential internal costs,
which may be particularly important during breeding (Wing-
field and Sapolsky 2003). Our findings suggest such a bal-
ance, as TBC levels of individuals did not respond to changes
in nest-predation risk but did respond to the changing season.
Ultimately, the reproductive value of the offspring and the
life-history strategy of the species may dictate this balance
because in both cases the physiological responses of parents
may be in the best interest of the offspring.
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