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INTRODUCTION

Two main reasons for modeling the associations between a 
species’ presence and habitat features are to map predicted 
distributions and to understand ecological factors that in-
fluence ways that organisms interact with the environment 
(Wiens and Rotenberry 1981, Young and Hutto 2002). Maps 
generated from habitat-association models then can be used to 
establish conservation priorities (Scott et al. 1993) and refine 
foci of future research when little is known about the species 
of concern, as with the American fisher (Martes pennanti) 
(Carroll et al. 1999) or Jerdon’s Courser (Rhinoptilus bitor-
quatus) (Jeganathan et al. 2004). Increasingly, features of the 

environment are described from remotely sensed data, which 
are then used to create habitat models. Although remote sens-
ing can cover larger areas than can be completely sampled on 
the ground, models derived from remote sensing are often not 
tested by an evaluation of the extent to which they accurately 
reflect species’ distributions.

Applying remote-sensing data to habitat modeling 
can take two approaches. First, researchers use such data 
to classify features in the environment that previous stud-
ies associated with the organism of interest. With this ap-
proach, components of a species’ habitat are assumed to 
be known, and remote-sensing data are organized to rep-
resent these components as accurately as possible. Many 
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Evaluación de Modelos de Asociación de Hábitat para Ammodramus caudacutus

Resumen. Los modelos de hábitat que asocian a los organismos con rasgos de sus ambientes pueden ayudar 
a identificar áreas para planificar estrategias de conservación. Estos modelos, sin embargo, deben ser evaluados 
con datos nuevos antes de que sus conclusiones puedan ser ampliamente aceptadas. Ammodramus caudacutus es 
una especie de preocupación creciente de conservación a lo largo de la costa atlántica de América del Norte. En un 
estudio previo, desarrollamos modelos de presencia y hábitat de nidificación de A. caudacutus. La ocupación de 
A. caudacutus fue predicha mejor a partir de las propiedades reflectivas básicas de los pantanos derivadas a partir 
de teledetección, mientras que la nidificación de A. caudacutus fue predicha mejor a partir de una clasificación de 
la comunidad de plantas del pantano. Para evaluar estos modelos, monitoreamos una muestra estratificada al azar 
de sitios para los cuales se había predicho la probabilidad de presencia de A. caudacutus y comparamos las obser-
vaciones con la probabilidad predicha de presencia y nidificación generada por los modelos. El desempeño de los 
modelos, evaluado a partir del área debajo de la curva de características de receptor-operador y del desvío de las 
observaciones de las predicciones del modelo, fue significativamente mejor que lo esperado sólo por azar. Debido a 
que se predice que A. caudacutus esté presente en muchos sitios donde es poco probable que anide, el monitoreo de 
la presencia únicamente de A. caudacutus no permitirá identificar áreas importantes para su nidificación.
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studies over the last few decades have used this approach; 
for instance, Gottschalk et al. (2005) reviewed 109 studies 
that used satellite imagery to model habitat for birds. 
Frequently, habitat data take the form of land-cover types, 
as in Klute et al. (2002), who modeled eight forest types to 
describe American Woodcock (Scolopax minor) habitat, and 
Debinski et al. (1999), who used Landsat data to discrim-
inate between three forest types and six meadow types to 
delineate habitat for butterflies (Lepidoptera). Other studies 
organize data in ways that describe plant structure and 
heterogeneity, such as in Gibson et al. (2004), who generated 
a model of the structural complexity of vegetation by using 
low-altitude videographic imagery to describe habitat of 
the Rufous Bristlebird (Dasyornis broadbenti). Yet another 
strategy is to classify topographic details that influence 
microhabitat conditions or abiotic processes. For example, 
Shriner et al. (2002) used slope and aspect calculated from 
digital elevation data to predict habitat for the Wood Thrush 
(Hylocichla mustelina). These a priori classifications can be 
used to dissect how individual features influence species’ 
distributions and allow comparisons of species of interest 
and data sources (Guisan and Zimmerman 2000).

The second approach uses remote-sensing data in a more 
exploratory way to identify aspects of the landscape associ-
ated with the organism’s presence. Subsequent analysis then 
attempts to link the identified areas with biological processes 
that can explain the pattern. For example, Hepinstall and Sader 
(1997) built habitat-association maps for 14 species of birds 
with raw reflectance data, bypassing the effort and errors as-
sociated with first generating a land-cover classification. Bel-
lis et al. (2008) found that variables describing image texture 
modeled Greater Rhea (Rhea americana) habitat more effec-
tively than did land-cover types. To model bird diversity in the 
Chihuahuan Desert, St-Louis et al. (2009) used the texture of 
satellite images as a surrogate for habitat structure and veg-
etation variables such as the normalized difference vegetation 
index (NDVI) derived from raw spectral reflectance as surro-
gates for plant productivity. Because remote-sensing data are 
expected to reflect integration of many habitat features (Fisher 
1997), this second approach can be used to evaluate suites of 
conditions under which an organism occurs. 

Both approaches assume that the target organism benefits 
from the space in which it is usually found (Rotenberry 1981, 
Gottschalk et al. 2005). With increasing reliance on remote-
sensing data for conservation planning (Elith and Leathwick 
2009), it is especially important to test the assumption that 
there is predictive power to the associations observed in mod-
els built from such data. Although habitat models can be evalu-
ated with approaches such as splitting data sets, jackknifing, or 
data resam pling (Pearce and Ferrier 2000, Elith and Leathwick 
2009), the best test of the extent to which a habitat model can be 
generalized beyond the data on which it is based is its ability to 
predict the presence of the target species at a completely new set 
of sites (Fielding and Bell 1997, Henebry and Merchant 2002). 

Saltmarsh Sparrows (Ammodramus caudacutus) breed in 
tidal marshes along the mid-Atlantic and New England coast 
of eastern North America. Because approximately half of the 
world population is estimated to breed in southern New Eng-
land (Dettmers and Rosenberg 2000), the saltmarshes of that 
region are considered to be especially important for conserva-
tion of this species. Females nest near the ground, which makes 
the nests vulnerable to tidal flooding (DiQuinzio et al. 2002, 
Shriver et al. 2007, Gjerdrum et al. 2008a, Bayard and Elphick 
2011). Because males are not territorial and provide no paren-
tal care (Woolfenden 1956, Greenlaw and Rising 1994), and 
both males and females are frequently found in areas where 
nesting does not occur (Meiman 2011), the species’ presence 
does not necessarily indicate that conditions are suitable for 
nesting, even during the peak breeding season. Within the salt-
marsh, the plant community subjected to daily tidal inundation 
is known as the low marsh, while the relatively higher areas of 
the marsh that flood less frequently are referred to as the high 
marsh (Bertness and Ellison 1987). Although previous stud-
ies have associated Saltmarsh Sparrow nesting with vegetation 
communities characteristic of the high marsh (Shriver et al. 
2007, Gjerdrum et al. 2008b), consistent variables that denote 
sparrow presence have been harder to determine. 

We previously examined a set of alternative models de-
signed to explain variation in the distribution and nesting 
activity of Saltmarsh Sparrows in Connecticut (Meiman 2011, 
Meiman et al. 2012). These models examined a wide range of 
variables generated both in the field and by remote sensing and 
collectively tested the importance of plant composition, veg-
etation structure, spectral characteristics of the marsh, the dis-
tance from the marsh’s upland edge, whether and how marsh 
restoration had been undertaken at a site, and landscape-level 
features of the marsh. The model of sparrow presence that best 
fit the data used a variable derived from raw values of spectral 
reflectance associated with plots where sparrows did not occur. 
Nest presence, in contrast, was modeled best with vegetation-
structure variables that required data collection on the ground. 
Recording such data over large areas, however, is not feasible, 
so the best nest model cannot generate regional predictions of 
where nesting habitat exists. An alternative model, which used 
a measure of the amount of high marsh and was derived from 
remote-sensing data, received almost as much support as the 
best model, and we proposed it as the best option for predicting 
the distribution of nesting habitat in unstudied areas.

The objective of the current study was to test predictions 
of the best model for sparrow presence, and the best model 
based on remote sensing for nest presence, by using data from 
a new set of sites. We surveyed a stratified random sample of 
marsh conditions for sparrows and compared the observations 
to the predicted probabilities of presence and nesting gener-
ated from each model. Because the model for presence and the 
model for nests each used a different approach in linking the 
sparrows with habitat conditions, evaluating both models of-
fers an opportunity for us to examine the different inferences 
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and expectations from habitat models based on remote sensing. 
In addition, the predictive maps derived from the two models 
provide detailed information about the Saltmarsh Sparrow’s 
current distribution in the center of its geographic range.

METHODS

To generate regional maps of predicted sparrow presence we 
used a model based on a classification of saltmarsh pixels that 
provided a fit better than alternative models did (Meiman 2011, 
Meiman et al. 2012). This classification determined whether 
each pixel of saltmarsh in the region had spectral characteristics 
that corresponded to marsh areas in previously surveyed plots 
where sparrows were either confirmed to be present (designated 
“sparrow-present pixels”) or not found despite at least three 
point-count surveys and mist-netting sessions (“sparrow-absent 
pixels”; see Meiman et al. 2012 for details). The model predicted 

that higher proportions of sparrow-absent pixels were associated 
with a lower probability of Saltmarsh Sparrow presence. 

We overlaid a grid of 1-ha cells across all of Connecticut’s 
saltmarshes and calculated the proportion of sparrow-absent 
pixels within each grid cell after removing areas outside the de-
lineated marsh boundary (NOAA 2004). The resulting struc-
ture was strongly skewed with most cells having relatively few 
sparrow-absent pixels (see Results). To ensure that we sampled 
across a wide spectrum of prediction probabilities, we there-
fore stratified sampling across three groups of cells: those 
with <20% sparrow-absent pixels, those with 20–40%, and 
those with >40%. These three categories approximately cor-
responded to sites that were almost certain to have sparrows 
(>95% chance, “high expectation”), those that had a 50–95% 
chance of having sparrows (“medium expectation”), and those 
that had a <50% chance of having sparrows (“low expecta-
tion”) (e.g., Fig. 1a). We generated predictions in WinBUGS 

FIGURE 1. Predictions of Saltmarsh Sparrow habitat in 1-ha grid cells at McKinney National Wildlife Refuge, Great Meadows Marsh, 
Stratford, CT. This example illustrates a situation in which predictions for Saltmarsh Sparrow presence and nesting are very different. 
Lighter colors indicate lower predicted probabilities of (a) sparrow presence and (b) sparrow nesting. While a high probability of sparrow 
presence is predicted for much of Connecticut’s saltmarshes, much smaller areas are predicted to be used for nesting. Full map available at 
http://hydrodictyon.eeb.uconn.edu/people/meiman/.
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(Spiegelhalter et al. 2000), in which the uncertainty about 
model structure as well as uncertainty around parameter esti-
mates could be propagated throughout the process of fitting the 
model to the predictions.

Randomly sampling 24 cells from each of the three cat-
egories, we selected 72 cells to visit during field tests between 
25 May and 25 August 2009. In the field, we established 0.5-ha 
plots within the chosen cells or as close to the original selection 
as logistically possible. In two cases, minor shifts in location 
caused the classification of the sample site to change, such that 
the final number of samples for the categories of high, medium, 
and low expectation were 26, 23, and 23, respectively. The 
sampled cells spanned the region from Sherwood Island State 
Park in Westport to Barn Island Wildlife Management Area 
in Stonington. We assessed the sparrows’ presence by 10-min 
point counts in each plot. All counts took place after sunrise, 
between 06:00 and 11:00 EDT, and we recorded all sparrows 
seen and heard within the plot. After each point count, to re-
duce the risk that zero counts were due to lack of detection, 
we slowly walked back and forth throughout the plot. Sites 
where no sparrows were detected were surveyed repeatedly, 
at least 2 weeks apart, either until we encountered sparrows 
or until four visits had been completed. We set the number of 
surveys required to establish absence after calculating detec-
tion probabilities from previous surveys in Connecticut salt-
marshes (Elphick and Meiman, unpubl. data). Using data from 
40 sites surveyed in 2007 and 2008, we calculated the probabil-
ity of detecting at least one sparrow in a 5-min point count with 
PRESENCE 2.0 (Hines and MacKenzie 2004). From the most 
parsimonious model with the best fit, a constant-probability 
model, we estimated that four visits to a site reduced the prob-
ability of missing sparrows if they were present to less than 
5%. Because we used longer (10-min) point counts combined 
with area searches, the chance of detecting sparrows if present 
at our survey points should have been very high.

During 2009, we also surveyed the sampled cells for 
nests. The best remote-sensing model for nest locations used 
the proportion of high marsh habitat within a 1-ha plot, which 
was derived from a GIS data layer that delineated plant com-
munities (Hoover 2009, Meiman 2011). This data layer was 
not available for the entire state prior to the field test, so we 
used the same sampling frame selected for the sparrow-
presence model to evaluate the nest-presence model. 

After the field season, plant-community data became 
available for all of our study area (M. Hoover, unpubl. data), 
and we were able to determine the percentage of high marsh 
habitat within each of the test cells. This data set allowed us 
to stratify cells into three groups according to their likeli-
hood, based on the model, of containing nesting birds. Cells 
with <20% high marsh had a <10% predicted probability of 
containing a nest (“low expectation”), cells with 20–50% 
high marsh had a 10–50% predicted probability of contain-
ing a nest (“medium expectation”), and cells that consisted of 

>50% high marsh had >50% predicted probability of contain-
ing a nest (“high expectation”) (e.g., Fig. 1b). 

To determine whether Saltmarsh Sparrows were nesting 
in the test cells, we watched for birds flying with food or fecal 
sacs during point counts and subsequent time spent in the plot. 
After each point count, we also searched for nests by slowly 
walking back and forth throughout the plot, ensuring that the 
searcher’s path went within 10 m of all parts of each plot, and 
located nests by noting the point from where birds flushed. At 
sites where sparrows had been found but where nests had not, 
we conducted additional searches at approximately 2-week in-
tervals until a minimum of three nest searches had been com-
pleted. To evaluate how well we were able to detect nests by 
this search pattern, we analyzed nest-detection probabilities 
after the 2009 survey season with the program PRESENCE 2.0 
(Hines and McKenzie 2004) and estimated that in plots where 
sparrows occurred, three visits were sufficient to reduce the 
probability of missing a nest if it was present to <5%. 

We evaluated each model’s predictions in three ways. 
First, we calculated the area under a receiver-operating-
characteristic curve (AUC) for each model as a measure of 
its performance. This curve plots the way in which the rate 
of false positive results changes relative to the true positive 
rate for different discrimination thresholds. The AUC is a 
measurement of a model’s performance that does not depend 
on designating a single threshold for prediction of presence 
(Fielding and Bell 1997) and is relatively robust to differences 
in prevalence (Manel et al. 2001). Values of AUC can range 
from 0.5, in which the model’s decisions of positive and nega-
tive outcomes are not better than random, to 1.0, in which the 
model discriminates perfectly between positive and negative 
predictions. To compare the models’ performances with test 
data and training data, we also calculated the AUC for the data 
used to build the models. 

Second, we calculated an index of how much the field 
observations deviated from the predictions. For each cell, 
we determined the difference between each observation 
(1 = present, 0 = absent), and the predicted probability (values 
ranged from 0 to 1). We then took the sum of the deviations 
and compared it to the distribution of the same deviance in-
dices derived from 1000 dummy datasets, in which the same 
number of presences was randomly assigned to the same pre-
dicted probabilities. 

Third, to assess each model’s ability to predict absences 
in the low-probability category and presences in the high-
probability category, we determined how many of the cells 
that were predicted to have a <50% chance of containing spar-
rows actually lacked them, and how many cells predicted to 
have a >95% chance of containing sparrows actually had 
them. For the nest model, we determined how many cells that 
were predicted to have a <10% chance of having nests actually 
lacked them, and how many cells predicted to have a >50% 
chance of containing nests actually had them. 
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Finally, we examined the true distribution of the spar-
rows and nests. We mapped the presences and absences to de-
termine whether (1) they were concentrated in certain areas, 
(2) prediction errors were concentrated in certain areas, and 
(3) there were areas where both models generated errors. 

RESULTS

On the basis of the presence model, Saltmarsh Sparrows are 
expected to occur in most of the saltmarsh in the study re-
gion. Of the cells for which probability of sparrow presence 
was predicted, 66% had a high expectation of Saltmarsh 
Sparrow presence, 28% a medium expectation, and 5% a low 
expectation. Overall, the mean predicted probability of pres-
ence was greater than 95% for most major marsh systems 
(Fig. 2). Of the marshes where mean predicted probabilities 
were high, some had uniformly high probabilities across the 
whole marsh, while others did not. For example, all cells in 
the Wheeler Marsh at the mouth of the Housatonic River in 
Milford and in the Hammock River marsh in Clinton were 
predicted to have presence probabilities of at least 85%. In 
contrast, the marshes on the East River in Guilford and the 
Quinnipiac River in New Haven included areas where the 

probability of sparrow presence was predicted to be as low 
as 10% and 15%, respectively. Yet other sites had more vari-
able predictions. For example, the marshes on the Upper Farm 
River in Branford had a mean predicted probability of spar-
row presence of only 54% with predictions for individual cells 
that ranged from 2% to 99% (Fig. 2).

We detected Saltmarsh Sparrows in 50 of the 72 cells 
sampled. As expected, sparrows were most often detected in 
cells predicted to have a high chance of containing them, and 
least often detected in cells predicted to have a low chance 
(Fig. 3a). The AUC for the presence model was 0.70, indi-
cating that predictions were better than random but poorer 
than that obtained for the training data (0.88). Overall, the 
deviance between the model’s predictions and our field ob-
servations was far lower than expected by chance (43.0 ver-
sus a mean of 63.8 for the null distribution, P < 0.001, Fig. 
3b). Finally, we examined the model’s ability to classify cells 
correctly. Sparrows were absent at 50% of sites classified as 
having a <50% (“low”) chance of containing sparrows, and 
sparrows were present at 85% of sites classified as having a 
>95% (“high”) chance of containing sparrows.

The nest model predicted that 43% of the area of salt-
marsh in Connecticut had a low probability of sparrows 

FIGURE 2. Predicted Saltmarsh Sparrow use of 1-ha cells for larger saltmarsh systems of conservation interest along the Connecticut 
coast, arranged in order of increasing size. Black squares indicate the marsh-wide mean predicted probability of birds being present within 
a 1-ha area of marsh. Vertical lines represent the ranges associated with those means. Unfilled circles represent the marsh-wide mean prob-
ability of birds nesting within a 1-ha area of marsh. Predicted probabilities of nest presence ranged from 0 to 1 for all marshes, so ranges are 
not illustrated. UF = Upper Farm River, Branford and East Haven (90 ha); MK = McKinney National Wildlife Refuge, Westbrook (113 ha); 
HK = Hammock River Marsh, Clinton (123 ha); QR = Quinnipiac River, North Haven (125 ha); WR = West River, Guilford (131 ha); BI = 
Barn Island Wildlife Management Area, Stonington (136 ha); BO = Back Bay and Oyster River, Old Saybrook (158 ha); GM = Great Mead-
ows Marsh, Stratford (154 ha); WH = Wheeler Marsh, Milford (233 ha); RR = Ragged Rock, Old Saybrook (234 ha); HM = Hammonassett 
State Park, Madison (288 ha); ER = East River Marsh, Guilford and Madison (337 ha); CT = East Connecticut River, Old Lyme (416 ha). 
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nesting, 27% had a medium probability, and 29% had a high 
probability. Within each of the major marsh systems, some 
cells were predicted to have a <2% probability of sparrow 
nests and some cells were predicted to have a >95% probabil-
ity of nests. The mean predicted probability within a marsh 
system ranged from 12 to 54% (Fig. 2).

For the test of the nest model, 61 cells met the minimum 
criterion of at least three visits and were included in subsequent 
analyses. We found nests in 19 (31%) of these cells, a majority 
of which were classified as having a high chance of containing 
nesting birds (Fig. 3c). Only two (7%) of the 28 cells predicted 

to have a low chance of containing nesting sparrows did so. The 
AUC calculated for the test data was 0.79, compared to an AUC 
of 0.78 for the training data. The total deviance between the 
predicted probabilities and the nest presence/absence data was 
significantly less than expected by chance (28.9 versus a mean 
deviance of 48.8 for the null distribution, P < 0.001, Fig. 3d). 
Because only one of the 42 nests we found successfully fledged 
young (due to high failure rates associated with repeated tidal 
flooding in 2009; Bayard and Elphick 2011), it was not possible 
to conduct analyses that would associate levels of reproductive 
success with the amount of high marsh in a cell.

FIGURE 3. Rates of Saltmarsh Sparrow presence (top panels) and nest presence (bottom panels) compared to predictions. (a) Observed 
rates of Saltmarsh Sparrow presence in cells predicted to have high (>95%), medium (50–95%), and low (<50%) predicted chances of con-
taining sparrows. Dark gray indicates presence. (b) Deviance from model predictions of observed data (indicated by arrow) relative to devia-
tions from 1000 dummy datasets that had the same number of sparrow presences randomly distributed across sampled sites. (c) Proportion 
of sampled cells with nesting Saltmarsh Sparrows for cells with high (>50%), medium (10–50%), and low (<10%) predicted chances of sup-
porting nesting. Dark gray indicates nest presence. (d) Deviance from model predictions of observed data (indicated by arrow) relative to 
deviations from 1000 dummy datasets that had the same number of nest presences randomly distributed across sampled sites. Deviances 
were calculated as the sum of the differences between the observed data (sparrow or nest presence = 1, sparrow or nest absence = 0) and the 
predicted probability at each site.
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The presences, absences, and prediction errors for both 
models were distributed across the entire study region. Com-
bining information from both models showed one cell out of 
seven that had a high expectation for both sparrow presence 
and nest presence but had no sparrows. The two models’ pre-
dictions conflicted (low probability of sparrow presence and 
high probability of nest presence) for four cells, of which two 
had both sparrows and nests, one had sparrows but no nests, 
and one had no sparrows.

DISCUSSION

Predictions generated by the models discriminated between 
areas with and without sparrows and their nesting fairly well. 
Cells predicted to have a high likelihood of containing spar-
rows or nests had the most presences, while those predicted 
to have a low likelihood had the fewest. Model deviances and 
AUC measures indicated that predictions from both models 
performed better than expected by chance alone. The pres-
ence model’s predictions were worse with test data than with 
the original training data, but the performance of the nest 
model was remarkably similar for both data sets. 

Although the models performed well, they were not per-
fect. Model errors may be caused by errors introduced during 
processing of the remote-sensing data, leading to habitat mis-
classification. While many studies that use remote-sensing 
data have tested the accuracy of processing, the focus of our 
study was to test whether the results of processing could be 
used to predict an organism’s occurrence, as increasing the 
precision of a poor predictive variable should not improve a 
model’s performance. Because the pixels were classified from 
presence data, the model may have been overfit to the original 
plot characteristics. Additionally, the plots used for training 
data may not have included all saltmarsh elements that spar-
rows avoid, or some marsh elements that sparrows avoid may 
lack unique spectral characteristics.

Other errors may be due to factors such as competition or 
population dynamics, which can affect whether an organism 
is actually found in areas of suitable habitat. For instance, by 
varying life-history parameters of greater gliders (Petauroi-
des volans) in simulated landscapes, Tyre et al. (2001) found 
that habitat elements that were perfectly delineated in the sim-
ulations were unable to explain more than half of the variabil-
ity in species occupancy because of the confounding effects of 
demographic stochasticity and limited dispersal. Rotenberry 
and Wiens (2009) used data on habitat associations from 1977 
to 1983 to generate models to predict shrubsteppe birds’ occu-
pancy in 1997 of the areas on which those models were based. 
Although bird abundance and distributions in the region re-
mained similar, few of the models performed well. These 
discrepancies suggest that inferences drawn from predictive 
distribution maps based on remote-sensing data depend on 
how closely the modeled variables relate to critical aspects of 

the organism’s biology (Guisan and Zimmerman 2000, Austin 
2002, Van Horne 2002). 

High marsh, the predictor variable for the nest model, 
combined elements of elevation and vegetation composition. 
Both of these elements previously have been demonstrated to 
have important associations with Saltmarsh Sparrow nesting. 
Minor elevation differences affect the risk of flooding (Gjer-
drum et al. 2005, Gjerdrum et al. 2008a, Bayard and Elphick 
2011), while several plant species of high marsh contribute to 
a vegetation structure that is associated with nests (Gjerdrum 
et al. 2008b). Until a sufficiently detailed GIS layer classifying 
the marsh community was built, however, the extent to which 
high marsh can be used as a predictor of sparrow nesting could 
not be established. We found sparrow nests were consistently 
absent where the amount of high marsh delineated within a 
hectare was less than 20% (category of low predicted probabil-
ity). Areas with greater proportions of high marsh at the 1-ha 
scale should be considered of higher priority for conservation 
planning for the Saltmarsh Sparrow than areas with less high 
marsh, even if sparrows occupy the latter areas. 

The map generated from the model for nesting directly 
links habitat to reproduction and has specific implications for 
Saltmarsh Sparrow conservation and management. In addi-
tion, because the nest model was built with a predefined classi-
fication of high marsh, this model is likely transferable to other 
areas where Saltmarsh Sparrows occur, as long as high marsh 
is delineated by the same GIS processes and the birds’ behavior 
in selecting nest sites is similar. Maps of this habitat could then 
be used to identify priority sites for sparrow conservation and 
to track the availability of suitable habitat over time.

On the other hand, the reasons why the main predictor 
variable in the sparrow-presence model is ecologically im-
portant to Saltmarsh Sparrows are unclear, making interpre-
tation of the map produced by that model more difficult. The 
sparrow-presence model was built on the premise that areas of 
marsh that sparrows do not occupy have reflective properties 
different from those of the areas they do occupy. Sparrow oc-
cupancy was predicted from these reflective properties with 
moderately good accuracy in new areas, suggesting that the 
processes driving the reflective difference occur throughout 
the region sampled. However, the remote-sensing data used 
to classify the pixels were collected under specific conditions 
of season, time, tide, and resolution. Unless data from other 
areas are collected under very similar conditions, this model 
may not work well elsewhere. 

Currently it is not known whether areas that are occupied 
but not used for nesting are needed to sustain sparrow popula-
tions. This study highlights two elements that require investi-
gation. The first is to determine what the sparrows do in these 
areas, and whether it is likely to affect populations if these 
areas disappear. Second, it is important to determine how the 
reflective properties of occupied sites relate to Saltmarsh Spar-
row biology. Reflective characteristics may differ because of 
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divergent growth responses of plants that have been subjected 
to different durations of tidal inundation. Inundation pattern 
could be associated with sparrow occurrence simply because 
it affects the amount of suitable foraging habitat, or it could 
directly affect prey resources. Targeting areas predicted to 
have both high and low chances of containing sparrows to 
test specific hypotheses about environmental conditions that 
cause reflectance to vary might clarify the underlying biologi-
cal relationships. 

Of the area of saltmarsh in Connecticut, two-thirds was 
classified as having at least a 95% chance of having spar-
rows present. In contrast, only 29% of the saltmarsh area was 
predicted to have a high (>50%) chance of containing nest-
ing sparrows. Because the total area where reproduction is 
likely is much smaller than the total area where sparrows are 
likely to be found, monitoring of Saltmarsh Sparrow popula-
tions should focus primarily on the areas where there is a high 
chance of nesting. Methods that simply record whether the 
species is present will not be adequate for inferring whether 
there is any associated reproductive behavior. In addition, the 
wide disparity between the predictions for sparrow presence 
and sparrow nesting at several marsh systems (Fig. 2, see also 
example in Fig. 1) warrants a closer examination of the rea-
sons for sparrow activity in some of these areas.

One reservation that has been expressed in the applica-
tion of remote-sensing data to habitat-model building is that 
the form used in the model can be several steps removed from 
the proximal causes of presence or absence (Henebry and Mer-
chant 2002, Van Horne 2002). However, directly linking ele-
ments identified in remote sensing to how an organism interacts 
with its environment requires prior knowledge about the organ-
ism. Our study used the association of remote-sensing data with 
Saltmarsh Sparrow presence because previous work had shown 
that prior knowledge was insufficient to explain and predict 
distribution patterns (Gjerdrum et al. 2008b). With a map that 
details the distribution of a useful predictor variable, the differ-
ences between areas with and without the species can be more 
closely examined. This strategy has been adopted for regional 
assessment of habitats associated with the occurrence of a vari-
ety of species such as the White-throated Sparrow (Zonotrichia 
albicollis, Tuttle et al. 2006), redtail monkey (Cercopithecus 
ascanius, Stickler and Southworth 2008), and Alaotran gentle 
lemur (Hapalemur alaotrensis, Lahoz-Monfort et al. 2010). 
These studies all used remote sensing to detect within-class 
variability not easily detected from general land-cover classes. 
Because remote sensing can be used to detect both direct and 
indirect mechanisms that affect presence and reproduction, it is 
a useful tool for conservation planning. 
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