'.) Check for updates

International Journal of Advanced Robotic Systems

ARTICLE

A Collision-Free ¢# Continuous
Path-Smoothing Algorithm Using
Quadratic Polynomial Interpolation

Regular Paper

Seong-Ryong Chang' and Uk-Youl Huh'*

1 Electrical Engineering Department, Inha University, In-cheon, Republic of Korea

*Corresponding author(s) E-mail: uyhuh@inha.ac.kr
Received 28 April 2014; Accepted 20 September 2014

DOI: 10.5772/59463

© 2014 The Author(s). Licensee InTech. This is an open access article distributed under the terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the

original work is properly cited.

Abstract

Most path-planning algorithms are used to obtain a
collision-free path without considering continuity. On the
other hand, a continuous path is needed for stable
movement. In this paper, the searched path was convert-
ed into a G?* continuous path using the modified quadrat-
ic polynomial and membership function interpolation
algorithm. It is simple, unique and provides a good
geometric interpretation. In addition, a collision-check-
ing and improvement algorithm is proposed. The
collision-checking algorithm can check the collisions of a
smoothed path. If collisions are detected, the collision
improvement algorithm modifies the collision path to a
collision-free path. The collision improvement algorithm
uses a geometric method. This method uses the perpendic-
ular line between a collision position and the collision
piecewise linear path. The sub-waypoint is added, and the
QPMI algorithm is applied again. As a result, the collision-
smoothed path is converted into a collision-free smooth
path without changing the continuity.

Keywords Continuous path, Function approximation,
Interpolation, Path planning, Path smoothing, Robot
motion, Smoothing algorithm, Smooth path, Vehicle
navigation

1. Introduction

The goals of path planning are to avoid obstacles and to
find a path. The Probabilistic Roadmaps (PRM) [1] and the
Rapidly exploring Random Trees (RRT) [2] algorithms are
widely used in sample-based planning algorithms. These
algorithms generate points and a collision-free linear
piecewise path. The points are regarded as the waypoints
of the mobile robot’s movements. In addition, the collision-
free linear piecewise path is considered as a collision-free
G° continuous path because this path consists only of
straight lines. On the other hand, a high continuous path
requires curves.

The G2 continuous path means a continuous velocity and a
continuous acceleration of the robot's movements. If the
velocity and acceleration are not continuous, slippage and
over-actuation can occur, which can affect the robot
movements in a real environment. Moreover, if a planned
path has a vertex, the robot cannot follow the path while
maintaining the velocity at the vertex. Therefore, the low
continuous path cannot be an optimal path as regards time
and dynamics. As a result, the path must consist of curves.

The continuity is defined in the geometry [3]. A G°
continuous path is simply connected for all sections.

Int J Adv Robot Syst, 2014, 11:194 | doi: 10.5772/59463

http://crossmark.crossref.org/dialog/?doi=10.5772%2F59463&domain=pdf&date_stamp=2014-12-23

Sample-based searching algorithms (the PRM [1] and the

RRT [4]) construct a ¢° continuous path. A ¢ ! continuous
path matches the first-order differential values at each
point. This path shares a common tangent direction and
indicates that the robot and vehicle can have a continuous

velocity. The G2 continuous path has the same second-
order differential values at each point. This path also shares
a common centre of curvature, which means that the robot
and the vehicle can move with continuous acceleration.
Accordingly, the ¢ 2 continuous path is called the continu-
ous-curvature path because the curvature can be obtained
using the first-order differential values and second-order
differential values. A ¢" continuous path indicates the
equality up to the n differential values at each point.

To apply to a robot or a vehicle, Villagra et al. reported a
smooth path and speed planning for smooth autonomous
navigation [5]. Yang et al. proposed a continuous-curvature
path-smoothing algorithm using cubic Bézier curves with
reduced nodes [6]. Komoriya et al. suggested the trajectory
design and control of a wheel-type mobile robot using a B-
spline [7]. These reports are focused only on creating a
smooth path. Therefore, the result of a path-smoothing
algorithm can be a collision. The following studies evalu-
ated a path-smoothing algorithm without collision.
Laumond described finding a collision-free smooth
trajectory [8]. Scheuer and Fraichard reported collision-free
and continuous curvature path planning for car-like robots
[9]. Ho and Liu suggested collision-free curvature-bound-
ed smooth path planning using composite Bézier curves
based on a Voronoi diagram [10]. These studies sought to
obtain a collision-free and a smooth path simultaneously.
Pan et al. also reported collision-free and smooth trajectory
computation in cluttered environments using B-spline
curves [11]. They constructed a smooth path from a linear
piecewise path. In addition, they provided an example of a
collision path from a path-smoothing algorithm, and
improved the collision path to create a collision-free path
using the proposed algorithm.

The aims of this paper can be divided into three categories.
The first was to create a smooth path including the entire
waypoint. Huh and Chang reported a path-smoothing
algorithm using modified quadratic polynomial and
membership function interpolation (QPMI) [12]. This
algorithm can generate a path including the entire way-
point with simple calculations. This paper uses the QPMI
algorithm to construct a curvature-continuous smooth
path. The second aim was to check the collisions of the
generated path. Pan et al. described a collision detection
algorithm [11]. This paper use Pan’s algorithm to the
detection of collisions. The third was to improve the
collision path to create the collision-free path. This paper
proposes a new collision improvement algorithm for the
QPMI algorithm. The proposed algorithm can avoid
collisions by adding a sub-waypoint. The added waypoints
modify the collision path to create a collision-free path.

Int J Adv Robot Syst, 2014, 11:194 | doi: 10.5772/59463

In the simulation, the linear piecewise path from the PRM

algorithm [1] was improved to create the G* continuous
path using the QPMI algorithm [12]. In addition, the first-
order and second-order differential values at each way-
point are shown on the differential value’s graphs. These
graphs indicate that the robot and the vehicle can follow a
smoothed path with a continuous velocity and acceleration.
To verify the collision improvement algorithm, a collision
path was made from the planned smooth path. The
collision path is improved to create a collision-free path
using the collision detection and improvement algorithm.

This paper is organized as follows: Section 2 reports the
path-smoothing algorithms using the interpolation method
and the requirements of the path-smoothing algorithms.
Section 3 explains the characteristic of the QPMI algorithm.
Section 4 proposes the collision detection and improvement
algorithm. Section 5 reports the simulation results. Section
6 presents the conclusions.

2. Path-smoothing algorithm using interpolation

2.1 Collision-free smooth path

An interpolation is a mathematical field of numerical
analysis. This method is used to construct new data points
between a series of known data points. Many researchers
have applied this method to prepare a path for moving a
robot or a vehicle.

In path planning, the path must visit the waypoints. If the
searching algorithm creates the waypoints, the smoothing
algorithm should not alter the waypoints to prevent the
mobile robots or vehicle from losing the waypoints. This is
the difference between computer graphics and path
planning. Many interpolation-based path-smoothing
studies have used the method of computer graphics such
as B-splines and Bézier curves.

B-spline and Bézier curves require control points to decide
the curvature of the curves. If these methods are applied to
smooth path planning, some waypoints must be used as a
control point or else a new control point will be needed to
decide the curvature. The smoothed path does not include
the control points.

A sample-based path-searching algorithm produces the
waypoints and the robot must visit the waypoints. On the
other hand, the robot cannot visit those waypoints used as
control points to decide the curvature. In Figure 1, the
squares are the searched waypoints and the circles are the
control points. The lines are the linear piecewise path, and
the dotted lines are the continuous path using the B-spline
method. The dotted lines only contact the control points.
The control points are variable and the curves can be
modified using the position of the control points. Therefore,
the smoothed path is not unique, and the B-spline planned
path might not visit the entire waypoint. For the move-
ments of a robot or a vehicle, the planned waypoints and

the searched linear piecewise paths using the searching
algorithms guarantee a collision-free path. Therefore, if the
smoothed path is close to the linear piecewise path, it is less
dangerous than the path that does not visit the waypoints.
To obtain a collision-free path, the path smoothing algo-
rithm should follow the waypoints and the searched linear
piecewise path faithfully.

Figure 1. Liner piecewise path using the searching algorithm (line) and the
smooth path using a B-spline (dotted line)

The path in Figure 1 needs to be modified. The smoothed
path with every waypoint is as follows:

Figure 2. Liner piecewise path using the searching algorithm (line) with the
smooth path contacting each waypoint (dotted line)

InFigure 2, the dotted path visits every waypoint. This path
is closer to the linear piecewise path than the B-spline-
planned path (Figure 1). Therefore, the smooth path, by
visiting every waypoint, is closer to the collision-free path.

If the paths in Figures 1 and 2 are placed on narrow
passages, the path of Figure 1 can occur as the collision path
as follows:

Figure 3. Collisions are created using control points

On the other hand, the path of Figure 2 does not give rise
to a collision because this path follows the searching
algorithm-planned linear piecewise path.

If the control points are moved, the smoothed path can
become the collision-free path (Figure 3). In this case,
another algorithm is needed to decide the position of the

N

Figure 4. If the smoothed path is close to the searched linear piecewise path,
the probability of collision decreases

control point. Figure 4 shows the smooth path in the same
environment. The path serves as a smooth path by follow-
ing the guaranteed collision-free linear piecewise path. The
smoothed path should approach the collision-free linear
piecewise path as much as possible in order to decrease the
probability of collision.

2.2 Requirements of the path-smoothing algorithm
This paper has the following purposes.
1. The smoothed path must contain the entire waypoint.

2. The smoothed path should be closed to the linear
piecewise path with continuity.

3. The smoothed path should be able to check the
continuity.

4. If the smoothed path has a collision, the collision is
detectable and can be improved.

5. Simple calculations and unique solution.
6. Simple geometry interpretation.

Items 1. and 2. mark the differences between other studies
(e.g., B-splines and Bézier curves) and the proposed
method. Item 3. is the necessary condition of the path-
smoothing algorithm. Item 4. marks the main issue of this
paper. This paper proposes a collision detection and
improvement algorithm. Items 5. and 6. are important for
implementing the proposed algorithm for a real system.

3. Modified quadratic polynomial and membership
function interpolation

The QPMI algorithm [12] is a simple path-smoothing
algorithm. This algorithm was developed to avoid Runge’s
phenomenon [3] and the weakness of spline interpolation.
The QPMI algorithm can construct a G* continuous path
using just the quadratic polynomials and membership
functions. Furthermore, the continuity of the planned path
can be checked.

The quadratic polynomial can construct the shortest path

for three waypoints with G* continuity because it is the
minimum-order polynomial that can connect three points

for G* continuity. In addition, it is a unique solution for
three points. The QPMI-planned path consists of quadratic

Seong-Ryong Chang and Uk-Youl Huh:

A Collision-Free G? Continuous Path-Smoothing Algorithm Using Quadratic Polynomial Interpolation

polynomials. Therefore, the planned path is the shortest G*
continuous and unique path with the given waypoints.
Moreover, every waypoint is included in the planned path,
unlike other algorithms.

The QPMI algorithm does not require the trigonometric
functions or a high-order function to create a G* continuous
path. Therefore, it has a simple calculation. Additionally,
the proposed algorithm can provide differential values, the
curvature and the heading angle of the planned smooth
path. These data can be used in designing the control
algorithm.

Huh and Chang [12], however, did not prove the following
two lemmas: the first is that the QPMI algorithm has a
unique real number solution; and the second is that the
continuity of the QPMI algorithm-planned path is decided
by the continuity of each axis. This section will prove these
two lemmas.

3.1 Unique real number solution of the QPMI algorithm

Lemma 1: The QPMI algorithm has a unique solution in the
real number field.

Proof 1: The QPMI algorithm-planned smooth path
P: (x(uw), y(u)) is defined as follows:

x(u)=au’+ bu+c, 1)
_ 2
yw=au“+bu+tc,)

x (u) and y (u) express the variations in the x and y axes.
The parameter 1 was defined as:

=0

m 3
unzngz \/(Xn - Xn-l)2 + (.Vn - yn-l)z ()

The parameter n is the visiting order of the waypoints.
Equations (1) and (2) can be obtained using equations (4)
and (5):

A\ [t e 1\ [x,(0)
= w1 | x() @)
¢ \upr? tpy 1 ()
a4, Upi® Upy 1\ [y,(u,q)
by, |=| w* 1] | () ®)
G Ny U 1 Vo(Uns1)

(2<nsm-1)

The parameter u is defined as follows:

un—l < un< un+1 and un-l' un' un+1 2 0 (6)

Int J Adv Robot Syst, 2014, 11:194 | doi: 10.5772/59463

Un+1 — u 2 un 1 (7)

n-1 = n
u..% u 1
n+1 n+1
The parameter uis a cumulative value, and is an increasing
function. To obtain the inverse matrix of the parameter u,

the determinant value should not be zero. The determinant
of the parameter u can be obtained as follows:

1
det (Unlz-l'—) = (un-lz “uy + un+12 Uy + u”2 ’ un+1)
- (un+12 “u, + unz “Upq + un-lz : un+1) (8)
det (U1 %0 ©)

Therefore, equation (9) can be solved as follows:

n-lzl (un - un+1) + un+12' (un-l - un) + un2' (un+1 h un-l) * 0(10)

if u,; = 0. In this case, equation (10) is changed to:

LI”+12' (- LI”) + unz' (un+1)¢0 (11)

If u,,=0, then u, and u,,, are not zero according to (6).
Therefore, equation (10) cannot be zero.

The second case is the case of u,, >0. If equation (10) is
zero, equations (12) or (13) is satisfied.

(ZI” - un+1) = (un-l - un) = (un+1 - un-l) =0 (12)
1 = U= Uy = 0 (13)

On the other hand, in equation (6), u,.,, u, and u,,, are not
equal. Therefore, equation (10) cannot be zero. In addition,
equation (13) is not satisfied because u, is not zero. There-
fore, the determinant value is not zero in any case. As a
result, Lemma 1 is proven. B

3.2 Continuity of the QPMI algorithm

The continuity of the path from the QPMI algorithm is
determined by the continuity of each axis. The QPMI
algorithm wuses the parametric method. This method
separates each axis using the parameter u. To check the
continuity of the planned path, the differential values of
x (1) and y (u) are continuous.

Lemma 2: If x (u) and y (u) are continuous, P: (x(w), y(u))
are continuous. In addition, the continuities of x (), y (u)
and the path are equal.

Proof 2: The continuity is determined by the matching of
the differential values at each waypoint. If x(u) is G?

continuous, dx (u) and d*x (u) have connected graphs in

the entire section. If y(u) is G* continuous, dy (1) and

d%y (u) have connected graphs. The first-order and second-
order differential values of P: (x(u), y(u)) can be expressed
as P: (dx(w), dy(u)) and P:(d?x (u), d®y(u)). Therefore, the
differential graphs of P consist of the differential values of
x(u) and y (). As a result, the continuity of P is equal to
x(u)and y(u). m

4. Collision detection and improvement algorithms for
the smooth path

The piecewise linear path is a collision-free path using the
path-searching algorithm. Generally, this path does not
require a collision-check. On the other hand, the smoothed
path requires a collision-checking process because colli-
sions can occur while constructing a smooth path using the
path-smoothing algorithm. Figure 5 presents the case of a
collision of the smooth path.

Py

Obstacle
Obstacle

Obstacle
A7~

Figure 5. Collision-free linear piecewise path (line) and smoothed path
(dotted line). A collision occurred at the dashed circle.

In Figure 5, the line is the linear piecewise path from the
path-searching algorithm. The dotted line is the smoothed
path using the QPMI algorithm. A collision occurs between
Py and P,. The collision-checking algorithm must detect the
collision of the smoothed path. In addition, the path should
be improved to create a collision-free path.

4.1 Collision-checking algorithm for the QPMI algorithm

The simplest collision-checking algorithm checks the
collision of the path by discrete samples. The idea of an
‘efficient spline collision detection algorithm” [11] is used
in this paper.

Given the smoothed path P: (X (u), ¥ (u)), fixed obstacles
are represented as B. Equation (14) is the collision-free
condition, u; is the start point and u,, is the goal point.
Parameter m is the number of waypoints, including the

start point and the goal point:

P(X(w), Y(w)N B=¢ for every ue{u,: u,} (14)

If a collision is detected, equation (14) is changed to
equation (15):

P(X(w), Y())NB#Q for any u€{u,: u,} (15)

The proposed collision-checking algorithm is as follows: let
d(P(u), B) be the distance between P(u) and B. ¢ is a
boundary of the robot. The bound of the robot can be
defined as the size of the robot or the sensing area of the
robot. If a collision is detected, p < 1. Equation (16) is a
collision-checking equation:

p(u) =2 (16)

In equation (16), the bound of the robot ¢ should be smaller
than the distance between P(u) and B. Algorithm 1 is
described as a collision-checking algorithm.

Algorithm 1: Collision-checking algorithm
Input : Smooth path P and obstacles B.
Output: Decision of Collision-free or Collision position
begin
foru =u, tow, :Audo
Compute current distance d(P(u), B)
Estimate the motion bound ¢
Compute p(u) for collision checking
if (p(u) = 1) then // collision is detected
return u, = u //uis collision position
return collision-free

This study used Algorithm 1 to check the collision; u_is the
collision position. If the path is not collision-free, the
collision position u, is sent to Algorithm 2 for improving
the collision of the path. If this path is a collision-free path,
Algorithm 1 returns the collision-free path.

4.2 Path improvement for the collision-free path

If a collision occurs, a path improvement algorithm is
needed. In Figure 6, a collision has occurred in a P, section.
The aim of the collision improvement algorithm is to
correct the smoothed path closer to the linear piecewise
pathin a collision section, because the linear piecewise path
already guarantees the collision-free path using the path-
searching algorithm. Therefore, the smoothed path can be
a collision-free path which is as close as the linear piecewise
path. Figure 6 is an improvement on the smoothed path
using the smoothed path moved to the linear piecewise
path.

Py PR

Obstacle Obstacle

| obstacte Obstacle

’ N

L B, P,

Figure 6. (a) Collision of the smoothed path; (b) improved collision path

Seong-Ryong Chang and Uk-Youl Huh:

A Collision-Free G? Continuous Path-Smoothing Algorithm Using Quadratic Polynomial Interpolation

5

In Figure 6, the first step was to finding a perpendicular line
between the collision position and the linear piecewise
path. The blue dashed line is the perpendicular line. The
second step is to create a sub-waypoint on a crossing
position of the linear piecewise path and the perpendicular
line. The crossing position is defined as sub-waypoint
P;," The third step is to reconstruct the smooth path
including the sub-waypoint using the QPMI algorithm.
This process is described as Algorithm 2.

Algorithm 2: Collision improvement algorithm

Input : Smooth path P and Collision position u,
Output: Collision Improved path Ppe,,
begin
P.(xeye) = P(X(up) Y(up)) // collision position
find collision section Py 5,41
create perpendicular line //collision position

to the linear path
define sub-waypoint P, 41 on the linear piecewise path
build collision improved smooth path include
sub-waypoint P, 14’ using QPMI algorithm
return P,y
end

Algorithm 3 is the collision-checking and improvement
algorithm using Algorithms 1 and 2.

Algorithm 3: Collision-free path-smoothing algorithm
Input : Linear piecewise path
Output: Collision-free path or Decision of collision-free
begin
build smooth path using QPMI algorithm
do Algorithm 1 /{ collision-checking
if(collision-free) then
return collision-free path Py
else
while checking_count = checking count_max
do Algorithm 2 // collision improvement
do Algorithm 1 // collision-checking
if(collision-free) then
return collision-free path P,
else
L ++checking count
if(checking count > checking count_max) then
L return decision (path has collision)

end

Algorithm 3 can be used for collision checking and im-
proving the smooth path. Algorithm 1 checks the collision
and Algorithm 2 improves the collision path to create the
collision-free path. These two algorithms are combined as
Algorithm 3. In this paper, Algorithm 3 is called the
‘Collision-free Checking and Improvement’ (CCI) algo-
rithm.

The maximum checking count value is the number of
collision checks. In the case, where it is impossible to find
a collision-free path using the proposed algorithm, Algo-
rithm 3 can be an infinite loop. To avoid an infinite loop,
the checking count’s maximum value needs to be checked.

Int J Adv Robot Syst, 2014, 11:194 | doi: 10.5772/59463

5. Simulations

In this section, the linear piecewise path is converted to the

G* continuous path using the QPMI algorithm. In addition,
the proposed CCl algorithm is applied to this smooth path.

A simulation map has a narrow passage that makes it
collide with the obstacle. The PRM algorithm is used to
obtain the linear piecewise path. This algorithm is imple-
mented using the MATLAB toolbox of [13]. Figure 7
presents the simulation map, and Figure 8 shows the result
of the PRM algorithm.

o Start

10 E E] 40 E] 50 0] E 100
%

Figure 7. Simulation map with the start point and goal point. The red blocks
are obstacles.

x

Figure 8. Result of the PRM algorithm. The green line is the searched linear
piecewise path using the PRM algorithm.

The searched collision-free waypoints are as follows:

p P P P P P P, Py P
x 5 4 2 51 48 65 8 97 9
y 5 13 25 32 57 66 65 8 95

Table 1. Searched position using the PRM algorithm. P, is the start point and
Py is the goal point.

5.1 Path smoothing and analysis using the QPMI algorithm

The QPMI algorithm requires a distance parameter u. The
set of u is as follows using equation (3).

Uy Uy U3 Uy Us Ug Uy Ug Uy

0 8.06 297 5953 8471 10394 12597 151.05 158.33

Table 2. Set of parameter u

Equations (4) and (5) construct the quadratic polynomials.
These polynomials are shown in Figure 9 (a). In addition,
Figure 9 (b) presents the result of the QPMI that combined
the quadratic polynomial and membership function.

uvs dx
15

05

05

15

15

05

05

A5

u

(b)

Figure 9. Graph of the parametric quadratic polynomials (a), and a merged
graph (red line) using the membership function (b)

Figure 10 presents the final result.

Result
100

Pguu!

90

80

100

Figure 10. & 2 continuous path using the QPMI algorithm

The QPMI algorithm proffers variations of x and y and the
differential values of them. In addition, the curvature and
the heading angle can be obtained.

Figure 11 shows the graph of x and y.

uvs.x

b /

(@
100 Ly
«e\e/ -
= 50 s
__/E'//
on//r—;u 100 150
(b)

Figure 11. (a) graph of U vs. X; (b) graph of U vs. y

Figure 12 presents the first-order differential values of x
and y.

U Vs dx
16

05

dx

05

15

@)

uus.dy

15

05

05

15

u

(b)

Figure 12. (a) graph of U vs. dXx; (b) graph of U vs. dy

In Figure 12, the graph connects the entire section. This

graphindicates that the smoothed pathis the ¢ ! continuous
path.

The condition of the G? continuous path is that the second-
order differential values should be contacted at each
waypoint. To check the G* continuous path, the graph of
the second-order differential values was obtained. Figure
13 presents a graph of the second-order differential values.

Figure 13 show that the smoothed path is the ¢ continuous
path.

The curvature graph can be obtained, as shown in Figure
14. The graph is as follows:

The G? continuous path is also called the ‘curvature
continuous path’. In this simulation, the first-order and
second-order differential values are matched at each
waypoint. These values construct the continuous curva-
ture. In Figure 14, the curvature graph is continuous.

Seong-Ryong Chang and Uk-Youl Huh:

A Collision-Free G? Continuous Path-Smoothing Algorithm Using Quadratic Polynomial Interpolation

Figure 13. (a) graph of 1 vs. d2x; (b) graph of uvs. d2y

uvs. Curvature k

S B 8
I
[
I

Curvature

Figure 14. Graph of U vs. curvature

uvs. Heading angle theta

theta(degree]

u

Figure 15. Graph of U vs. the heading angle

Figure 15 shows the heading angle graph. This graph has a
continuous form. This means that the path can follow with
continuous movement.

5.2 Simulation of the CCI algorithm

In section 5.1, the smoothed path proved the G2 continuous
path. In addition, the path was analysed using the QPMI
algorithm. On the other hand, the searched waypoints can
be placed at an obscure position in a real situation. In this
case, the smoothed path cannot guarantee a collision-free
path despite the linear piecewise path being a collision-free
path. In this section, Figure 10 was modified to create the
collision path for the collision detection and improvement
simulation. This simulation assumes that the searched
linear piecewise path is a collision-free path, but the
smoothed path sees a collision. If 7; is moved, the liner
piecewise path can be modified as Figure 16 (b).

The QPMI algorithm was applied to the modified path and
the path was changed to the smoothed path. On the other
hand, the smoothed path has a collision despite the linear
piecewise path being the collision-free path. Figure 17
shows this phenomenon.

Int J Adv Robot Syst, 2014, 11:194 | doi: 10.5772/59463

L

(@) ®)

Figure 16. Original path (a) and modified path (b). Both paths are the
collision-free path

..........................

Py

T

() ®)

Figure 17. Collisions occur on the smoothed path. The red circle is the
collision position.

To improve the collisions, the CCI algorithm was applied.
The first collision position was P, (46, 55.25) when u,=81.5.

The linear piecewise equation of 2, to P;is expressed as (17)
and an equation of the perpendicular line is shown in
equation (18):

y=-75x+ 4145 17)
y=0.133x+49.117 (18)

The sub-waypoint can be obtained using equations (17) and
(18). The sub-waypoint was P, '(47.869,55.484). Figure 18
shows the collision position, the perpendicular line and the
sub-waypoint.

Finally, the QPMI algorithm was applied including the sub-
waypoint. Figure 19 demonstrates the collision-improved
path. The red-dashed path is a collision-smooth path. After
applying the CCI algorithm, the collision problem is solved
as the blue path. This path includes 7,, P,, P; and 7.

Figure 20 presents the final result of this simulation. The
collision position can be avoided using the path that is
moved to the sub-waypoint. This path can be decided as
the collision-free path using the CCI algorithm.

In this simulation, the QPMI algorithm is demonstrated.
The map has a narrow passage. The PRM algorithm
searches for the collision-free linear piecewise path with
low continuity. The QPMI algorithm constructs the smooth

Result

Sub-waypoint Py5’
Collision position

" perpendicular e

ed Samaood Teaul’l

Figure 18. The collision improvement algorithm is shown. The smoothed
path makes the collisions. The perpendicular line is constructed between the
linear piecewise path and the collision position. A cross-position of the
perpendicular line and the linear piecewise path is decided to create the sub-
waypoint.

Tr
th
. 5;\1(\\1\'“ P Pe
——

pexpcﬂdlﬂ"""

: -free s
-~ A —_
P < L:.-\:“'\g\u\\ <ootht P
60| S
| P’
5l plin€ 44— """

S0

30

21 e

Figure 19. Collision path (red-dashed line) and collision-free path (blueline).
The collision-improved path contains the sub-waypoint. As aresult, the path
is moved to the collision-free linear piecewise path.

path and checks the continuity. As a result, the linear

piecewise path is converted to a G continuous path.

To prove the CCI algorithm, the smooth path is modified
to create the collision path. The first step is the detection of
the collision position. In the next step, a perpendicular line
is constructed between the collision-free linear piecewise
path and the collision position. The sub-waypoint is
decided at the cross-position on the collision-free linear
piecewise path and the perpendicular line. Finally, the
QPMI algorithm is applied again to create a smooth,
collision-free path. The collision-free G* continuous path
can then be obtained.

Result

20

’ {
‘Dstarr

0
0 10

Figure 20. Collision-improved path using the CCI algorithm

6. Conclusions

Most search algorithms do not consider the continuity of
the path. The QPMI algorithm aims to construct a contin-
uous path from a searched, collision-free linear piecewise
path. The general methods for constructing a continuous
path is the B-spline and the Bézier curve, which are widely
used in computer graphics. On the other hand, these do not
contain all the waypoints because some waypoints should
be used to create the control points that decide the curva-
ture.

In this study, the QPMI algorithm was used to create the
smooth path. This algorithm provides the ¢* continuous
path-smoothing algorithm, the differential values, the
curvature and the heading angle. These data can be used to
design the control algorithm of the mobile robots or
vehicles. Furthermore, the result was unique and the
calculations are simple because this algorithm used only
the quadratic polynomials, without trigonometric func-
tions or high-order polynomials. Therefore, the calcula-
tions can be simple. These features do not require high-
performance hardware. In addition, unlike some other
path-smoothing algorithms, the QPMI algorithm con-
structs a smooth path containing all the waypoints. During
the path planning, visiting the waypoints is important.

The QPMI algorithm was required to prove two lemmas.
The first is that the planned path is unique. The second
concerns the continuity of the planned path. This paper
proved these two lemmas.

The searched path using the searching algorithms is a
collision-free path. Although this path is a collision-free
path, the smoothed path cannot be decided by the collision-
free path. The CCI algorithm was proposed to check the
collisions in the smoothed path. The CCI algorithm can
detect the collision position using a simple method. If the
smoothed path has a collision, it can be improved using this
algorithm by approaching the smoothed path to the linear

Seong-Ryong Chang and Uk-Youl Huh:

A Collision-Free G? Continuous Path-Smoothing Algorithm Using Quadratic Polynomial Interpolation

10

piecewise path. The perpendicular line including the
collision position and the linear piecewise path decides the
sub-waypoint for moving the collision-smooth path to
create the linear piecewise path. If a sub-waypoint is
obtained, the QPMI algorithm can be applied again. As a
result, the collision-smooth path is improved to create a
collision-free smooth path maintaining continuity.

The goals of this paper were archived. The QPMI algorithm
provided the path containing the entire waypoint, the
smoothed path was approached to the linear piecewise
path, the continuity checking was possible, the collision-
checking and improving algorithm was proposed. the
proposed algorithms are simple, unique and having simple
geometry interpretation.

In this paper, the QPMI and CCI algorithm were applied to
the 2D plane. These can be used for a mobile robot, vehicle,
a game algorithm and for computer graphics without
complex calculations. In addition, these algorithms can be
expanded to a 3D space. In this case, it will be possible to

use an aerial robot and aircraft to create a G? continuous
trajectory for visiting all the waypoints.

7. Acknowledgements

This study was supported by the National Research
Foundation of Korea (NRF) grant funded by the Korea
government (MEST) (no. 2012-0005564).

8. . References

[1] L. E. Kavraki, P. Svestka, J.-C. Latombe, and M. H.
Overmars, "Probabilistic roadmaps for path plan-
ning in high-dimensional configuration spaces,"
Robotics and Automation, IEEE Transactions on, vol.
12, pp. 566-580, 1996.

[2] S.M.LaValleand].].Kuffner Jr, "Rapidly-exploring
random trees: Progress and prospects," 2000.

[3] G.E. Farin, Curves and surfaces for CAGD [electronic
resource]: a practical guide: Morgan Kaufmann, 2002.

[4] M. Abramowitz and I. A. Stegun, "Handbook of
Mathematical Functions with Formulas, Graphs,
and Mathematical Tables. National Bureau of

Int J Adv Robot Syst, 2014, 11:194 | doi: 10.5772/59463

(5]

(11]

(12]

(13]

Standards Applied Mathematics Series 55. Tenth
Printing," 1972.

J. Villagra, V. Milanés,]. P. Rastelli,]. Godoy, and E.
Onieva, "Path and speed planning for smooth
autonomous navigation," in IEEE Intelligent Vehicles
Symposium, 2012.

K. Yang, D. Jung, and S. Sukkarieh, "Continuous
curvature path-smoothing algorithm using cubic B
zier spiral curves for non-holonomic robots,"
Advanced Robotics, vol. 27, pp. 247-258, 2013.

K. Komoriya and K. Tanie, "Trajectory design and
control of a wheel-type mobile robot using B-spline
curve," in Intelligent Robots and Systems’ 89. The
Autonomous Mobile Robots and Its Applications.
IROS’89. Proceedings., IEEE/RS] International
Workshop on, 1989, pp. 398-405.

J.-P. Laumond, "Finding Collision-Free Smooth
Trajectories for a Non-Holonomic Mobile Robot," in
IJCAI 1987, pp. 1120-1123.

A. Scheuer and T. Fraichard, "Collision-free and
continuous-curvature path planning for car-like
robots," in Robotics and Automation, 1997. Proceed-
ings., 1997 IEEE International Conference on, 1997, pp.
867-873.

Y.-J. Ho and J.-S. Liu, "Collision-free curvature-
bounded smooth path planning using composite
Bezier curve based on Voronoi diagram," in
Computational Intelligence in Robotics and Automation
(CIRA), 2009 IEEE International Symposium on, 2009,
pp- 463-468.

J. Pan, L. Zhang, D. Manocha, and U. C. Hill,
"Collision-free and curvature-continuous path
smoothing in cluttered environments," Robotics:
Science and Systems VII, vol. 17, p. 233, 2012.
U.-Y.Huh and S.-R. Chang, "A G? Continuous Path-
smoothing algorithm Using Modified Quadratic
Polynomial Interpolation,” International Journal of
Advanced Robotic Systems, 11:25,2014.

P. Corke, Robotics, Vision and Control: Fundamental
Algorithms in MATLAB vol. 73: Springer, 2011.

