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ABSTRACT: While coupling carbon and nitrogen processes is critical for
Earth system models to accurately predict future climate and land biogeochem-
istry feedbacks, it has not yet been analyzed how numerical methods that land
biogeochemical models apply to couple soil mineral nitrogen mobilizing and
immobilizing processes affect predicted ecosystem carbon and nitrogen cycling.
These effects were investigated here by using the E3SM land model and an
evaluation of three plausible and widely used numerical couplings: 1) the mineral
nitrogen—based limitation scheme, 2) the net uptake—based limitation scheme,
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and 3) the proportional nitrogen flux—based limitation scheme. It was found that
these three schemes resulted in large differences (with a range of 316 PgC) in
predicted cumulative land—atmosphere carbon exchanges under the RCP4.5 at-
mospheric CO, simulations. This large uncertainty is without accounting for the
different representations of the many land biogeochemical processes, but is about
73% of the range (434 PgC) reported for CMIP5 RCP4.5 simulations. These
results help explain the large uncertainty found in various model intercomparison
experiments and suggest that more robust numerical implementations are needed
to improve carbon—nutrient cycle coupling in terrestrial ecosystem models.

KEYWORDS: Land surface; Numerical analysis/modeling; Ecological models;
Land surface model; Biosphere—atmosphere interaction

For past and future carbon—climate feedbacks, Earth system models (ESMs) pre-
dict a wide range of terrestrial ecosystem responses to environmental change, in-
cluding significant changes in terrestrial carbon stocks in response to scenario-based
climate change (e.g., Friedlingstein et al. 2014; Hoffman et al. 2014). These uncertain
responses were reported in several model intercomparison projects, such as phase 5 of
the Coupled Model Intercomparison Project (CMIPS; Hoffman et al. 2014; Shao et al.
2013; Taylor et al. 2012), the North American Carbon Program Multiscale Synthesis
and Terrestrial Model Intercomparison Project (MsTMIP; Huntzinger et al. 2012,
2017), and the Trends and Drivers of the Regional-Scale Sources and Sinks of Carbon
Dioxide project (TRENDY; http://dgvm.ceh.ac.uk/node/9). These large modeling
differences were attributed to several factors, including uncertain input data, uncertain
model structures, and uncertain model parameterizations (e.g., Blanke et al. 2016;
Clein et al. 2007; Tang and Zhuang 2008; Luo et al. 2015, 2017; Wieder et al. 2015a,b).
Further, ESMs have been criticized for ignoring nutrient controls on the terrestrial
carbon cycle (e.g., Wieder et al. 2015b). For example, in CMIP5, only the Community
Land Model version 4 (CLM4; Oleson et al. 2010) represented the coupling between
carbon and nitrogen dynamics (Friedlingstein et al. 2014), even though observations
clearly show that nitrogen strongly influences ecosystem carbon responses to climate
and anthropogenic perturbations (LeBauer and Treseder 2008; Vitousek and Howarth
1991). Recently, most CMIP6 ESM land models have integrated a variety of ap-
proaches to couple carbon and nutrients (mostly nitrogen, but some with phosphorous)
dynamics, plant—-microbial competition for nutrients, and nutrient regulation of pho-
tosynthesis, carbon allocation, and more.

For many models, even when nitrogen cycling is considered, their representa-
tions of coupled nitrogen and carbon cycles have been criticized for several defi-
ciencies, including 1) poor mechanistic representation of plant versus microbe
nitrogen competition (Zhu et al. 2016a,b, 2017) and 2) the lack of representation of
other essential processes that affect nitrogen dynamics (e.g., microbial population
processes; Grant 2013). Most existing land biogeochemical models, from site level
to ESM scale, perform poorly when confronted with observations from ecosystem
perturbations that affect the nitrogen cycle (Bouskill et al. 2014; De Kauwe et al.
2017; Houlton et al. 2015; Zaehle et al. 2014).

Generally, including a new nutrient cycle in a land biogeochemistry model involves
two steps: 1) formulating the kinetics of the coupled carbon—nutrient dynamics and
2) numerically implementing the designated kinetic formulation. Specifically, step 1
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relates to how to devise the governing equations of the observed interactions between
various abiotic and biotic entities. The uncertainty in step 1 is one of the major causes
of model deficiencies discussed in the previous paragraph (and may still exist in
CMIP6 models). Since there is currently no unanimously accepted theory of land
biogeochemistry, any given process may have multiple representations used by dif-
ferent modeling groups. One example process relates to how plants and microbes
compete for nutrients in soil. Our recent survey (Zhu et al. 2017) suggests that there are
at least four different ways land biogeochemical models represent this process. In this
study, however, we focus on uncertainty associated with issues in step 2, which relates
to the fact that the same governing equations are often solved differently by different
modelers. Yet, these different numerical methods do not guarantee comparably ac-
curate solutions, which, if not rigorously evaluated, may be numerically inconsistent
with the underlying governing equations. This consistency or convergence issue has
been discussed intensively in a few other geoscience subdisciplines, including geo-
physical fluid dynamics, atmospheric chemistry, and marine biogeochemistry (e.g.,
Arakawa 1966; Broekhuizen et al. 2008; Gross et al. 2018, submitted to Mon. Wea.
Rev.; Nguyen et al. 2009; Phillips 1956; Sandu 2001; Tang et al. 2015; Wan et al. 2013,
2017). However, this issue is rarely mentioned in land biogeochemistry model de-
velopment and only occasionally mentioned in the related field of computational
ecology (Petrovskii and Petrovskaya 2012).

Here, using the land module of Energy Exascale Earth System Model (E3SM),
we show that three commonly applied numerical couplings of the same mathe-
matical formulation of nitrogen mobilizing and immobilizing processes can lead to
significant model prediction differences, which may help explain the wide range in
ESM predictions of the terrestrial carbon cycle.

2.1. Different numerical coupling of nitrogen mobilizing and immobilizing
processes

With its improved software modularity (so that different numerical solvers can be
applied to a designated formulation of biogeochemistry with a small amount of
effort) and better support for consistent updating of the many state variables, the
E3SM land model (ELM) together with the biogeochemical reactive transport
module BeTR (Tang et al. 2013; see also online supplemental material) is used for
this study. ELM-BeTR explicitly considers nitrogen coupling between soil NH; and
NO; mobilizing and immobilizing processes (Figure 1). The mobilizing processes
(marked with the green arrow in Figure 1) are associated with the decomposition of
three soil organic matter pools (which releaseNH} ), and immobilizing processes
(marked with blue and red arrows in Figure 1) include plant nitrogen uptake to
support plant growth and microbial nitrogen uptake to support decomposition of
three plant litter and one coarse woody debris pool, nitrification (which consumes
NHI and produces NO; and N,0), and denitrification (which consumes NO; and
produces N,O and N,). The immobilizing processes compete for soil mineral ni-
trogen to fulfill their metabolic demand. This competition is resolved using the
popular relative demand approach, where all mineral nitrogen immobilizing pro-
cesses are assumed equally competitive, such that their uptake is proportional to their
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Figure 1. A schematic illustration of how plant and microbial processes compete for
different soil mineral nitrogen species. Pathway 1 (green arrow) is the only
nitrogen mobilizing process. The red and blue lines indicate immobilizing
processes. In competing for soil mineral nitrogen, a demand flux is first
computed for each immobilizing process. The total demand is then
compared with available nitrogen to either satisfy all immobilizing de-
mands or scale them down using the different coupling schemes de-
scribed in the main text. A description of how the biogeochemistry of ELM
is computed can be found in Oleson et al. (2013).

respective demands in assimilating the two mineral nitrogen species (Goll et al.
2012, 2017a,b; Hidy and Barcza 2014; Parida 2011; Thornton et al. 2007).

With all other biogeochemical processes represented identically, three commonly
applied schemes were used to couple nitrogen mobilizing and immobilizing pro-
cesses within each coupling time step (see Figure 2 for a graphic example). In the first
scheme [Mineral Nitrogen-Based Limitation (MNL); second row of Figure 2], only
the existing soil mineral nitrogen [S(#)] within the coupling time step is available for
immobilization (step 1). If the total demand from all immobilizing processes
(FimmobA?) is larger than the existing soil mineral nitrogen pool, all immobilizing
fluxes are reduced to just deplete the existing soil mineral nitrogen pool (step 2), and
new mineral nitrogen released from mobilizing processes (FiobAt) is saved for the
next coupling time step (step 3; in the graphic example, the two blue boxes of newly
mobilized nitrogen become two green boxes for use in the next coupling time step).
In summary, under nitrogen limitation, MNL computes the actual uptake as

= . S(r)
Fimmob :Fimmobmln{l,m}- (1)

In the second scheme [Net Nitrogen Uptake-Based Limitation (NUL); third row of
Figure 2], both the newly mobilized nitrogen and the existing soil mineral nitrogen
within the coupling time step are available for uptake (step 1). During step 2, newly
released mineral nitrogen from all mobilizing processes is first used to meet demands
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Figure 2. A graphic example of the three numerical nitrogen limitation schemes that are
used to couple the nitrogen mobilizing processes (FmopAz: example magni-
tude of two boxes) and immobilizing processes (FimmobAz: €xample magnitude
of four boxes) with the soil mineral nitrogen pool (5(r): example magnitude of
one box) at the beginning of a coupling time step. In applying the numerical
schemes, step 1 identifies the total soil mineral nitrogen available for potential
immobilization, step 2 computes the scaling ratio using the defined available
nitrogen (upper stack of boxes) divided by effective immobilization flux (bottom
stack of boxes), and step 3 gives the remaining soil mineral nitrogen (in green)
for the next coupling time step Ar and actual immobilization flux (in orange)
within the current coupling time step. See text for further details. Note the red
edges of the boxes are used to enhance the visual readability.

from all immobilizing processes, which leads to a net nitrogen demand (as designated
by two remaining orange boxes in step 2 of our example in Figure 2) that is then
compared to the existing soil mineral nitrogen pool over the coupling time step. If this
net nitrogen demand is larger than the existing soil mineral nitrogen pool, then the
total nitrogen demand is downscaled by the ratio of the existing soil mineral nitrogen
pool to the net nitrogen demand. In our graphic example, only 50% of the net uptake
is satisfied. However, because nitrogen mobilizing processes are independent from the
soil mineral nitrogen pool S(¢), the scaling factor is then only applied to the original
immobilization flux (designated by four orange boxes), resulting in the actual uptake
being two orange boxes, and one green box of nitrogen is left over for use in the next
coupling time step. In summary, NUL computes the actual uptake as

_ . S(1)
F immob — F imm 1, . 2
°b °b mln{ (Fimmob - Fmob) At} ( )

Numerically, the NUL scheme is equivalent to the clipping method that truncates
the derivative of a state variable to avoid negative physical state variables in some
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solvers of MATLAB (Shampine et al. 2005) and also in numerical packages such as
ARKODE (Reynolds et al. 2018), both of which are popular tools to develop bio-
geochemical models, either for research or operational use (e.g., Hong et al. 2005).

In the third scheme [Proportional Nitrogen Flux-Based Limitation (PNL); fourth
row of Figure 2], the newly released and existing mineral nitrogen is first summed
to obtain the total nitrogen available to support nitrogen immobilizing processes
over the coupling time step (step 1; in the graphic example, this gives three boxes
of soil mineral nitrogen to support immobilization). If the total demand from all
nitrogen immobilizing processes is larger than the total available soil mineral ni-
trogen, the immobilizing fluxes are downscaled by the ratio between total available
soil mineral nitrogen and total soil mineral nitrogen demand (step 2). In our ex-
ample, the application of step 2 results in three orange boxes of soil mineral
nitrogen being immobilized, and no soil mineral nitrogen is left for use in the next
coupling time step (step 3). The Ecosys model (Grant 2013), which is a very
comprehensive terrestrial ecosystem model that explicitly resolves microbial
dynamics, aqueous chemistry, and plant—microbial coupling, is the only model that
we are aware of that uses the PNL scheme (but, unfortunately, no published Ecosys
paper has described the PNL scheme explicitly). The PNL scheme was also used
(but without a technical description) in a simple model of nitrifiers we developed in
Bouskill et al. (2012). Tang and Riley (2016) described the PNL scheme for
dealing with multisubstrate colimitation in solving generic networks of biogeo-
chemical reactions, but it has not been discussed in the context of ESM land
biogeochemistry models. Mathematically, the PNL scheme computes the actual
uptake as

3)

_ S() + FnopAt
Fimmob = Fimmob{la—b }

F immobAt

When the available soil mineral nitrogen over a coupling time step is larger than
the sum of nitrogen immobilizing demands, all three schemes above will calculate
equal soil mineral nitrogen immobilizing fluxes and, consequently, impose the
same nitrogen effects on carbon fluxes. However, when the existing soil mineral
nitrogen is insufficient to support the immobilizing demand, as is demonstrated
with the orange boxes in step 3 in our graphic example in Figure 2, the MNL
scheme will predict the strongest nitrogen limitation (because newly released soil
mineral nitrogen is not available for uptake until the next coupling time step), and
the PNL scheme will predict the weakest nitrogen limitation (because newly re-
leased nitrogen can be used within each coupling time step).

In soil, nitrogen mobilization and immobilization occur simultaneously (Schimel
and Bennett 2004), and if diffusion does not limit the interactions between these
processes (as is formulated in most current ESM land models), the existing and
newly released mineral nitrogen is equally accessible for uptake. Therefore, PNL
is the best among the three schemes to represent interactions between nitrogen
mobilizing and immobilizing processes under nitrogen limiting conditions (and
the PNL scheme can be proven to be consistent with the governing equation that
describes the coupling between nitrogen mobilizing and immobilizing processes;
see the appendix). However, because of its simplicity, MNL is used in CLM4,
CLM4.5, and a few other models (e.g., Hidy and Barcza 2014; Parida 2011), and
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NUL will be triggered if the popular clipping method is used (Tang and Riley
2016; Tang et al. 2016).

Moreover, even though the three methods are solving the same governing
equation that represents plant—microbial competition for soil mineral nitrogen, the
manner in which MNL and NUL ensure nonnegative soil mineral nitrogen pools
during each model time step changes the assumed coupling between nitrogen
mobilizing and immobilizing processes. Specifically, MNL makes nitrogen mo-
bilization completely decoupled from immobilization, while NUL informs the
influence of mobilization on immobilization inconsistently, such that the immo-
bilization fluxes are adjusted based on the total derivative of S(¢) [which is
(Fmob — Fimmob)], while keeping Fp,o, unchanged [because Fi,q, is independent
from S(¢)]. Further, we note that in resolving such numerical difficulties, all high-
order schemes will usually become first order (Bolley and Crouzeix 1978), even
when the scheme is implicit (Hundsdorfer and Verwer 2003), unless the governing
equations are reformulated to be less consistent with the conceptualization of the
biogeochemical processes (e.g., Burchard et al. 2003).

Therefore, considering that the specifics of a numerical method may change how
processes (mobilization vs immobilization here) are coupled, it is important to
analyze whether the subtle differences among these three schemes will result in
significant differences in predicted land—atmosphere carbon exchanges in long-
term global simulations.

2.2. Simulation protocols

Our analyses consist of two groups of simulations for two time periods. For the
historical period (1850-2000), one global simulation for each of the three nitrogen-
coupling schemes was performed at 1.9° X 2.5° (longitude X latitude) spatial res-
olution by cycling the 1948-72 QIAN climate forcing data, which was constructed
based on observation-constrained reanalysis products from the National Centers for
Environmental Prediction—National Center for Atmospheric Research (Qian et al.
2006). Another global simulation using the default BGC implementation (i.e., ELM-v0,
which is identical to CLM4.5) was performed for checking the consistency of the
ELM-BeTR implementation [which demonstrated that ELM-BeTR-MNL differs
from ELM-v0 with an expected increase in land carbon uptake due to ELM-BeTR’s
removal of nitrogen down-regulation of gross primary production (GPP); see detailed
discussion in supplemental material]. Each global simulation used its own initial
condition from the equilibrated spinup. Then the three ELM-BeTR simulations were
extended to 2300, driven by RCP4.5 atmospheric CO, and the cycling QIAN climate
forcing. Unlike the RCP4.5 simulations reported in other studies (Hoffman et al. 2014;
Shao et al. 2013), climate anomalies were not considered in our RCP4.5 simulations
because taking them into account will only further increase the differences among the
simulations (e.g., Tang and Zhuang 2008).

Four gridpoint simulations representing different ecosystem types at geo-
graphically and climatically distinct locations were conducted to facilitate more in-
depth analysis of the differences predicted by the three nitrogen-coupling schemes.
This gridpoint-based analysis addresses two goals: 1) revealing the process-level
sensitivity to the use of different coupling strategies and 2) analyzing time step size
dependence of the PNL scheme (which is motivated by our previous study on
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plant—soil hydrological coupling, where we found that a poor numerical im-
plementation may result in model simulations being strongly dependent on model
time step size; Tang et al. 2015). For each point, the 1850 initial condition was
obtained from the spinup of PNL-adapt, that is, running PNL with the adaptive
time stepping scheme from Tang and Riley (2016) for the soil biogeochemistry,
which dynamically adjusts the time step size in a prediction-correction manner
(Atkinson 1989). Processes other than soil biogeochemistry were run at the default
30-min time step. Using identical initial conditions from PNL-adapt removes the
initial condition dependence of these grid-based comparisons. Further, since the
adaptive time stepping was much more expensive than using the fixed 30-min time
step, all reported global simulations were run with the default 30-min time step for
all processes, and we do not expect that including global simulations with adaptive
time step will affect the conclusions of this study.

3.1. Global simulations for 1850-2000

Of the three ELM-BeTR simulations, two contrasting types of differences were
observed. For fast-response variables (i.e., those that demonstrate strong diurnal or
seasonal cycles) such as GPP, net primary productivity (NPP), leaf area index (LAI),
and ecosystem respiration (Figures 3b—e), there are very small latitudinal differences.
Differences between simulations are larger for slow-response variables (Figures 3f-1),
particularly in soil (Figures 3f,g); these accumulate differences from the fast variables
(note the units of those slow variables are petagrams, of which a small change in
number could result in large changes in land—atmosphere carbon exchange). However,
the differences are well within the range reported in multimodel comparisons (e.g.,
Beer et al. 2010; Ghimire et al. 2016; Song et al. 2017). The most notable differences
between simulations are for cumulative net ecosystem exchange (NEE; which, like
other slow-response variables, accumulates the effect from fast processes; Figure 3a;),
where the MNL and NUL simulations are quite close to each other, with a difference of
28 PgC by year 2000. In contrast, the PNL simulation predicted a significant land
carbon loss between 1850 and 2000 (—241 PgC). However, these values for the 1850—
2000 total land carbon sink are comparable to the range reported for CMIPS models,
which vary from a —150 PgC source to 75 PgC sink with respect to the atmosphere
(Hoffman et al. 2014). For global SOM carbon to 1 m (Figure 3f), MNL predicts 2810
PgC, NUL predicts 2798 PgC, and PNL predicts 2775 PgC, all of which are within the
range of CMIPS models (510 ~ 3040 PgC; Todd-Brown et al. 2013) and are higher
than current empirical estimates (1408 = 154 PgC; Batjes 2016). Therefore, the three
ELM-BeTR models are producing comparable uncertainty (with respect to CMIP5
models), with only subtle differences in the numerical coupling of nitrogen mobilizing
and immobilizing processes.

3.2. Global simulations driven by RCP4.5 atmospheric CO,

Compared to the latitudinal distribution differences in global carbon and
nitrogen stocks by year 2000 (Figures 3f-i), the differences in total carbon between
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Figure 3. Comparison of global simulations for the historical period of 1850-2000. (a)

Cumulative NEE (for better visualization, negative NEE implies carbon
emission to the atmosphere, which is contrary to the standard use). (b)
GPP. (c) NPP. (d) July LAl (e) Ecosystem respiration. (f) Total organic soil
carbon (including the three litter pools and three SOM pools) integrated to
1-m depth. (g) Total organic soil nitrogen (including the three litter pools
and three SOM pools) integrated to 1-m depth. (h) Total vegetation car-
bon. (i) Total vegetation nitrogen. Results for (b)-(i) were averaged over
1991-2000 to indicate the accumulated influences of different coupling
schemes on the analyzed variables. We note that (b)-(e) are considered
fast-response variables, while (a) and (f)-(i) are considered slow-response
variables. Except in (a), differences between MNL (blue line) and NUL
(black line) are barely discemible.

PNL and the other two ELM-BeTR simulations increase dramatically after year
2001 (Figure 4). By year 2300, differences between simulations in the tropics
(23.2°S-23.2°N) are substantially larger than either northern temperate or Arctic
regions (Figure 4), with a carbon galn of ~1180 PgC (19000 gCm ?) predlcted by
MNL, ~1150 PgC (18700 gCm 2 by NUL, and ~60 PgC (5800 gCm ?) by
PNL. During the same time period, differences in predicted cumulative carbon
uptake in the Arctic (latitudes > 66.3°N) are the smallest among the three regions,
with a carbon gain of ~16 PgC (1400 gC m~?) predicted by MNL and NUL and
~4 PgC (340 gCm ™ %) by PNL.
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Figure 4. Comparison of model simulations forced by the RCP4.5 atmospheric CO,
for the period 2001-2300. Here, the total soil carbon includes carbon from
the three litter pools and three soil organic matter pools as defined in
CLM4.5 (Koven et al. 2013); coarse woody debris is excluded and pre-
sented as Figure S3 in the supplemental material, and numeric values from
the first row are larger than the sum of the second and third rows. All
changes are calculated relative to their initial carbon stocks at the be-
ginning of the simulation (i.e., year 2000). The multidecadal oscillations
are due to the cycling of the QIAN climate forcing.

Regions south of 23.2°S contributed a small fraction (~3%) of the difference in
total terrestrial carbon stock changes by year 2300 (Figure 5). For 2006-2100,
predicted changes in global terrestrial carbon stocks (Figure 5) range from 364 PgC
(sink) by PNL, to 667 PgC (sink) by NUL, to 680 PgC (sink) by MNL, giving a
difference of 316 PgC. For comparison, Shao et al. (2013) reported that the eight
RCP4.5 CMIP5 model simulations predicted a carbon sink ranging from 22 to 456
PgC for the same time period. Therefore, the predictive uncertainty resulting from
subtle differences in the numerical coupling of nitrogen mobilizing and immobi-
lizing processes is about 73% of the range of CMIP5 RCP4.5 simulations. Further,
we note that the spread of our CO,-only simulations is much larger than that
reported in Huntzinger et al. (2017), which, besides increasing atmospheric CO,,
also considered land-use change, varying climate, and enhanced nitrogen deposi-
tion. This contrast suggests that the numerical uncertainty is comparably signifi-
cant to combined uncertainty from model structural difference and forcing data, as
reported in multimodel comparisons.
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Figure 5. As in Figure 4, but this compares the changes in global and regional
carbon stocks over 2000-2300, as simulated by the three numerical
coupling schemes for nitfrogen immobilization and mobilization. The
multidecadal oscillations as shown in the figure are due to the cycling of
the QIAN climate forcing.

The differences in the terrestrial carbon stocks simulated by the three different
model implementations are mostly in the soil (third row in Figures 4, 5) and coarse
woody debris (Figure S3). Differences in vegetation carbon are relatively smaller
(second row in Figures 4, 5), partly because the turnover time of vegetation carbon
is generally much shorter than that of soil carbon and coarse woody debris (Koven
et al. 2015). These intermodel differences suggest that with time, small differences
in fast-response variables can accumulate and result in large differences in long-
term soil carbon dynamics.

4. Discussion

The above analyses show that numerical methods used for coupling nitrogen
immobilizing and mobilizing processes have large influences on simulated land—
atmosphere carbon exchanges. There are several reasons why this coupling is
responsible for the simulated differences.

First, the modeled soil biogeochemistry is more sensitive to nitrogen dynamics
than is vegetation biogeochemistry (Figure S4). In ELM-BeTR, the overall soil
organic matter decomposition (of the three litter pools and three SOM pools) is
limited by soil mineral nitrogen, suggesting that more effective soil mineral
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Figure 6. Comparison of point simulations for the four specific grid cells using dif-
ferent model configurations. For each site, all simulations used identical
initial conditions obtained from spinup with the PNL-adapt code (which
uses the adaptive time step coupling scheme from Tang and Riley (2016)).
The multidecadal oscillations shown in the figure are due to the cycling of
the QIAN climate forcing. The MNL and NUL simulations almost overlap
each other, making their differences indiscernible.

nitrogen uptake by microbial processes will result in higher soil carbon losses. In
our analysis, all model simulations used the same atmospheric nitrogen deposition
data and predicted very similar nitrogen fixation rates and NPP, suggesting the
uncertainty resulted mostly from nitrogen use (i.e., nitrogen immobilization).
Among the three numerical coupling schemes, PNL exerted the weakest nitrogen
limitation, and at ecosystem scale, PNL predicted the least land carbon seques-
tration in response to atmospheric CO, enrichment (Figures 4-6), followed by
NUL and MNL (which also explains the same decreasing order of total soil carbon
stocks by year 2000, as discussed in section 3.1). In addition, predicted nitrogen
losses (through denitrification, aqueous transport, fire, and nitrification N,O
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emissions; Figure S5) are higher in the PNL simulation than both MNL and NUL,
all of which drive the large differences in soil carbon stocks. Interestingly, although
adaptive time step coupling tends to alleviate nitrogen limitation (by increasing
nitrogen uptake frequency), nitrogen loss predicted by PNL-adapt was either
higher or lower than that by PNL at the four sites we compared (Figures S5, S6),
suggesting that coupling time step size is another subtle difference that might cause
significant modeling uncertainty. However, unlike the time step size testing results
in Tang et al. (2015), where the use of different time step sizes degraded model
simulations, in our grid-based analysis (Figure 6) the influence of coupling time
step size did not qualitatively change the overall trend of model responses to
increasing atmospheric CO,, confirming that the PNL scheme is generally robust
(Tang and Riley 2016).

Second, coarse woody debris dynamics are very sensitive to nitrogen dynamics
and have a large effect on simulation differences (Du et al. 2017; Shi et al. 2016). In
ELM-BeTR, coarse woody debris is a slow-response variable (and so is expected to
be more sensitive to the choice of numerical coupling strategy) whose decomposition
immobilizes nitrogen and increases soil carbon formation (as does litter organic
matter decomposition). When nitrogen limitation is stronger, less coarse woody
debris carbon is decomposed, and less soil carbon is formed. Therefore, PNL pre-
dicted the highest losses of coarse woody debris, followed by NUL and MNL (Figure
S3). When soil carbon formation is combined with its decomposition, PNL predicted
much lower soil carbon accumulation than did NUL and MNL (which are quite
close; Figures 4, 5). Also, similar to CLM4, ELM-BeTR tends to overallocate
carbon to woody biomass (Negron-Judrez et al. 2015), particularly in the tropics,
which, when combined with the different nitrogen limitation strengths predicted by
the three coupling schemes, further contributed to intermodel differences.

By using ELM-BeTR, a reactive-transport-based land biogeochemical model,
we showed that subtle numerical differences in how nitrogen immobilizing and
mobilizing processes are coupled significantly influenced predictions of land—atmosphere
carbon exchanges. Quantitatively, using RCP4.5 atmospheric CO, forcing, the
simulated differences resulting from three nitrogen-coupling schemes are about
73% of the uncertainty found in CMIP5 RCP4.5 model simulations. When
combined with uncertainties from parameterizations, forcing data, and model
formulations, we expect these models would have resulted in even larger dif-
ferences in predicted land—atmosphere carbon exchanges. Our results, therefore,
may help explain the reported inconsistent land carbon cycle responses to various
environmental forcings across ESM-scale models (e.g., Hoffman et al. 2014;
Huntzinger et al. 2017). Our results also suggest that resolving inconsistencies in
numerical coupling of nitrogen immobilizing and mobilizing processes (and
similarly for other newly added nutrients, e.g., phosphorus) may significantly
improve model robustness and strengthen the foundation of using models to
predict ecosystem responses to environmental changes.
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After applying the process split method (so that other biogeochemical processes
are treated separately from the coupling of nitrogen mobilization and immobili-
zation; Strang 1968), the governing equation that describes the coupling between
nitrogen mobilizing and immobilizing processes is

ds
—~ = I'mob — F immob- Al
o b b (A1)

By discretizing Equation (A1) using the finite difference method (Atkinson 1989),
we have

S(t + A1) = S(t) + A{(Fmob — Fimmob) + 0(A?), (A2)

where the actual immobilization flux in Equation (A2) has been included, and
o(Ar) represents higher-order terms.

When nutrient S(¢) is limited, all mineral nitrogen should disappear after im-
mobilization, which suggests S(¢ + Ar) = 0 as At approaches zero.

This thus requires

S(t) + At(Finob — Fimmob) = 0. (A3)

By invoking the PNL scheme [i.e., Equation (3)] for the nitrogen limiting condi-
tion, we have

S(t) + FnopAt

S() + FnopAt — Fj At
( ) mob mmob Fimmob A P

0, (A4)

which proves the consistency of the PNL scheme with respect to Equation (Al).
Further, it can be verified that neither the MNL nor NUL scheme satisfies Equation (A3).
Therefore, MNL and NUL are not consistent with the governing Equation (A1l).
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