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1Abstract—In this paper, we present a processor that detects 

security-attacks at the instruction level by checking the 
integrity of instructions in real time. To confirm the integrity of 
the instructions, we generate a parity chain of instructions and 
check them at run time. The parity chain is generated using an 
error correction code used in a digital communication system, 
and the integrity checker has the same function as the error-
detector module of the error correction code. This architecture 
can readily be applied to a general processor, because the 
checker is located between the processor core and the 
instruction memory. Compared with other cipher modules 
with the same key space, our instruction integrity checker 
achieves a faster check speed and occupies a smaller area. 
 

Index Terms—secure processor, security, instruction, 
correlation, chain. 

I. INTRODUCTION 

The security and integrity of embedded systems have 
become more crucial to most of mobile-users today [1,2]. 
Besides several methods of attacking the hardware itself, 
most attacks are performed using instructions injected by the 
attacker [3-8]. Through such an attack, the attacker can 
obtain information or control authority of the system. In [9], 
we proposed an instruction-level security technique by 
generating and checking the parity of instructions, allowing 
us to prevent the execution of unwanted programs or 
instructions on a system. It can create a high level of 
security against attacks at the instruction-level, because a 
malicious attacker trying to manipulate the instructions 
would need to change not only the parity of the instructions, 
but also the entire parity-chain. It is also advantageous for 
secured software development processes that require more 
complex steps than the in existing studies [10-13]. In this 
paper, we present a secure processor that detects instruction- 
level tampering using an error correction code and present 
the implementation results. The manipulation or insertion of 
unauthorized instructions might make the system failures or 
unwanted actions. Because it can be regarded as data errors 
in communication systems, we applied the Reed-Solomon 
(RS) code, which is widely used in digital communications 
to generate the parity of instructions for integrity checks. 

II. SECURED PROCESSOR ARCHITECTURE 

The proposed security processor architecture is shown in 
Fig. 1. It has additional parity memory and an instruction 
integrity checker between the processor core and instruction 
memory. The instruction integrity checker reads the 
instruction and parity from both memories and checks the 

integrity. If the integrity of the instructions is broken, the 
checker notifies the user in a separate process. Because 
instruction memory is located outside the processor core in a 
general processor, our method can be easily applied to 
general processor architecture. 
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Figure 1. Architecture of processor with integrity checker 

A. Instruction integrity checker 
We exploit the error detection function of an error 

correction code as an instruction integrity checker. The 
distortion or insertion of instructions through a security 
attack can be considered a received data error in a digital 
communications system. We used the one of systematic 
codes, RS code in which the check can be done within one 
clock cycle instead of using a cipher module. The integrity 
checker inspecting the instruction errors, conducts the 
syndrome calculation in RS code. Even if the RS code is the 
one of error-correction codes, its syndrome calculation 
simply indicates whether the codes involve the errors or not 
[14,15]. That is sufficient for malicious code detection 
where any correction features are not necessary in the 
proposed secured processor. The RS code usually calculates 
the syndrome using a systolic array in a pipeline, because it 
receives data sequentially. However, the processor performs 
instructions on every single clock, and the check must be 
done in every single clock. We thus made a constant 
multiplier of the Galois field (GF) inside the integrity check 

 
Figure 2. Architecture of the hardwired instruction integrity checker 
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in parallel, so that the calculation by the sophisticated logic 
circuit is done in a single clock [14] as shown in Fig. 2.  

B. Parity chain generation process 
The parity chain for checking instruction integrity 

consists of a parity chain of instructions and a parity chain 
of parities. Fig. 3 shows the process of parity chain 
generation. Parity1 (p1) and parity2 (p2) are parity of the 
instruction and the parity of the instruction parity, 
respectively. 
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Figure 3. Instruction-level correlation structure 
 

The parities in Fig. 3 are computed as follows [15]: 
)(mod)()( xgxmxxp kn                                               (1) 

where n denotes the length of a RS code and k is the length 
of parity words included in the code, where n≤k. In eq. (1), 
m(x) is the source data, regarded as a polynomial, and g(x) is 
the generator polynomial of the RS code. The parity-
generation in Fig. 3 can be expressed as follows: 

)(mod))1()(()( 1
1 xgtinstxtinstxtp knkn           (2) 

)(mod))1()(()( 1
1

12 xgtpxtpxtp knkn                      (3) 

The parity chain structure based on RS codes provides the 
security against the unknown attackers as the other typical 
cipher algorithms do. We can think of the specification of 
the RS code as a secret key, because the result of the parity 
calculation depends on the specification of the RS code. 
According to (1), parity is calculated using the Galois field, 
the generation polynomial, and input data. The generation 
polynomial is determined by the Galois field. When we 
calculate parity using GF(28), the number of candidate 
primitive polynomials is 16 and the number of generation 
polynomials is 255. The most important specification is the 
input data. Calculation of the RS code is applied to each 
polynomial coefficient. If we allow an input sequence with 
length 32 symbols using a set of 8 symbols, we can 
construct 832=296 input data sequences. When we calculate 
parity using the above specifications, the number of RS code 
candidate specifications is 2108. It is thus equivalent to 
having a 108-bit secret key. The key point is not only the 
computational complexity of the parity generation method 
but also the interdependency of parities. As shown in Fig. 3 
and eq. (3, 4), the calculations of parity1 and parity2 at the 
current time t, are dependent on the previous, the current 
and the next instructions, create a chain structure. If an 
attacker tries to inject an instruction or manipulate the 
system, a parity error occurs, because previous parity was 
not computed with the data injected by the attacker. Because 
the parity codes have a correlation with each other, an 
attacker who tries to manipulate part of the parity results 
must change all of them. 

III. SAFETY ANALYSIS OF INSTRUCTION-LEVEL 

CORRELATION TECHNIQUE 

Conventional secure processors enhance security of a 
program by embedding cipher modules inside the 
processors. The safety of the instruction-level correlation 
technique depends not only on the complexity, but also on 
the management policy of the target system and the 
operation mode. Thus, the evaluation method for the 
proposed technique in terms of safety should be varied 
against that of the cipher algorithm itself. In this section, we 
discuss the safety of the proposed secure instruction 
technique where the one of RS codes is used as an integrity 
check for the instruction and its parity codes. The safety of 
security system relies on the application policy. Even if a 
certain cryptographic technique is logically, mathematically 
and stochastically perfect, it is hard to guarantee the entire 
system security when breaking down the management 
policies. The policies of the proposed instruction-level 
correlation technique can be defined as follows: 
 Policy (1) : The security model with instruction-level 

correlation technique follows the model of [20]. 
 Policy (2) : Only an authorized user can access the 

protected part of system. 
 Policy (3) : Only an authorized user can execute the 

secure process of the system. 
In this section, we will discuss the safety of the proposed 

technique in conjunction with these policies above. 

A. Safety of the instruction-level correlation technique 
We apply RS code [15,16] to our system, and analyze its 

safety. Both the encoding and decoding processes of RS 
code are performed in the Galois field. The encoding 
process begins with a defining generator polynomial g(x). 
Generally, a generator polynomial g(x) is defined as eq. (4). 


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iαxxg
212
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)()(                                                           (4) 

where t=(n-k)/2. g(x) creates parity information in the 
encoding process, and detects errors in the decoding 
process. After a generation polynomial is determined, 
additional parity is calculated as follows: 

)(mod)()( 1 xgxmxxp d                                                 (5) 

where d=n-k+1 and m(x) is the encoding data. Parity p(x) is 
derived by the division of m(x) by g(x). 

B. Complexity for inferring the code specification 
In this sub-section, we analyze the mathematical 

complexity of inferring the specification of the RS code 
when it is used for extracting the method of correlation in 
our secured processor. The specification of the RS code 
includes the sequence of data in the encoding process. Fig. 4 
shows an example of instruction-level correlation structure. 

A malicious attacker can easily acquire secured data by 
tapping the external bus line of memory. Initially, attackers 
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Figure 4. Instruction-level correlation structure for complexity analysis 
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try to infer the specification of the RS code from acquired 
data. Prior to analyzing the probability of inference, we 
setup two assumptions. 
 Assumption (1) : A symbol of the RS code has 1 byte. 
 Assumption (2) : The maximum data size for calculation 

of parity1, p1(t) is 256 bytes. 
Assumption (1) concerns the basic size of the RS code. 

Calculation of the RS code is achieved by Galois’s field of 
GF(28). Even if the symbol size of RS code can be more 
than 1 byte, this is one of the possible RS code candidates 
for the proposed correlation technique. Assumption (2) is 
made to limit the size of the RS code. Theoretically, there is 
no upper limits for data sizes, but this determines the 
complexity of the implementation stage. We consider the 
possibility of successful attacks in several conditions. A 
malicious attacker may have the following specifications. 
 Specification (1) : The generator polynomial, g(x) 
 Specification (2) : The number of data used in the 

encoding process 
 Specification (3) : The order of data used in the encoding 

process 
It is very hard to infer the specifications when the attacker 

only knows the given RS code used in the encoding process. 
The probability of inference is shown below. 
 Inference probability for specification (1) : 1/65280 

With single error correction capability, there are 65,280 
of possible different generator polynomials in GF(28) using 
eq. (4). This is identical to the combination probability of 
g(x) that has two roots.  
 Inference probability of specification (2) : 1/252 

According to the assumption that maximum data size is 
256 bytes, there exist 252 different data sizes, because the 
data size can range from 3 (picking up an arbitrary 1 byte at 
each time t(i-1), t, t(i+1)) to 255. 
 Inference probability of specification (3) : 1/mk 

As shown in Fig. 5, at time t(i-1), t, t(i+1), each data has 
m possible unit data and the size is k, and then the maximum 
mk of the construction orders exist. Thus, if the number of 
unit data is increased, the possible number of the 
construction sequences increases exponentially. 

 
Figure 5. Construction of RS code 
 

 Inference probability of all specification: 1 / 5.0x1015,  
where m=3 and k=20 in specification (3) 

Consequently, it is very hard to infer the exact code 
specification when the attacker only knows the exposed data 
constructed by the RS code. This is the same as an attacker 
knowing the cipher text and its construction algorithm in a 
conventional cryptography system. 

C. Security analysis under the code exposure 
We consider the cases when the code specification is 

exposed to the attackers in this sub-section. This situation is 
similar to that when the secret key has been leaked from a 

cryptography system. The attacker who knows the 
specification of the RS code can alter the parity of the whole 
program and may modify some parts of program. To address 
this problem, we redefine eq. (5) as eq. (6). 

gmp mod                                                                      (6) 

The attacker who knows the RS code specification also 
knows as well as the exact m and g. Then, p is easily 
calculated. In contrast, if the attacker only knows p and g, it 
is very hard to calculate m because the modulo function is a 
one-way operation. The attacker may search for candidates 
for m, but finding the exact m is very hard. If p, m, and g 
exist as a specific number in the same number system and 
the range of these numbers are also known, then the 
candidates of m can be easily constructed by eq. (7). 

max)(min,  mpgam                                           (7) 

However, in RS code, p, m and g are polynomials. These 
consist of the elements of combination, which are 
coefficients of polynomials in a finite field. They cannot be 
calculated by simple combination as in eq. (7). Instead, the 
attacker has to estimate the candidates of m by the 
polynomial, as shown in eq. (8).  

)()()()( xpxaxgxm                                                      (8) 

Here, the RS code can be represented as follows:  
)()()()()( xpXxdxQxgxC kx                                 (9) 

Every root of g(x) is also a root of C(x). Every coefficient of 
the polynomial is defined in Galois’s field. We assume that 
RS(7,4) code is applied to our system. If the attacker knows 
g(x) and C(x), they can easily obtain p(x) by dividing C(x) 
by g(x). Then, d(x) and p(x) are computed in this case. 
Conversely, if the attacker only knows g(x) and p(x), he 
needs to estimate C(x) by eq. (9).  Especially, the degree of 
n-1 has to be same with the highest degree of multiplication 
of d(x) and g(x). Thus, the highest degree of C(x) should be 
x6 and d(x) should be x3 when n=7. Now, we will see 
whether the attacker can figure out d(x). 

2+2+)1++)(+++(

=++++++
323

23456

xxxkjxixhx
gfxexdxcxbxax

                            (10) 

The unknown variables can be reduced to this. 
0=2++++ fdbe                                                        (11) 

As a result, because there are more unknown variables than 
the number of equations, it is very hard to figure out correct 
unknown variables, even if the quantitative number of 
specification of RS(7,4) is very small. Whereas the number 
in the code specification is increased, the number of 
unknown variables should be increased. Nevertheless, 
another counterplan improving the security for this situation 
is to use magic number M in our system. The magic number 
M can be regarded as a secret-key in a cryptography system. 
In this approach, the first secret-key is the specification of 
RS code, and then we can consider magic number M as a 
second secret-key. In case of exposure of the important 
parameters to the attackers, a magic number can be a 
countermeasure as follows:  

),(' Mmfm  , gmp mod''                                         (12) 

where m’ denotes the modified original data by the function 
f and M. The attacker does not know the magic number M. 
In the secured program development process, the developers 
generate parity with eq. (5), after they perform function f 
with magic number M. The possible information that the 
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attacker knows is g, m and newly generated p’. This can 
have the same effect as if m is unknown. Next, assume that 
the attacker tries to infer magic number M when the attacker 
knows m. When f converts m’=mM, eq. (12) can be re-
defined as in eq. (13). 

gmp M mod'                                                                 (13) 

The attacker has to infer the magic number M, thus eq. 
(13) can be regarded as the discrete logarithm problem as 
shown in conventional cryptography. Consequently, in order 
to improve the security of the proposed technique, the use of 
magic number M can be one possible method. 

IV. EXPERIMENT 

The instruction integrity checker was implemented in 
VHDL and inserted in an Atmega103 download from 
OpenCore. As shown in Fig. 1, the integrity checker was 
located between the processor core and the parity memory. 
It reads instruction and parity values directly from memory 
and checks the integrity instruction. In this experiment, the 
instruction parity was stored in extra parity memory, 
because the AVR processor had the only instruction 
memory. Then, p1 was generated using RS(10,8), and p2 
using an RS(6,4) code specification in the Galois field 
GF(24). Because the Atmega103 processor has a 16-bit 
instruction length, p1 and p2 had lengths of 8 bits each. The 
designed security processor was synthesized in XILINX ISE 
and programmed in xc2v6000 FPGA. Table I shows the 
result of the synthesis of the secured processor. To compare 
our instruction integrity checker with other cipher modules, 
we lists the synthesis results of both our integrity checker 
and AES, one of cipher algorithms in Table II. Our integrity 
checker requires 170 slices and 1 clock checking period; by 
contrast, AES requires 2784 to 5810 slices and a 10-to-50-
clock delay for decryption. Thus, our instruction integrity 
checker occupies a small area (<12%) and has a faster check 
speed than other cipher modules. 

TABLE I. IMPLEMENTATION RESULTS 

 Atmega103 
Secured 

Atmega103 

Number of Slices 1354 1458 

Number of Slice Flip Flops 838 999 

Number of 4 input LUTs 2598 2792 

12816 ROM 1 2 

Maximum Clock Speed 46.192 MHz 49.387 MHz 
 

TABLE II. COMPARISON WITH OTHER CIPHER MODULES 

 Design Device Slices Cycles 

Standaert [17] AES Encryption XCV3200E 2784 21 

Saggese [18] AES Encryption XVE2000 5810 50 

Wnag [19] AES Encryption XCV1000E 5150 10 

Our Checker Integrity checker XC2V6000 170 1 

V. CONCLUSION 

In this paper, we present a secure processor architecture 
that embeds a single-cycle and low hardware overhead 
(<12%) integrity checker for the parity chain. To check the 
correctness of an instruction set, we generate a parity chain 
using RS Code and store it in separate parity memory and 
the checking of instruction integrity proceeds. According to 
experimental results, the proposed architecture can easily be 

implemented in a general processor and it checks the 
integrity of instructions in real-time. Compared with other 
cipher modules with the same key space, our checker 
exhibits faster check speed and requires a smaller area. 
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