
Advances in Electrical and Computer Engineering Volume 15, Number 3, 2015

Instruction-level Real-time Secure Processor
Using an Error Correction Code

Seok Min YOON, Seung Wook LEE, Jong Kang PARK, Jong Tae KIM
School of Electronics and Electrical Eng., Sungkyunkwan Univ., 300 Cheoncheon-dong Jangan-gu,

Suwon, Gyeonggi-do 440-746, South Korea
jtkim@skku.edu

1Abstract—In this paper, we present a processor that detects

security-attacks at the instruction level by checking the
integrity of instructions in real time. To confirm the integrity of
the instructions, we generate a parity chain of instructions and
check them at run time. The parity chain is generated using an
error correction code used in a digital communication system,
and the integrity checker has the same function as the error-
detector module of the error correction code. This architecture
can readily be applied to a general processor, because the
checker is located between the processor core and the
instruction memory. Compared with other cipher modules
with the same key space, our instruction integrity checker
achieves a faster check speed and occupies a smaller area.

Index Terms—secure processor, security, instruction,
correlation, chain.

I. INTRODUCTION

The security and integrity of embedded systems have
become more crucial to most of mobile-users today [1,2].
Besides several methods of attacking the hardware itself,
most attacks are performed using instructions injected by the
attacker [3-8]. Through such an attack, the attacker can
obtain information or control authority of the system. In [9],
we proposed an instruction-level security technique by
generating and checking the parity of instructions, allowing
us to prevent the execution of unwanted programs or
instructions on a system. It can create a high level of
security against attacks at the instruction-level, because a
malicious attacker trying to manipulate the instructions
would need to change not only the parity of the instructions,
but also the entire parity-chain. It is also advantageous for
secured software development processes that require more
complex steps than the in existing studies [10-13]. In this
paper, we present a secure processor that detects instruction-
level tampering using an error correction code and present
the implementation results. The manipulation or insertion of
unauthorized instructions might make the system failures or
unwanted actions. Because it can be regarded as data errors
in communication systems, we applied the Reed-Solomon
(RS) code, which is widely used in digital communications
to generate the parity of instructions for integrity checks.

II. SECURED PROCESSOR ARCHITECTURE

The proposed security processor architecture is shown in
Fig. 1. It has additional parity memory and an instruction
integrity checker between the processor core and instruction
memory. The instruction integrity checker reads the
instruction and parity from both memories and checks the

integrity. If the integrity of the instructions is broken, the
checker notifies the user in a separate process. Because
instruction memory is located outside the processor core in a
general processor, our method can be easily applied to
general processor architecture.

This work was supported by IDEC (IC Design Education Center).

GPIO

Timer

Interrupt

SRAM

Processor
Core

Instruction
Integrity Checker

Program
Memory

Parity
Memory

GPIO

Timer

Interrupt

SRAM

Processor
Core

Instruction
Integrity Checker

Program
Memory

Parity
Memory

Figure 1. Architecture of processor with integrity checker

A. Instruction integrity checker
We exploit the error detection function of an error

correction code as an instruction integrity checker. The
distortion or insertion of instructions through a security
attack can be considered a received data error in a digital
communications system. We used the one of systematic
codes, RS code in which the check can be done within one
clock cycle instead of using a cipher module. The integrity
checker inspecting the instruction errors, conducts the
syndrome calculation in RS code. Even if the RS code is the
one of error-correction codes, its syndrome calculation
simply indicates whether the codes involve the errors or not
[14,15]. That is sufficient for malicious code detection
where any correction features are not necessary in the
proposed secured processor. The RS code usually calculates
the syndrome using a systolic array in a pipeline, because it
receives data sequentially. However, the processor performs
instructions on every single clock, and the check must be
done in every single clock. We thus made a constant
multiplier of the Galois field (GF) inside the integrity check

Figure 2. Architecture of the hardwired instruction integrity checker

 13
1582-7445 © 2015 AECE

Digital Object Identifier 10.4316/AECE.2015.03002

[Downloaded from www.aece.ro on Saturday, October 13, 2018 at 08:33:54 (UTC) by 159.226.100.198. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 15, Number 3, 2015

in parallel, so that the calculation by the sophisticated logic
circuit is done in a single clock [14] as shown in Fig. 2.

B. Parity chain generation process
The parity chain for checking instruction integrity

consists of a parity chain of instructions and a parity chain
of parities. Fig. 3 shows the process of parity chain
generation. Parity1 (p1) and parity2 (p2) are parity of the
instruction and the parity of the instruction parity,
respectively.

instruction(t-2)

instruction(t-1)

instruction(t)

instruction(t+1)

instruction(t+2)

parity1(t-2)

parity1(t-1)

parity1(t)

parity1(t+1)

parity1(t+2)

parity2(t-2)

parity2(t-1)

parity2(t)

parity2(t+1)

parity2(t+2)

56F12FFFMOV R16, R16

A784CFF4RJMP ??main_1

22171F11ROL R17

C7540F00LSL R16

8E38BB28OUT 0x18,R18

instruction(t-2)

instruction(t-1)

instruction(t)

instruction(t+1)

instruction(t+2)

parity1(t-2)

parity1(t-1)

parity1(t)

parity1(t+1)

parity1(t+2)

parity2(t-2)

parity2(t-1)

parity2(t)

parity2(t+1)

parity2(t+2)

instruction(t-2)

instruction(t-1)

instruction(t)

instruction(t+1)

instruction(t+2)

parity1(t-2)

parity1(t-1)

parity1(t)

parity1(t+1)

parity1(t+2)

parity2(t-2)

parity2(t-1)

parity2(t)

parity2(t+1)

parity2(t+2)

56F12FFFMOV R16, R16

A784CFF4RJMP ??main_1

22171F11ROL R17

C7540F00LSL R16

8E38BB28OUT 0x18,R18

Figure 3. Instruction-level correlation structure

The parities in Fig. 3 are computed as follows [15]:
)(mod)()(xgxmxxp kn (1)

where n denotes the length of a RS code and k is the length
of parity words included in the code, where n≤k. In eq. (1),
m(x) is the source data, regarded as a polynomial, and g(x) is
the generator polynomial of the RS code. The parity-
generation in Fig. 3 can be expressed as follows:

)(mod))1()(()(1
1 xgtinstxtinstxtp knkn   (2)

)(mod))1()(()(1
1

12 xgtpxtpxtp knkn   (3)

The parity chain structure based on RS codes provides the
security against the unknown attackers as the other typical
cipher algorithms do. We can think of the specification of
the RS code as a secret key, because the result of the parity
calculation depends on the specification of the RS code.
According to (1), parity is calculated using the Galois field,
the generation polynomial, and input data. The generation
polynomial is determined by the Galois field. When we
calculate parity using GF(28), the number of candidate
primitive polynomials is 16 and the number of generation
polynomials is 255. The most important specification is the
input data. Calculation of the RS code is applied to each
polynomial coefficient. If we allow an input sequence with
length 32 symbols using a set of 8 symbols, we can
construct 832=296 input data sequences. When we calculate
parity using the above specifications, the number of RS code
candidate specifications is 2108. It is thus equivalent to
having a 108-bit secret key. The key point is not only the
computational complexity of the parity generation method
but also the interdependency of parities. As shown in Fig. 3
and eq. (3, 4), the calculations of parity1 and parity2 at the
current time t, are dependent on the previous, the current
and the next instructions, create a chain structure. If an
attacker tries to inject an instruction or manipulate the
system, a parity error occurs, because previous parity was
not computed with the data injected by the attacker. Because
the parity codes have a correlation with each other, an
attacker who tries to manipulate part of the parity results
must change all of them.

III. SAFETY ANALYSIS OF INSTRUCTION-LEVEL

CORRELATION TECHNIQUE

Conventional secure processors enhance security of a
program by embedding cipher modules inside the
processors. The safety of the instruction-level correlation
technique depends not only on the complexity, but also on
the management policy of the target system and the
operation mode. Thus, the evaluation method for the
proposed technique in terms of safety should be varied
against that of the cipher algorithm itself. In this section, we
discuss the safety of the proposed secure instruction
technique where the one of RS codes is used as an integrity
check for the instruction and its parity codes. The safety of
security system relies on the application policy. Even if a
certain cryptographic technique is logically, mathematically
and stochastically perfect, it is hard to guarantee the entire
system security when breaking down the management
policies. The policies of the proposed instruction-level
correlation technique can be defined as follows:
 Policy (1) : The security model with instruction-level

correlation technique follows the model of [20].
 Policy (2) : Only an authorized user can access the

protected part of system.
 Policy (3) : Only an authorized user can execute the

secure process of the system.
In this section, we will discuss the safety of the proposed

technique in conjunction with these policies above.

A. Safety of the instruction-level correlation technique
We apply RS code [15,16] to our system, and analyze its

safety. Both the encoding and decoding processes of RS
code are performed in the Galois field. The encoding
process begins with a defining generator polynomial g(x).
Generally, a generator polynomial g(x) is defined as eq. (4).







tiorti

iori

iαxxg
212

10

)()((4)

where t=(n-k)/2. g(x) creates parity information in the
encoding process, and detects errors in the decoding
process. After a generation polynomial is determined,
additional parity is calculated as follows:

)(mod)()(1 xgxmxxp d  (5)

where d=n-k+1 and m(x) is the encoding data. Parity p(x) is
derived by the division of m(x) by g(x).

B. Complexity for inferring the code specification
In this sub-section, we analyze the mathematical

complexity of inferring the specification of the RS code
when it is used for extracting the method of correlation in
our secured processor. The specification of the RS code
includes the sequence of data in the encoding process. Fig. 4
shows an example of instruction-level correlation structure.

A malicious attacker can easily acquire secured data by
tapping the external bus line of memory. Initially, attackers

3 bytes 1 byte 1 byte 1 byte 1 byte 1 byte 1 byte

3 bytes 1 byte 1 byte

3 bytes 1 byte 1 byte 1 byte 1 byte 1 byte 1 byte

ADDRESS INSTRUCTION PARITY 1 PARITY 2

1 byte 1 byte 1 byte 1 byte

Figure 4. Instruction-level correlation structure for complexity analysis

 14

[Downloaded from www.aece.ro on Saturday, October 13, 2018 at 08:33:54 (UTC) by 159.226.100.198. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 15, Number 3, 2015

try to infer the specification of the RS code from acquired
data. Prior to analyzing the probability of inference, we
setup two assumptions.
 Assumption (1) : A symbol of the RS code has 1 byte.
 Assumption (2) : The maximum data size for calculation

of parity1, p1(t) is 256 bytes.
Assumption (1) concerns the basic size of the RS code.

Calculation of the RS code is achieved by Galois’s field of
GF(28). Even if the symbol size of RS code can be more
than 1 byte, this is one of the possible RS code candidates
for the proposed correlation technique. Assumption (2) is
made to limit the size of the RS code. Theoretically, there is
no upper limits for data sizes, but this determines the
complexity of the implementation stage. We consider the
possibility of successful attacks in several conditions. A
malicious attacker may have the following specifications.
 Specification (1) : The generator polynomial, g(x)
 Specification (2) : The number of data used in the

encoding process
 Specification (3) : The order of data used in the encoding

process
It is very hard to infer the specifications when the attacker

only knows the given RS code used in the encoding process.
The probability of inference is shown below.
 Inference probability for specification (1) : 1/65280

With single error correction capability, there are 65,280
of possible different generator polynomials in GF(28) using
eq. (4). This is identical to the combination probability of
g(x) that has two roots.
 Inference probability of specification (2) : 1/252

According to the assumption that maximum data size is
256 bytes, there exist 252 different data sizes, because the
data size can range from 3 (picking up an arbitrary 1 byte at
each time t(i-1), t, t(i+1)) to 255.
 Inference probability of specification (3) : 1/mk

As shown in Fig. 5, at time t(i-1), t, t(i+1), each data has
m possible unit data and the size is k, and then the maximum
mk of the construction orders exist. Thus, if the number of
unit data is increased, the possible number of the
construction sequences increases exponentially.

Figure 5. Construction of RS code

 Inference probability of all specification: 1 / 5.0x1015,
where m=3 and k=20 in specification (3)

Consequently, it is very hard to infer the exact code
specification when the attacker only knows the exposed data
constructed by the RS code. This is the same as an attacker
knowing the cipher text and its construction algorithm in a
conventional cryptography system.

C. Security analysis under the code exposure
We consider the cases when the code specification is

exposed to the attackers in this sub-section. This situation is
similar to that when the secret key has been leaked from a

cryptography system. The attacker who knows the
specification of the RS code can alter the parity of the whole
program and may modify some parts of program. To address
this problem, we redefine eq. (5) as eq. (6).

gmp mod (6)

The attacker who knows the RS code specification also
knows as well as the exact m and g. Then, p is easily
calculated. In contrast, if the attacker only knows p and g, it
is very hard to calculate m because the modulo function is a
one-way operation. The attacker may search for candidates
for m, but finding the exact m is very hard. If p, m, and g
exist as a specific number in the same number system and
the range of these numbers are also known, then the
candidates of m can be easily constructed by eq. (7).

max)(min,  mpgam (7)

However, in RS code, p, m and g are polynomials. These
consist of the elements of combination, which are
coefficients of polynomials in a finite field. They cannot be
calculated by simple combination as in eq. (7). Instead, the
attacker has to estimate the candidates of m by the
polynomial, as shown in eq. (8).

)()()()(xpxaxgxm  (8)

Here, the RS code can be represented as follows:
)()()()()(xpXxdxQxgxC kx   (9)

Every root of g(x) is also a root of C(x). Every coefficient of
the polynomial is defined in Galois’s field. We assume that
RS(7,4) code is applied to our system. If the attacker knows
g(x) and C(x), they can easily obtain p(x) by dividing C(x)
by g(x). Then, d(x) and p(x) are computed in this case.
Conversely, if the attacker only knows g(x) and p(x), he
needs to estimate C(x) by eq. (9). Especially, the degree of
n-1 has to be same with the highest degree of multiplication
of d(x) and g(x). Thus, the highest degree of C(x) should be
x6 and d(x) should be x3 when n=7. Now, we will see
whether the attacker can figure out d(x).

2+2+)1++)(+++(

=++++++
323

23456

xxxkjxixhx
gfxexdxcxbxax

 (10)

The unknown variables can be reduced to this.
0=2++++ fdbe (11)

As a result, because there are more unknown variables than
the number of equations, it is very hard to figure out correct
unknown variables, even if the quantitative number of
specification of RS(7,4) is very small. Whereas the number
in the code specification is increased, the number of
unknown variables should be increased. Nevertheless,
another counterplan improving the security for this situation
is to use magic number M in our system. The magic number
M can be regarded as a secret-key in a cryptography system.
In this approach, the first secret-key is the specification of
RS code, and then we can consider magic number M as a
second secret-key. In case of exposure of the important
parameters to the attackers, a magic number can be a
countermeasure as follows:

),(' Mmfm  , gmp mod'' (12)

where m’ denotes the modified original data by the function
f and M. The attacker does not know the magic number M.
In the secured program development process, the developers
generate parity with eq. (5), after they perform function f
with magic number M. The possible information that the

 15

[Downloaded from www.aece.ro on Saturday, October 13, 2018 at 08:33:54 (UTC) by 159.226.100.198. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 15, Number 3, 2015

 16

attacker knows is g, m and newly generated p’. This can
have the same effect as if m is unknown. Next, assume that
the attacker tries to infer magic number M when the attacker
knows m. When f converts m’=mM, eq. (12) can be re-
defined as in eq. (13).

gmp M mod' (13)

The attacker has to infer the magic number M, thus eq.
(13) can be regarded as the discrete logarithm problem as
shown in conventional cryptography. Consequently, in order
to improve the security of the proposed technique, the use of
magic number M can be one possible method.

IV. EXPERIMENT

The instruction integrity checker was implemented in
VHDL and inserted in an Atmega103 download from
OpenCore. As shown in Fig. 1, the integrity checker was
located between the processor core and the parity memory.
It reads instruction and parity values directly from memory
and checks the integrity instruction. In this experiment, the
instruction parity was stored in extra parity memory,
because the AVR processor had the only instruction
memory. Then, p1 was generated using RS(10,8), and p2
using an RS(6,4) code specification in the Galois field
GF(24). Because the Atmega103 processor has a 16-bit
instruction length, p1 and p2 had lengths of 8 bits each. The
designed security processor was synthesized in XILINX ISE
and programmed in xc2v6000 FPGA. Table I shows the
result of the synthesis of the secured processor. To compare
our instruction integrity checker with other cipher modules,
we lists the synthesis results of both our integrity checker
and AES, one of cipher algorithms in Table II. Our integrity
checker requires 170 slices and 1 clock checking period; by
contrast, AES requires 2784 to 5810 slices and a 10-to-50-
clock delay for decryption. Thus, our instruction integrity
checker occupies a small area (<12%) and has a faster check
speed than other cipher modules.

TABLE I. IMPLEMENTATION RESULTS

 Atmega103
Secured

Atmega103

Number of Slices 1354 1458

Number of Slice Flip Flops 838 999

Number of 4 input LUTs 2598 2792

12816 ROM 1 2

Maximum Clock Speed 46.192 MHz 49.387 MHz

TABLE II. COMPARISON WITH OTHER CIPHER MODULES

 Design Device Slices Cycles

Standaert [17] AES Encryption XCV3200E 2784 21

Saggese [18] AES Encryption XVE2000 5810 50

Wnag [19] AES Encryption XCV1000E 5150 10

Our Checker Integrity checker XC2V6000 170 1

V. CONCLUSION

In this paper, we present a secure processor architecture
that embeds a single-cycle and low hardware overhead
(<12%) integrity checker for the parity chain. To check the
correctness of an instruction set, we generate a parity chain
using RS Code and store it in separate parity memory and
the checking of instruction integrity proceeds. According to
experimental results, the proposed architecture can easily be

implemented in a general processor and it checks the
integrity of instructions in real-time. Compared with other
cipher modules with the same key space, our checker
exhibits faster check speed and requires a smaller area.

REFERENCES
[1] M.L. Pollar, F. Martinelli and D. Sgandurra, “A Survey on Security

for Mobile Devices,” IEEE Comm. Surveys and Tutorials, Vol.15,
No.1, pp.446-471, 2013. doi:10.1109/SURV. 2012.013012.00028.

[2] K. Nikita, “Security and Privacy in Biomedical Telemetry: Mobile
Health Platform for Secure Information Exchange,” Wiley-IEEE
Press eBook Chapters, 2014. doi:10.1002/9781 118893715.ch13.

[3] S. Ravi, A. Raghunathan, P. Kocher, and S. Hattangady, “Security in
Embedded Systems: Design Challenges,” ACM Trans. on Embedded
Computing Systems, Vol. 3, pp. 461-491, 2004.
doi:10.1145/1015047.1015049.

[4] A. Murat Fiskiran, Ruby B. Lee “Runtime Execution Monitoring
(REM) to Detect and Prevent Malicious Code Execution” ICCD, 2004.
doi:10.1109/ICCD.2004.1347961.

[5] T. Maude and D. Maude, “Hardware Protection Against Software
Piracy”, Communications of the ACM, vol. 27, no. 9, pp.950-959,
1984. doi:10.1145/358234.358271.

[6] D. Lie, C. Thekkath, M. Mitchell, P. Lincoln, D. Boneh, J. Mitchell
and M. Horowitz, “Architectural Support for Copy and Tamper
Resistant Software”, Proc. of ASPLOS, pp. 168-177, 2000.
doi:10.1145/378993.379237.

[7] V. Kiriansky, D. Bruening, and S. Amarasinghe, “Secure Execution
via Program Sheperding,” Proc. of 11th USENIX Security Symp.,
pp.191-206, 2002.

[8] D.L. Detlefs, K. Leino, G. Nelson, and J. Saxe, “Extended static
checking,” Tech. rep., Systems Research Center, Compaq Inc., pp.1-
44, 1998.

[9] S.W. Lee and J.T. Kim, “Instruction Level Tampering Detection
Technique using Error Detection Code for Embedded Systems,” Proc.
of ICCMSE, Vol. 1, pp.1-4. 2005.

[10] W. Arbaugh, D. Farber, and J. Smith. “A secure and reliable bootstrap
architecture” Proc. of IEEE Symp. on Security, pp.65–71, 1997.
doi:10.1109/SECPRI.1997.601317.

[11] G.E. Suh, D. Clarke, B. Gassend, M.v. Dijk, S. Devadas, “Efficient
Memory Integrity Verification and Encryption for Secure Processors”,
Proc. of IEEE/ACM Int’l. Sym. on MICRO, pp. 339-350, 2003.
doi:10.1109/MICRO.2003.1253207.

[12] J.P. McGregor, D.K. Karig, Z.Shi, and Ruby B. Lee, “A Processor
Architecture Defense against Buffer Overflow Attacks”, Proc. of
IEEE Int’l. Conf. ITRE, pp. 243-250, 2003.
doi:10.1109/ITRE.2003.1270612.

[13] B. Gassend, G.E. Suh, D. Clarke, M.v. Dijk, and S. Devadas, “Caches
and Hash Trees for Efficient Memory Integrity Verification”, Proc. of
Int’l Symp. on HPCA, pp.295-306, 2003.
doi:10.1109/HPCA.2003.1183547.

[14] S.T.J. Fenn, M. Benaissa, and D. Taylor, “Bit-serial Berlekamp-like
multipliers for GF(2m),” Electronics Letters, Vol. 31, 1995, pp. 1893-
1894, doi:10.1049/el:19951303.

[15] I.S. Reed and X. Chen, “Error-Control Coding for Data Network,”
Kluwer Academic Publishers, 1999.

[16] S.W. Lee, J.T. Kim and J-S. Cha, “Implementation of Adaptive Reed-
Solomon Decoder for Context-Aware Mobile Computing Device,”
LNCS, Vol. 3681, 2005. doi:10.1007/11552413_158.

[17] F-X. Standaert, G. Rouvroy, J-J. Quisquater, and J-D. Legat,
“Efficient Implementation of Rijndael Encryption in Reconfigurable
Hardware: Improvements and Design Tradeoffs,” LNCS, vol.2779, pp.
334-350, 2003. doi:10.1007/978-3-540-45238-6_27.

[18] G..P. Saggese, A. Mazzeo, N. Mazzocca, and A.G.M. Strollo, “An
FPGA-Based Performance Analysis of the Unrolling, Tiling, and
Pipelining of the AES Algorithm,” LNCS, vol.2778, pp.292-302,
2003. doi:10.1007/978-3-540-45234-8_29.

[19] S-S. Wang, and W-S. Ni, “An Efficient FPGA Implementation of
Advanced Encryption Standard Algorithm,” Proc. of ISCAS 2004,
Vol. 2, pp. 597-600, 2004. doi:10.1109/rivf. 2012.6169845.

[20] W. Shi, H-H. S. Lee, C. Lu, and M. Ghosh. “Towards the Issues in
Architectural Support for Protection of Software Execution.” Proc. of
ASPLOS, pp.1-10, 2004. doi:10.1145/1055626. 1055629.

[Downloaded from www.aece.ro on Saturday, October 13, 2018 at 08:33:54 (UTC) by 159.226.100.198. Redistribution subject to AECE license or copyright.]

