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ABSTRACT
Emerging data suggest new facets of the concerted
participation of neutrophils and macrophages in antimi-
crobial immunity. The classical view is that DCs and
macrophages are the inducers of adaptive antimicro-
bial immunity, but there is evidence for neutrophil par-
ticipation in this task as cytokine and chemokine pro-
ducers and APCs. On the other hand, the concept that
the TH1 response is only associated with control of in-
fections by intracellular pathogens through activation of
macrophages by IFN-�, and the TH17/IL-17 axis is only
involved in protection against extracellular pathogens
through mobilization and activation of neutrophils is
simplistic: There is evidence suggesting that TH1 and
TH17 responses, separately or in parallel, may use mac-
rophages and neutrophils against infections by extra-
cellular and intracellular microbial pathogens. Opso-
nization by pathogen-specific Igs enhances the antimi-
crobial capabilities of neutrophils and macrophages in
infections by extracellular and intracellular microbes.
The functional partnership between macrophages and
neutrophils as inducers and effectors of adaptive anti-
microbial immunity conforms to their affiliation with the
myeloid phagocyte system and reveals a strategy
based on the concurrent use of the two professional
phagocytes in the adaptive defense mechanisms.
Starting from a common myeloid precursor in the bone
marrow, macrophages and neutrophils split during dif-
ferentiation but come together at the infectious foci for
a cooperative strategy that uses modulator and effec-
tor activities to attack invading microbial pathogens. J.
Leukoc. Biol. 87: 805–813; 2010.

Introduction
When microbial pathogens pass epithelial defenses and in-

vade normally sterile body territories, they encounter innate
defense mechanisms that are activated directly by pattern rec-
ognition receptors with broad specificities for conserved and

invariant molecules of microbial origin [1]. Innate immunity is
crucial for controlling a primary infection but is frequently
insufficient to overcome the virulence mechanisms of patho-
gens, and adaptive immunity is put to work. In the adaptive
immune response, the antimicrobial defense mechanisms are
activated indirectly by T cells and antibodies in an antigen-
specific manner. Adaptive immunity responds to pathogen in-
vasion through antigen-specific clonal expansion of a selected
number of lymphocytes whose antigen receptors bind micro-
bial antigens in the context of MHC. Naive T cells differenti-
ate into CD4� TH cells, which recruit and activate effector
phagocytic cells that cooperate in pathogen clearance, and
provide help for differentiation of antigen-specific B cells into
antibody-producing plasma cells and memory B cells. Some
naive T cells also differentiate into memory cells that trigger
future defense against repeated attacks by the same pathogen.

The present review highlights data favoring the interpretation
that the host defenses use neutrophils and macrophages as induc-
ers and effectors of the adaptive antimicrobial immune responses
to infection by extracellular and intracellular pathogens.

NEUTROPHILS CLUSTER WITH
MONOCYTES/MACROPHAGES AT
INFECTIOUS FOCI DURING ADAPTIVE
IMMUNITY

The small number of phagocytes in resting tissues is essentially
composed by resident macrophages and DCs, but following
microbial invasion, neutrophils and monocytes are recruited
quickly to infectious foci. Recruited monocytes give rise locally
to a subset of DCs [2] and to inflammatory macrophages [3].

Recruitment of neutrophils and monocytes/macrophages
has been analyzed mainly in the initial phases of the antimi-
crobial innate immune response when infectious inflammation
is triggered early after pathogen invasion. When innate im-
mune defenses fail to clear the infection, phagocytes continue
to be recruited during the adaptive antimicrobial responses. In
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adaptive immunity associated to previous immunization (in
secondary infections or in vaccinated hosts), fresh phagocyte
recruitment is triggered quickly and intensely upon detection
of invading pathogens.

Neutrophil and monocyte/macrophage accumulation is con-
sistently present at infectious foci in adaptive responses to ex-
tracellular (see, for example, refs. [4–6]) and to intracellular
pathogens. Occurrence of persistent neutrophilia in infections
by intracellular pathogens was a novel and surprising finding
and was reported initially in mouse experimental mycobacteri-
oses [7]. Following i.p. inoculation of pathogenic mycobacteria
in mice, the initial innate neutrophil response is continued by
persistent neutrophil accumulation, which is a facet of adap-
tive immunity [8], being antigen-specific and mediated by
CD4� and CD8� T cells [8, 9]. In accordance with the ac-
quired character of this neutrophilia, it is enhanced in mice
immunized with Mycobacterium bovis BCG before Mycobacterium
avium challenge [8]. Also, in Mycobacterium tuberculosis-infected
guinea pigs, previous M. bovis BCG immunization results in
increased secretion of the neutrophil chemoattractant CXCL8
by alveolar macrophages [10]. The persistent peritoneal neu-
trophil recruitment observed in mice infected with mycobacte-
ria is accompanied by monocyte/macrophage accumulation
[8, 9]. More realistic conditions mimicking natural situations
in terms of inoculum dose and infection routes also revealed
persistent neutrophil influxes associated with accumulation of
monocytes/macrophages in M. tuberculosis-infected mice [11].
Recruitment of neutrophils and monocytes/macrophages dur-
ing adaptive immune responses has also been described in ex-
perimental infections by natural routes with the intracellular
pathogens Salmonella [12] and Toxoplasma gondii [13]. The
peritoneal influx of neutrophils and monocytes/macrophages
following inoculation of Listeria monocytogenes in immunized
mice is increased as compared with that in nonimmunized
controls [14]. Also, in prolonged mouse aerogenic infection
by a low dose of M. tuberculosis TH cells, macrophages and neu-
trophils are clustered persistently in the lungs [11]. Pleurisy as a
result of M. tuberculosis is a good model for evaluating leukocyte
dynamics during protective adaptive immune responses to intra-
cellular pathogens in humans, as it can be self-cured through a
TH response [15]. Pleural exudates of patients with tuberculous
pleurisy contain TH cells, macrophages, and neutrophils [16],
showing that the leukocyte dynamic described in animal models
of adaptive immune responses also occurs in humans.

These data indicate that neutrophils and monocytes/macro-
phages are recruited to and cluster at infectious sites during
adaptive responses against extracellular and intracellular patho-
gens. This clustering promotes the concerted participation of
neutrophils and macrophages at the inducer and effector phases
of adaptive antimicrobial immune responses, as discussed below.

NEUTROPHILS COOPERATE WITH DCS
AND MACROPHAGES IN THE INDUCTION
OF ADAPTIVE IMMUNE RESPONSES

The classical view is that antigen presentation and induction of
TH cells are tasks performed by DCs and macrophages [17].
However, accumulating data show that neutrophils cooperate

with macrophages and DCs in the induction of protective antimi-
crobial adaptive immunity.

Activated neutrophils play a key role in initiating adaptive
immunity by producing important proinflammatory cytokines
and chemokines that attract monocytes and immature DCs
[18, 19]. Human neutrophils induce IL-12 production by DCs
and therefore, may trigger TH1 polarization indirectly [20].
Moreover, IL-12 is also secreted by human neutrophils in re-
sponse to infection [21, 22]. Neutropenia induced in mice at
an early stage of infection with Legionella pneumophila inhibited
the development of the TH1 response [23]. Moreover, neutro-
phils play a role during TH17 cell differentiation through the
production of IL-6, IL-1�, and IL-23 [21, 24, 25].

Neutrophils shuttle intracellular pathogens to lymph nodes
[26, 27] and deliver microbial antigens, including from intracel-
lular pathogens, to macrophages and DCs, thus helping in the
cross-presentation of microbial antigens to TH cells [28–30]. Hu-
man neutrophils can be induced to express MHC class II mole-
cules in vitro [31, 32] and in vivo [33, 34] and to present micro-
bial antigens directly to T cells [28, 32]. Moreover, neutrophils
induce TH1 cell proliferation and IFN-� secretion [35].

Another relevant contribution of mouse and human neutro-
phils for the development of adaptive immune responses involves
the secretion of cytokines and chemokines that mobilize TH1 and
TH17 cells from lymphoid organs to infectious foci. Among those
chemokines are inducible protein 10 (CXCL10), monokine in-
duced by IFN-� (CXCL9), and IFN-�-inducible TH cell � che-
moattractant (CXCL11), which attract TH1 cells [21, 36, 37].
These cells predominantly express the chemokine receptors
CXCR3 (which binds CXCL9, -10, and -11) and CCR5 (which
binds CCL3) [36, 38]. On the other hand, human neutrophils also
attract TH17 cells by secreting CCL20 [37]. Significantly, secretion of
CCL2 by human neutrophils may attract TH1 and TH17 cells [37],
promoting their common presence at infectious foci.

Besides cytokines and chemokines, neutrophils also use pro-
teins released through degranulation to induce the recruit-
ment and maturation of DCs [39–41]. Moreover, neutrophil
granule proteins, such as LL-37 [42] and defensins [39, 43],
also induce recruitment of TH cells to infectious foci. Lactofer-
rin induces recruitment of naive T cells [40] and stimulates
the secretion of IL-12 by macrophages [44].

In conclusion, the above reviewed data show that several
tasks related to the induction of adaptive immune responses
classically attributed to macrophages and DCs are also per-
formed by mouse and human neutrophils, namely: antigen
presentation to naive T cells; induction of TH 1 cell differenti-
ation, proliferation, and mobilization to infectious foci and
induction of IFN-� secretion by these cells; and induction of
TH17 cells and mobilization of these cells to infectious foci.

NEUTROPHILS COOPERATE WITH
MACROPHAGES AS EFFECTORS OF
ANTIMICROBIAL ADAPTIVE IMMUNITY

Adaptive immunity uses innate effector mechanisms
mediated by macrophages and neutrophils
The occurrence of a protective role of neutrophils in adaptive
immunity has been supported by results from depletion exper-
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iments with mice infected with the extracellular pathogens Bor-
detella pertussis [45, 46], Helicobacter pylori [6], and Streptococcus
pneumoniae [47] or with intracellular pathogens such as Fran-
cisella tularensis [48], among others.

Moreover, adequate depletion experiments demonstrated
the dual participation of macrophages and neutrophils in
adaptive immune responses to infection by extracellular or
intracellular pathogens. Mice immunized previously by infec-
tion with S. pneumoniae use macrophages and neutrophils to
clear a secondary infection [47]. This protective participation
of the two professional phagocytes was confirmed by selective
neutrophil or macrophage depletion. Selective depletion of
macrophages or neutrophils also inhibited adaptive protection
in mice infected with F. tularensis [48].

An indication that neutrophils and macrophages are neces-
sary for an efficient host defense against infection is the fact
that they are not able to replace each other as crucial ele-
ments of antimicrobial immunity, as shown by the serious pa-
thology associated with some human and murine phagocyte
deficiencies [49].

Besides elimination by phagocytosis, professional phagocytes
participate as effectors in host adaptive antimicrobial defense
through direct macrophage/neutrophil cooperation for the
control of intramacrophage pathogens, as observed in mouse
models of infection [7, 50, 51] and with human phagocytes in
vitro [52]. This cooperation enhances the limited antimicro-
bial capabilities of macrophages [53], including through the
transfer to macrophages of potent neutrophil antimicrobial
molecules [7, 52]. Moreover, neutrophil granule molecules
enhance macrophage phagocytic activity [54].

Classical view of the roles of antimicrobial phagocytic
effector mechanisms dependent on TH cells
In mammals, antigen-carrying cells migrate to lymphoid or-
gans, where they interact and present antigen to conventional,
naive ��T cells, leading to the differentiation into TH cells
(reviewed in refs. [55, 56]). Besides the classical TH1 and TH2
cells [57], TH17 cells constitute a third subset described re-
cently with relevant functions in adaptive immunity in mice
and humans [58–60]. Whereas TH2 cellular response is classi-
cally associated to eosinophils, basophils, and mast cells and
their activities against helminths (reviewed in ref. [61]), TH1
and TH17 are the relevant subsets for directing the activation
of phagocyte antimicrobial effector mechanisms.

The IL-12/IFN-� axis is crucial for host defenses by activat-
ing adaptive immunity to kill pathogens and infected cells
through induction of TH1 cells. IL-12 is the main cytokine pro-
duced in response to infection by macrophages, DCs, and neu-
trophils to induce production of IFN-� by TH1 cells [22];
IFN-� feeds back to infected macrophages to enhance their
antimicrobial capacities [62–64]. This module of adaptive im-
munity is classically associated with the control of infections by
intracellular pathogens in mammals [64, 65].

TH17 cells of mice and humans are not identical in terms of
cytokine production [66], but in both cases, they secrete the
IL-17 family of proteins [59, 60, 66]. This family includes sev-
eral related cytokines with some specialization in terms of par-

ticipation in antimicrobial defense and in the induction of pa-
thology [67, 68].

Differentiation of mouse TH17 cells requires TGF-� and
IL-6, whereas human, naive T cells develop into TH17 cells in
the presence of IL-1�, IL-23, and possibly TGF-� (reviewed in
ref. [69]). These cytokines are produced by several nonim-
mune and immune cells including macrophages, DCs, and T
cells [70] and also by neutrophils [21, 24].

Interestingly, IL-17 is also produced by activated mouse neu-
trophils [71, 72], providing these phagocytes with a mecha-
nism to increase and sustain their own presence at infectious/
inflammatory sites during adaptive immune responses.

IL-17 has protective effects in controlling the infectious pro-
cess during adaptive immunity [73]. Classically, TH17 cells and
IL-17 have been involved in protection against extracellular
pathogens [73, 74].

IL-22 [75] and IL-17, secreted by activated TH17 cells, mobi-
lize neutrophils. With IL-17, this effect results from indirect
expansion of neutrophil numbers through regulation of G-CSF
and by recruitment through induction of CXCL1, CXCL2, and
CXCL8 by several mouse and human cell types, including epi-
thelial and endothelial cells and macrophages [70, 76, 77].
Human neutrophils can also be recruited directly through the
secretion of CXCL8 by activated TH17 cells; furthermore,
these cells can activate neutrophils and reduce their apoptosis
by an IL-17-independent mechanism involving secretion of
GM-CSF, TNF-�, and IFN-� [37].

New scenarios in the contributions of TH1 and TH17
responses to antimicrobial defenses
The above concepts evolved before the recognition of the sur-
prising plasticity of TH cell development, and several recent
results reviewed below suggest that the association of the TH1
response to macrophages and of the TH17 response to neutro-
phils is not strict.

(i) As mentioned above, neutrophils and macrophages are
recruited to and cluster at infectious sites during adaptive im-
mune responses to infection in mammals. Characterization of
the cells involved in these responses revealed that antigen-spe-
cific phagocyte accumulation in adaptive immunity is depen-
dent on TH cells in infections by extracellular [78, 79] or in-
tracellular [80] pathogens.

Through the secretion of IFN-�, TNF-�, and ELR� CXC
chemokines, the TH1 response attracts and activates mouse
and human neutrophils (Table 1), enhancing their phagocytic
and microbicidal activities, and IFN-� increases neutrophil sur-
vival [79, 90, 91]. IL-1�, IL-6, and IL-23 are produced by mac-

Table 1 Publications Showing that Macrophages and
Neutrophils Are Activated by TH1/IFN-� and by TH17/IL-17

Responses

Activation by TH1/
IFN-� response

Activation by TH17/
IL-17 response

Macrophages [62–64] [47, 58, 81–85]
Neutrophils [64, 86–89] [47, 77, 78]

Silva Macrophage-neutrophil cooperation in adaptive immunity
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rophages activated by IFN-� and are involved in the develop-
ment and expansion of TH17 cells [92, 93]. The canonical
TH17 cytokine IL-17, which as mentioned above, is typically
described as mobilizing and activating neutrophils, also has
these activities toward mouse and human monocytes/macro-
phages (Table 1), which express IL-17R [94].

(ii) TH1 and TH17 responses were considered mutually an-
tagonistic previously, but recent data show that they may occur
in parallel in humans [95, 96], including in infection [94, 97,
98]. The presence of a common subunit (p40) in IL-12 and
IL-23, cytokines associated with the development of TH1 and
TH17 cells, respectively, and of a shared subunit in their recep-
tors (IL-12R�1) [99] may promote parallel TH1/TH17 re-
sponses.

(iii) Coexistence in the same in vivo microenvironment of
TH1, TH17, and cells with the ability to secrete IFN-� and
IL-17 concomitantly (TH17/TH1 cells [100]) is discussed else-
where [69, 101]. TH17/TH1 cells have been described in vitro
after stimulation of human and mouse CD4� cells with PMA/
ionomycin [102] and in inflammatory disorders in mice [103]
and humans [100], but they also may occur in infection of hu-
man cells in vitro [104, 105]. Moreover, the transition from
IL-17-producing TH17 cells to IFN-�-producing TH1 cells in
response to IL-12 signaling has also been reported [106–108].

(iv) Some results suggest that the concept considering the
TH1/IFN-� response only associated with the control of infec-
tions by intracellular pathogens and the TH17/IL-17 axis only
involved in protection against extracellular pathogens through
mobilization and activation of neutrophils is simplistic. On the
one hand, protective TH17/IL-17 responses have been de-
scribed in experimental infections by intracellular pathogens
such as L. monocytogenes [109], M. tuberculosis [110–114], Salmo-
nella [115, 116], Mycoplasma pneumoniae [117], Cryptococcus neo-
formans [118], and Leishmania donovani [119]. On the other
hand, protective TH1/IFN-� responses have been reported in
infections by extracellular pathogens in mouse models, includ-
ing by Candida albicans [120], S. pneumoniae [121], Klebsiella
pneumoniae [74], and B. pertussis [94, 122], as well as in human
infection by H. pylori [123]. IL-17 produced by TH17 cells may
induce a protective TH1 response against intracellular patho-
gens [113, 119, 124–126].

Taken together, the data reviewed above suggest that the
classical dichotomy relative to the contribution of TH1 and
TH17 responses in the mouse and human antimicrobial mech-
anisms summarized in the previous section is not absolute.
Most relevant is the recognition that TH1 and TH17 re-
sponses mobilize and activate neutrophils and macrophages
and that besides TH1 and TH17 cells, TH17/TH1 cells may
also participate in antimicrobial immune defense. This re-
veals a strategy of the immune system based on the concur-
rent use of the two professional phagocytes in the adaptive
defense mechanisms against extracellular and intracellular
microbial pathogens. The possibility of an antimicrobial im-
mune strategy using—simultaneously or successively—more
than one pathway increases the chances of mobilization of
macrophages and neutrophils for a cooperative participa-
tion, leading to enhanced efficiency of the host defense
against infection.

Opsonization by pathogen-specific Igs enhances
macrophage and neutrophil antimicrobial capabilities
One mechanism of antibody-mediated antimicrobial activity is
opsonization, which improves recognition, ingestion, and kill-
ing of microbial pathogens by phagocytes via Ig receptors
(FcRs), thus contributing to a more efficient adaptive immune
response. FcRs are expressed on human neutrophils and
monocytes/macrophages [127], although expression of some
FcRs in neutrophils requires previous stimulation by cytokines,
including IFN-� [128, 129]. The antimicrobial capabilities of
neutrophils [130] and macrophages [131] are activated by the
uptake of pathogens opsonized via FcRs.

Extracellular pathogens, living and multiplying essentially
outside of cells, are readily susceptible to phagocytosis by neu-
trophils and macrophages, provided the antiphagocytic patho-
genicity mechanisms of evasion are overcome by the host im-
mune defenses [132]. A crucial mechanism of adaptive host
defense against these microbes is opsonization by pathogen-
specific antibodies, which allow the host to bypass those eva-
sion mechanisms through the improved use of neutrophils
and macrophages [132]. A paradigmatic example of infection
by an extracellular pathogen, where protection through adap-
tive immunity is achieved by cooperative activities of neutro-
phils and macrophages, is pneumonia as a result of S. pneu-
moniae. In this infection, neutrophils and monocytes/macro-
phages are recruited to the infected lung [133], and both
phagocytes ingest the pathogen [134], which is susceptible to
killing by neutrophils [135] and macrophages [136]. The anti-
microbial activities of neutrophils [47] and macrophages [137]
against this pathogen are enhanced by opsonization by patho-
gen-specific Igs. Mice immunized by a previous infection with
S. pneumoniae use macrophages and neutrophils to clear a sec-
ondary infection [47].

Conversely, intracellular pathogens promote their entry into
macrophages and then evade their antimicrobial activities
[138]. For safe entry into macrophages, intracellular patho-
gens use receptors such as complement receptors and man-
nose receptor [139, 140] or active penetration [141], thus pre-
venting phagocyte activation and the associated triggering of
antimicrobial mechanisms. However, the life cycle of intracel-
lular pathogens includes phases of extracellular location. This
occurs when the pathogens transit from one host cell to the
next; additionally, some of them may have phases of extracel-
lular residence and multiplication in the host [142], as in hu-
man tuberculosis [143]. Antibodies are produced during infec-
tions by intracellular pathogens in mice and humans [144,
145], and these microbes can be exposed easily to pathogen-
specific Igs when they are outside their host cell. Entry of op-
sonized intracellular pathogens into macrophages via FcRs
switches the intramacrophage niche to a nonpermissive one
[131]. Moreover, the occurrence of phases of extracellular res-
idence in the life cycle of intracellular pathogens makes these
microbes targets for FcR-mediated phagocytosis by recruited
neutrophils, exposing them to enhanced antimicrobial effector
mechanisms [130]. Several publications, with data about mice,
rabbits, and humans, report on the enhancement of antimicro-
bial capabilities of macrophages and neutrophils toward intra-
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cellular pathogens by antibody-mediated opsonization; exam-
ples include M. bovis BCG [146], L. monocytogenes [147, 148],
F. tularensis [48, 149], L. pneumophila [150], C. neoformans [151,
152], and Histoplasma capsulatum [153, 154].

In conclusion, the studies reviewed above about the role of
antibodies in infections by intracellular parasites resulted in
the redefinition of the classical concept that antibody-medi-
ated and cell-mediated immunity are restricted to defense
against extracellular and intracellular microbes, respectively.
Moreover, those data indicate that neutrophils and macro-
phages are affected positively by pathogen opsonization with
enhancing of protective immune responses to extracellular
and intracellular pathogens.

NEUTROPHILS AND MACROPHAGES IN
INFECTION-ASSOCIATED TISSUE
DAMAGE

A protective role of phagocytes associated to antimicrobial im-
mune responses is dependent on a correct regulation, which
directs neutrophils and macrophages to a balanced interven-
tion without promoting significant tissue injury. Infection trig-
gers an inflammatory process, and some degree of collateral
tissue damage accompanies adequate infectious inflammation
[155]. However, uncontrolled immunity leads to excessive in-
flammation with ensuing immunopathology. Neutrophils are
relevant in infection-induced pathogenic inflammation, as they
are mobilized in high numbers and are extraordinarily rich in
inflammatory mediators and in proteases and oxidants, which
if released in excess, can damage many types of cells with the
potential to produce tissue injury [156]. Macrophages also
contain tissue-damaging molecules, including several proteases,
although to a lesser degree, as compared with neutrophils
[157], so they are less important as inducers of inflammation-
associated pathology.

TH1, TH17, and TH17/TH1 cells can participate in patholog-
ical inflammatory responses [158–160], but IL-17 cytokines
have been described frequently as particularly relevant in neu-
trophil-dependent inflammatory pathology associated with in-
fection by bacterial [161–163], fungal [120], or protozoan
[164] pathogens. Persistent human H. pylori gastritis [165,
166] and lung necrotic lesions in active human tuberculosis
[167] and in mouse progressive mycobacterial infections [168]
are examples where intense neutrophilia is inefficient for
clearance of the pathogen and rather a factor contributing to
important inflammatory immunopathology.

CONCLUDING REMARKS

The outcome of the presence of a microbe within a host is
dependent on the nature of the host–microbe interaction
[169]: When such an interaction progresses with advantage to
the microbe, an infectious disease ensues, but when the host is
capable of mounting an immune response that provides a bal-
anced protection, infection is prevented or controlled. To
achieve protection against microbial infections, adaptive im-
munity uses antigen-specific activation of innate effector mech-

anisms mediated by macrophages and neutrophils. For this
activation, the infected host uses TH1, TH17, and TH17/TH1
cells induced through activities of not only macrophages and
DCs but also neutrophils. Additionally, the scenario that has
been emerging is that neutrophils and macrophages are re-
cruited and operate together against extracellular and intracel-
lular microbial pathogens during adaptive responses following
mobilization and activation by TH1, TH17, and TH17/TH1 cells
and the help of pathogen-specific Igs (Fig. 1). This functional
partnership between macrophages and neutrophils as inducers
and effectors of adaptive antimicrobial immunity conforms to
their affiliation with the myeloid phagocyte system [170] and
reveals a strategy based on the concurrent use of the two pro-
fessional phagocytes in the adaptive defense mechanisms as in
innate immunity [170].

Starting from a common myeloid precursor in the bone
marrow [171], macrophages and neutrophils split during dif-
ferentiation [172] to acquire specialized features and come
together at the infectious foci for a cooperative strategy to at-
tack invading microbial pathogens.

Data discussed here document the progressively emerging
richness of our knowledge of the neutrophil capabilities,
which encompass modalities of participation in antimicrobial
immune responses, unpredictable not so long ago. It is ex-
pected that new neutrophil capabilities will emerge in the fu-
ture, as research about this fascinating phagocyte progresses,
taking advantage of a more open-minded approach to the
study of immune mechanisms in antimicrobial defense, reveal-
ing new facets of the functional closeness between macro-
phages and neutrophils and of their joint participation in im-
mune responses.

Figure 1. The classical view is that TH1 and TH17 responses are rele-
vant against intracellular and extracellular pathogens, respectively, and
that neutrophils are the phagocytic effectors against extracellular
pathogens, and macrophages are used against intracellular pathogens.
However, recent data reviewed here suggest the interpretation that
TH1, TH17, and TH17/TH1 responses operate against the two types of
microbial pathogens concurrently using macrophages and neutrophils.
Additionally, opsonization by pathogen-specific Igs enhances the
phagocytic and antimicrobial capacities of the two professional phago-
cytes against extracellular and intracellular pathogens.

Silva Macrophage-neutrophil cooperation in adaptive immunity
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