
Advances in Electrical and Computer Engineering Volume 16, Number 4, 2016

Improving the Performances of the nMPRA
Processor using a Custom Interrupt

Management Scheduling Policy

Ionel ZAGAN1,2, Vasile Gheorghita GAITAN1,2
1Stefan cel Mare University of Suceava, 720229, Romania

2Integrated Center for Research, Development and Innovation in Advanced Materials,
Nanotechnologies, and Distributed Systems for Fabrication and Control (MANSiD), Stefan cel Mare

University, Suceava, Romania
zagan@eed.usv.ro

1Abstract—A quantitative and qualitative increase in

production has been obtained in most fields through the
development of CPUs and real-time systems based on them.
Such is the case in the industrial sector where the automation
process relieved partly or wholly the human activities needed
in the manufacturing process. This is mainly due to time
sharing in embedded real-time systems and to pseudo-parallel
execution of tasks in the implementation of a single central
processing unit. The present article presents the validation of
the nHSE (Hardware Scheduler Engine) scheduler
implemented in hardware by using a FPGA Xilinx Virtex-7,
Vivado development platform, and the Vivado Simulator. In
this context, our main contribution relates to a custom
interrupt management scheduling policy implemented in
hardware at the nHSE level, in order to provide predictable
execution for asynchronous interrupts. By reducing the jitter
when handling with asynchronous interrupts and completely
eliminating the uncertainties of the scheduling limit for the set
of tasks, a significant improvement of the overall system's
predictability has been obtained.

Index Terms—field programmable gate arrays, pipeline
processing, architecture, scheduling, operating systems.

I. INTRODUCTION

One of the fundamental requirements of a real-time
system (RTS) is the determinism of executing real-time
critical tasks [1]. In RTSs based on software schedulers, the
overhead generated by the operating system and the clock
cycles needed for context switching are only a few
parameters that can generate an increase of the jitter and the
missing of deadlines. The hardware implementation of
schedulers represents a novelty for real-time systems and a
true challenge in the field [2].

In classical systems, the tasks of the application can be
interrupted at any moment by the drivers dedicated to the
interrupts. In real time operating systems, this approach can
generate unpredictable interrupts of critical tasks, causing
the non-compliance with the execution deadlines [3].

In real-time operating systems (RTOS), two approaches
can be outlined for dealing with interrupts generated by
external devices. The first method consists in associating
each source of interrupts to an aperiodic or sporadic task.

This task, scheduled as any other in the system, is
responsible for dealing with the associated interrupts. This
way, the time required for treating interrupts is
automatically included in the scheduling mechanism. As the
scheduler selects first the critical tasks, there are certain
situations in which the tasks treating interrupts are not
executed immediately. The incorrect implementation of this
method, or an erroneous initialization of task parameters
required by the scheduling algorithm (priority, deadline,
type or criticality), can generate data loss in RTOS.

1This work was supported in part by the Integrated Center for Research,

Development and Innovation in Advanced Materials, Nanotechnologies,
and Distributed Systems for Fabrication and Control (MANSiD), Stefan cel
Mare University, Suceava, Romania.

A different approach for implementing the treating
interrupts routine is that of interrupting the current task and
immediately executing the interrupt service routine (ISR).
This method minimizes the latency of interrupts;
nevertheless, the costs involved must be taken into account,
so that to ensure the feasibility of the task set in the system.

This paper describes the implementation of Multi Pipeline
Register Architecture (nMPRA) processor [4-6] using the
FPGA Virtex-7 circuit, presenting the experimental model of
the real-time scheduler implemented in hardware that
implements a custom interrupt management scheduling
policy specific to RTSs (subject of this article and the
novelty for the proposed architecture). The project has been
implemented using the VC707 Evaluation Kit [7] produced
by Xilinx and Vivado 2015.4 design environment and the
source code has been written in Verilog HDL. The nMPRA
project is the result of the following: outstanding
performance in the case of context switching, architectural
simplicity, implementing specific deadlines in hardware,
inter-task synchronization and communication implemented
in hardware, predictable execution of real time tasks, treating
external interrupts and time related events with minimum
jitter and handling general exceptions.

The novelty of this paper resides in the innovative
mechanism of handling interrupts integrated in the nHSE
hardware module. Thus, the interrupts can be programmed
in the same way as tasks, guaranteeing the feasibility of the
system even when the interrupts are handled in real time.
This paper presents an innovative processor implementation
named nMPRA representing a feasible and realistic
alternative to the already-existing solutions in the field,
because it makes the best use of time and minimizes the
jitter. For this to be obtained, the field-programmable gate
array (FPGA) devices [8-9] with a high capacity in logic

 45
1582-7445 © 2016 AECE

Digital Object Identifier 10.4316/AECE.2016.04007

[Downloaded from www.aece.ro on Saturday, October 13, 2018 at 09:07:09 (UTC) by 159.226.100.198. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 16, Number 4, 2016

gates, available today at acceptable prices [10-11], represents
a hardware support for the development of embedded real-
time operating systems [12].

The present paper is structured as follows: after a brief
introduction in section I, section II sums up a few useful
methods for treating interrupts used in classical computing
systems; section III describes the nMPRA processor and the
mechanism for treating interrupts implemented in hardware,
and finally, section IV focuses on the conclusions and future
research.

II. INTERRUPTS PROBLEM IN CLASSICAL COMPUTING

SYSTEMS AND RELATED WORK

To design the nHSE module and to obtain better
performances brought by the nMPRA, an analysis of events
handled through software as well as hardware was necessary
in the case of treating interrupts in a classical computing
system. Thus, the nMPRA architecture, together with the
nHSE scheduler implemented in hardware, remove partially
or totally the events handled through software in the case of
treating an interrupt. One of the problems in treating
interrupts is that the CPU must wait for an indefinite period
of time so that the I/O module is prepared for the
transmission and reception of data. During this standby
period, the CPU must constantly interrogate the status of the
I/O module; consequently, the performances of the entire
system decrease [3]. To avoid this, the CPU could issue a
command for the integrated module and only afterwards
introduce other tasks in execution. Thus, at the end of each
instruction cycle, the CPU checks for interrupts. When the
I/O module is prepared to issue data towards the CPU, it
will send the CPU an interrupt request; the CPU resumes the
current task, saves the context of the current program (PC
and CPU registers) and performs data transfer with the
peripheral device. At the end of treating the interrupt, the
CPU restores on a stack the context of the previously saved
program and resumes its execution. Since interrupts can
appear unpredictably in the running program, the context
saving operation must include all information necessary for
restoring the interrupted program. ISR is not a routine called
by the running program and moreover, these two program
sequences can belong to different users. In conclusion, in the
process of treating interrupts, two main problems can occur:
the processor identifying the I/O module that generated the
event and the processing of simultaneous interrupts.

The occurrence of an interrupt triggers both hardware and
software events. As it can be seen in Fig. 1, the following
event sequence will result in case an I/O device initiates a
data transfer:

• The I/O device emits an interrupt signal to the CPU;
• The CPU completes the execution of the current

instruction, checks for the occurrence of an interrupt, and, if
necessary, sends a confirmation signal to the device that
generated the interrupt;

• The CPU saves on stack the information of the program
that runs at the moment when the interrupt occurs. This
information includes the (PSW – Program Status Word) and
the location of the next instruction to be executed (PC –
Program Counter). The CPU loads in the PC register the
address for treating interrupts corresponding to the event
that triggered it. In the next instruction cycle, the CPU

continues to extract the instruction addressed by the new
PC; thus, the program for treating interrupts gains control;

• After saving the program's current context on the
system stack, the stack pointer is updated with a new value.
In order to treat the interrupt, an examination is required,
regarding either the condition relating to the I/O operation,
or the event that caused the interrupt. This operation may
need sending additional commands or confirmation signals
to the I/O device;

• Treating the interrupt;
• After the interrupt has been successfully treated, the

context restoring begins by copying the register previously
saved on the stack. Finally, the CPU status contained in the
PSW register is restored from the stack. At this point, the
next instruction extracted and decoded belongs to the
program interrupted by the ISR.

Figure 1. General scheme of processing an interrupt in a classical
computing system [3]

The MSparc architecture presented in [13] is a custom
processor based on block multithreading, designed to
support architectural requirements for real-time systems.
The proposed multithreaded processor is based on the
SPARC standard, adapted to meet the system requirements.
In order to provide the real time response, guaranteed by a
minimal jitter, the authors choose to move the Round Robin
scheduling algorithm from software to hardware. The main
reason for implementing the MSparc project is to improve
the reaction time for events with hard real-time constraints,
preserving the predictable behavior.

The project Komodo presented by Kreuzinger et al. in
[14], is a Java-based multithreading microcontroller for
handling multiple real-time threads. The concept uses
multiple program counters and instruction windows, stack
register sets, and a signal unit to manage a set of threads
triggered by interrupts. In order to provide real-time support
and schedule multiple threads with different priorities using
the proposed four-stage pipeline architecture, the picoJava
instruction set is improved. Because multithreading
microcontroller supports fast context-switching, if a branch
or memory access causes pipeline stagnation, the Komodo
Priority manager can schedule another thread to use the
unallocated cycles.

III. PROPOSED INTERRUPT HANDLING SYSTEM

IMPLEMENTED BY NHSE SCHEDULER AND NMPRA SUPPORT

The advantage of the interrupts handling system
implemented by the nMPRA is that it is not necessary to use
a dedicated controller for task selection and interrupts
management [12].

 46

[Downloaded from www.aece.ro on Saturday, October 13, 2018 at 09:07:09 (UTC) by 159.226.100.198. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 16, Number 4, 2016

Figure 2. The sCPU1 and sCPU3 context switching operation; clock_200MHzP, clock_200MHzN - 200MHz differential signal clock; reset_n – reset
signal; clock - nMPRA clock; IF_PCIn – program counter; ID_Instruction_reg[0:3][31:0] - reg type sCPUi instruction; nHSE_Task_Select[3:0] - sCPUi
selector; nHSE_EN_sCPUi - nHSE enable signal; ID_Instruction[31:0] - wire type sCPUi instruction

The innovation elements introduced by this paper are the
special results obtained from the synthesis, implementation
and testing of the nMPRA processor, by using the FPGA
Virtex-7 development kit from Xilinx. Vivado simulator and
ChipScope analyzer were used in order to validate the
nMPRA architecture, the instructions dedicated to the nHSE
scheduler and measurement of the jitter when an external
asynchronous interrupt occurs. The predictable response is
ensured even when external asynchronous interrupts occur,
when the CPU load is at the upper limit. The interrupt
latency and context switching represent characteristics
typical to the nMPRA processor, these coefficients having
acceptable values for a deterministic architecture [15]. This
section describe and validate a custom CPU architecture that
includes a real-time scheduler implemented in hardware that
totally or partly eliminates the overhead generated by
functions specific to classical operating system. All nMPRA
components are designed for absolute determinism and
outstanding performances.

The aim of the tests performed using a competitive
hardware platform was the practical implementation of the
following: the nHSE hardware integrated scheduler, the
module treating asynchronous external interrupts, and the
System‐on‐Chip project used in testing the CPU. The
CPU implements the MIPS instruction set [16], adding
additional instructions for the integrated scheduler nHSE.

The architecture of the nMPRA processor is based on a
five stages assembly line, enabling the simultaneous
execution of up to five instructions on different stages [17].
In the best case scenario, when hazard situations do not
occur on the assembly line, the execution report is one clock
cycle/instruction. The implementation is based on the
project described in [18], a 32-bit MIPS processor which
aims for conformance with the MIPS32 Release 1 ISA. The
MIPS32 architecture sets a new standard of performance for
embedded processors on 32-bit. This architecture is the
foundation of MIPS technologies for the next generation of
high-performance processors based on this design, and it
also features compatibility for the MIPS64 architecture. The
MIPS architecture is extremely stable due to the robust set
of instructions. The instructions are scalable from 32 bits to
64 bits, with a wide range of software development tools

and consistent support from numerous licensed MIPS
technologies.

Due to the fact that the new nMPRA architecture relies on
multiplexing multiplied resources, such as Program Counter,
Register File and Pipeline Registers, this structure forms a
typical MIPS architecture which we will call semi CPU
(sCPU). An i instance of this semiprocessor will be called
semiprocessor i (sCPUi). The scheduler of the nMPRA
processor, called nHSE is the central module of this
architecture [15]. The implemented and validated
architecture uses a unified space for interrupts and tasks,
with a custom interrupt management scheduling policy. The
scheduler also has a timer block for each task which can be
configured within the boot procedure. Fig. 2 represents the
context switching operation of sCPU1 and sCPU3, when the
scheduler performs a preemptive scheduling algorithm
based on priorities, at a CPU working frequency of 33 MHz.
Thus, when a context switch occurs concurrently with
IF_PCIn signals, the content of the
ID_Instruction_reg[0:0][31:0] pipeline registers can be
analyzed. If the program jumps at a different address, the
efficiency of the assembly line decreases; the assembly line
is thus loaded, starting with the first instruction from the
new segment of the executed code program. The address of
the next instruction will be updated, according to the
selection of the nHSE scheduler, the control unit and the
hazard detection unit; this instruction is stored in the PC
register and the current instruction corresponding to the
selected sCPUi will be extracted from the program memory.
The reset_n signal and the 200 MHz differential clock signal
of the Virtex-7 development kit produced by Xilinx can also
be traced. With this signal and the IP Clocking Wizard 5.2
(Rev. 1), the 33 MHz clock signal of the nMPRA processor
is obtained.

In the simulation presented in Fig. 2, one can see the
context switching between sCPU1 and sCPU3 at time
moment T1; this operation was dictated by the
nHSE_Task_Select [3:0] selector and the nHSE_EN_sCPUi
activation signal. Thus, under the direct command of the
nHSE scheduler, the wire ID_Instruction[31:0] signals send
the active MIPS or nHSE instruction forward in the pipeline.
Moreover, the process of selecting the instructions stored in

 47

[Downloaded from www.aece.ro on Saturday, October 13, 2018 at 09:07:09 (UTC) by 159.226.100.198. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 16, Number 4, 2016

the ID_Instruction_reg[1] and ID_Instruction_reg[3]
pipeline registers as well as the 0x00431023-subu,
0x00431020-add and 0x48c10000-wait instructions
(belonging to sCPU1) and 0x00431023-subu and
0x00431020-add (belonging to sCPU3) can be seen. The
content of the ID_Instruction_reg[0] and
ID_Instruction_reg[2] registers remains unaltered, because
sCPU0 and sCPU2 are not selected for execution. The
pipeline registers must memorize the data and the control
signals corresponding to the instruction executed by each
sCPUi. When resuming the task executed by sCPU3, the
consistency of the restored data can be checked, following
that, at time moment T2, the 0x00431020 instruction is
extracted by IF_PCIn from address 0x000007fc.

The characteristics of the nHSE are the following: the
number of designed and scheduled tasks must be within the
limit of available resources of the FPGA circuit; each task
has assigned a priority; for a high flexibility of the
application, each task can have external interrupts attached;
the task with the higher priority is selected by the scheduler
and inserted in execution (if it is not blocked or suspended),
using a unified space for interrupts and tasks; interrupts can
be assigned to tasks so that tasks inherit both the priority and
the characteristics; there are separate times for each task
implemented in hardware and two types of deadlines (the
first is an alarm and the second is a fault).

Analyzing the scheme of treating interrupts, we
encountered the following problem: what happens if all
interrupts are attached to the same sCPUi and occur
simultaneously? In designing the nHSE scheduler, the
following two solutions to this problem were implemented:
the first one, also the simplest, is the software solution. It is
a versatile solution and does not require additional hardware
modules, because the interrupt priorities can be easily
switched [19]. One disadvantage is the delays introduced by
the test blocks and routines for treating interrupts in the case
when more interrupts are attached to the same sCPUi and
occur simultaneously. Moreover, the delay generated by the
test blocks depends on the position of the test block
moment; the second solution involves an additional
hardware block. This paper presents the experimental results
obtained from testing this solution. When one or more
interrupts occur, the block implementing the priority
encoder will generate an adequate number for the interrupt
with the highest priority attached to the sCPUi. As can be
seen in Fig. 3, the displacement of the trap cell is supplied
by the new hardware block implemented in the nHSE
scheduler; the control is thus transferred to the interrupt
handler. For consistency, for each interrupt, the time delay
of the decision blocks will remain the same. It is a rapid
solution, but it requires an additional hardware block whose
complexity is generated by all interrupts from the CPU and
by the possibility of attaching them to different sCPUi.

Usually, situations of inverted priorities occur when the
tasks with higher priority are suspended by interrupts
assigned to tasks with lower priority. In order to eliminate
this disadvantage, the nMPRA architecture uses task and
interrupt unification in the same address space [20].

Fig. 4 shows the registers of the nHSE scheduler, with a
four sCPUi configuration (sCPU0, sCPU1, sCPU2 and
sCPU3) and four external interrupts ExtIntEv[0:3]; for

reasons concerning space, only the ExtIntEv[0] interrupt
attached to sCPU0 has been presented. In the upper part of
the simulation, three control registers and one global register
implemented by nHSE can be noticed in hexadecimal and
binary format; the multiplication by 4 of the control and
global registers is generated by the 4 sCPUi, as follows:
 crTRi[0:3][31:0] memorizes the events validated or

inhibited by the wait nHSE instruction, one bit for each
of the seven events (from right to left, the events
generated by the timer, by the watchdog, by deadline 1
and deadline 2, by interrupts, mutexes and
synchronizing events, are validated (1) or inhibited (0)).
Thus, the 0x00000011 code indicates the fact that time
events and interrupt-generated events are validated for
each sCPUi;

 The crEVi[0:3][31:0] registers contain 32 bits for each
sCPUi, with the role of signaling the occurrence of an
event validated by the crTRi register;

 crEPRi[0:3][31:0] represents the registers that provide
the priorities for events, by allocating 3 bits for each
event (in Fig. 4, the P0 bits group represents the highest
priority assigned to interrupts, and the P1 bits group
represents the priority of the time event);

 grINT_IDi[0:3][31:0] is the register that selects the task
ID to which the interrupt has been attached. In the
present exemplification, it results an interrupt for each
sCPUi.

The prioritization scheme implemented in this scheduler
architecture selects the active event category with the
highest priority, in order to treat it. The level of priorities for
each category of events can be changed dynamically,
depending on the requirements of the mixed-criticality real-
time system. If several events are active in the selected
category, another selection must be performed in order to
find the event that will be treated effectively first. In the
example shown in Fig. 4, the interrupt type event has the
highest priority with a value of crEPRi[0][14:12]=3’b000.

Figure 3. The hardware solution for treating interrupts implemented in the
nHSE scheduler

 48

[Downloaded from www.aece.ro on Saturday, October 13, 2018 at 09:07:09 (UTC) by 159.226.100.198. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 16, Number 4, 2016

Figure 4. The response of the nHSE scheduler to treating an asynchronous external interrupt; ExtIntEv[0] - external interrupt signal; select – interrupt cell
trap activation signal; PC_INTERRUPT_HANDLER – interrupt handler routine pointer associated with ExtIntEv[0] event

At level sCPU0, the time event is also enabled through
the corresponding bit crTRi[0][0]; nevertheless, because the
value of the event priority is set at crEPRi[0][2:0]=3’b001,
the event will be scheduled after the treatment of the
interrupt (crEPRi[0][14:12]< crEPRi[0][2:0]). Further on in
this paper, we are describing the waveforms in the case
when the scheduler responds to the occurrence of an
asynchronous external interrupt. The setting of the
ExtIntEv[0] signal generated by Vivado simulator and the
answer of the scheduler can be observed by activating the
high priority sCPU0 to which the event is attached.

The content of the general register
grInt_IDi[0][31:0]=32’h00000000 indicates the fact that the
interrupt ExtIntEv[0] is assigned to the sCPUi with
ID=32’h00000000, corresponding to sCPU0, in the case of
the static scheduler used for this simulation.

As it can be observed in Fig. 4, the signal for the
asynchronous external interrupt ExtIntEv[0] was set at
moment T1, and the bit crEVi[0][4] is set at moment T2,
indicating the occurrence of an interrupt. Because sCPU2 is
in execution, at the next positive edge of the clock signal,
the context switching between sCPU2 and sCPU0 is
performed under the command of the
nHSE_Task_Select[3:0] selector and its nHSE_EN_sCPUi
activation line. By context switching from moment T3, thus
checking the performance brought by the hardware
implementation of the scheduling architecture presented in
this paper, the reaction of the system will be observed.

The global prioritization of the event system involves the
existence in the system of seven types of various criticality
events, along with the circuit for decoding and selecting the
event with the highest priority. The crEPRi [0:3][31:0]
registers provide the priorities of major events and, with the
help of the demultiplexors activated by signals
corresponding to the validated event, the priority of the
event category is assigned, thus generating signals for

handling the event with the highest priority. Thus, all events,
single in their category, such as time-related events, have
associated a trap cell indicating the routine of treating that
time event. In addition, each interrupt has also attached a
trap cell, the addresses of handling routines being loaded by
sCPU0 into the pointer register, at startup, after reset. In
case one of these events occur, the task associated to it will
become active, and the IF_PCIn register corresponding to
sCPU0 is automatically loaded with the content of the
PC_INTERRUPT_HANDLER=0x00000960 pointer
register, thus leading to the execution of the routine
associated with the event. The return address contained in
the IF_PC_Pre register, prior to loading the address of
handling the routine of the occurred event, is automatically
saved in a backup register associated to the sCPUi. If other
events for sCPUi occur after completing the execution of the
time event handling routine, the routine address for the
event with the highest priority from among the remaining
ones is automatically in IF_PCIn. The IF_PC_Pre register
proceeds to the address for extracting the following
instruction, when the select signal is deactivated.

As we can see in Fig. 4, the contexts switch operation is
guaranteed in one clock cycle. At a 33MHz frequency, the
scheduler answer to an asynchronous external event may be
around 17.95ns (0.6 clock cycle). The internal logic of the
nHSE block needs at least 15ns to perform task scheduling
and remapping sequence of the contexts. It can be said that
the experimental results demonstrate the practical
implementation of the theoretical aspects, therefore
obtaining very low times for interrupt handling and context
switching operations. The ID_Instruction[31:0] pipeline
signal transmit the active instruction, so that the MIPS
instructions 0x20010011-addi (R[Rt=1]=R[Rs=0]+
SignExtImm(0011)) and 0x00431022-subu belong to
sCPU2, and 0x20030005-addi and 0x20030003-addi
correspond to sCPU0. The execution of the program

 49

[Downloaded from www.aece.ro on Saturday, October 13, 2018 at 09:07:09 (UTC) by 159.226.100.198. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 16, Number 4, 2016

containing these instructions validates the datapath, the
mechanism for treating interrupts projected in hardware at
the level of the nMPRA architecture, as well as the
instructions dedicated the nHSE scheduler.

The mechanism for the management of interrupts, their
dynamic attachment to semi-processors, the dynamic nHSE
scheduler implemented in hardware, and the separate
prioritization of the events group for each sCPUi are all part
of the nMPRA architecture, a real and flexible
implementation for mixed criticality systems. The procedure
described above is valid for every event in the system, and
for the events that may be more than one in their category,
as is the case of external interrupts, the events generated by
mutexes and those generated by communication events, the
implementation of an additional hardware block is
necessary. This is because the implementation of the control
logic for selecting the event with the highest priority through
the grINT_IDi, grMutexi and grERFi registers is necessary
(grMutexi is the register that selects the task ID to which the
mutex has been attached and grERFi is part of the event
register file and defines an event).

The range of applications that can be used by the nMPRA
processor includes the following: control applications in the
field of industry, automotive, data communication
equipments, medical devices, a wide range of other
embedded safety-critical applications. A detailed
comparison between the nMPRA architecture and other
similar projects can be found in [6].

IV. CONCLUSION

The innovation elements introduced by this paper are
rendered by the practical implementation of a custom
interrupt management scheduler, based on the nMPRA
architecture. Tests conducted and presented in section III
justify the use of CPU in embedded systems, where there is
a need for a superior computing power in order to run a high
level application. At the same time, we must ensure very
low response times, so as to guarantee the real time feature
in the execution of the tasks, and the calculation of WCET
coefficients.

Following the practical results and the implementation of
a preemptive scheduling algorithm, the nMPRA architecture
can successfully satisfy the requirements of real-time
systems. The jitter of the hardware scheduler at a frequency
of 33MHz is of 17.954ns, and the clock cycle is of
30.3030ns.

As future work, we aim to present the way in which the
scheduler instructions are implemented at the level of co-
processor 2, and the experimental results obtained from
including in hardware the nHSE dynamic scheduler that
enables sCPUi priority switch during execution.

ACKNOWLEDGMENT

This work was partially supported from the project
“Integrated Center for research, development and innovation
in Advanced Materials, Nanotechnologies, and Distributed
Systems for fabrication and control”, Contract No.
671/09.04.2015, Sectoral Operational Program for Increase
of the Economic Competitiveness co-funded from the
European Regional Development Fund.

REFERENCES
[1] G. C. Buttazzo, ”Hard Real-Time Computing Systems - Predictable

Scheduling Algorithms and Applications,” Third edition, pp. 13–30,
Springer, 2011. ISBN: 978-1-4614-0675-4

[2] M. Zimmer, D. Broman, C. Shaver, and E. A. Lee, “FlexPRET: A
processor platform for mixed-criticality systems,” in 20th IEEE Real-
Time and Embedded Technology and Applications Symposium -
RTAS, pp. 101–110, Apr. 2014. doi:10.1109/RTAS.2014.6925994

[3] W. Stallings, “Computer Organization and Architecture,” 10th
Edition, pp. 263–272, 2015. ISBN: 978-0134101613

[4] E. Dodiu, V. G.Gaitan, and A. Graur, “Custom designed CPU
architecture based on a hardware scheduler and independent pipeline
registers – architecture description”, in IEEE 35’th Jubilee
International Convention on Information and Communication
Technology, Electronics and Microelectronics, Croatia, pp. 859-864,
24 May 2012. INSPEC Accession Number: 12865464

[5] E. Dodiu and V. G. Gaitan, “Custom designed CPU architecture based
on a hardware scheduler and independent pipeline registers – concept
and theory of operation,“ in IEEE EIT International Conference on
Electro-Information Technology, Indianapolis, USA, pp. 1–5, May
2012. doi:10.1109/EIT.2012.6220705

[6] V. G. Gaitan, N. C. Gaitan, and I. Ungurean, “CPU Architecture
Based on a Hardware Scheduler and Independent Pipeline Registers,”
IEEE Transactions on Very Large Scale Integration (VLSI) Systems,
vol. 23, no. 9, pp. 1661–1674, Sept. 2015.
doi:10.1109/TVLSI.2014.2346542

[7] www.xilinx.com/support/documentation/boards_and.../ug885_VC707
_Eval_Bd.pdf, (Accessed: Aug. 2016).

[8] J. Shawash and D. R. Selviah, “Real-Time Nonlinear Parameter
Estimation Using the Levenberg–Marquardt Algorithm on Field
Programmable Gate Arrays,” IEEE Trans. Ind. Electron., vol. 60, no.
1, pp. 170–176, Jan. 2013. doi:10.1109/TIE.2012.2183833

[9] M. Shahbazi, P. Poure, S. Saadate, and M. R. Zolghadri, “FPGA-
Based Reconfigurable Control for Fault-Tolerant Back-to-Back
Converter Without Redundancy,” IEEE Trans. Ind. Electron., vol. 60,
no. 8, pp. 3360–3371, Aug. 2013. doi:10.1109/TIE.2012.2200214

[10] M. Shahbazi, P. Poure, S. Saadate, and M. R. Zolghadri, “Fault-
Tolerant Five-Leg Converter Topology With FPGA-Based
Reconfigurable Control,” IEEE Trans. Ind. Electron., vol. 60, no. 6,
pp. 2284–2294, Jun. 2013. doi:10.1109/TIE.2012.2191754

[11] T. T. Phuong, K. Ohishi, Y. Yokokura, and C. Mitsantisuk, “FPGA-
Based High-Performance Force Control System With Friction-Free
and Noise-Free Force Observation,” IEEE Trans. Ind. Electron., vol.
61, no. 2, pp. 994–1008, Feb. 2014. doi:10.1109/TIE.2013.2266081

[12] N. C. Gaitan, I. Zagan, and V. G. Gaitan, “Predictable CPU
Architecture Designed for Small Real-Time Application - Concept
and Theory of Operation,” International Journal of Advanced
Computer Science and Applications – IJACSA, vol. 6, no. 4, 2015.
doi:10.14569/IJACSA.2015.060406

[13] A. Metzner and J. Niehaus, “MSparc: Multithreading in Real-Time
Architectures,” Journal of Universal Computer Science, vol. 6, no. 10,
pp. 1034–1051, 2000. doi:10.3217/jucs-006-10-1034

[14] J. Kreuzinger, R. Marston, Th. Ungerer, U. Brinkschulte and C.
Krakowski, “The Komodo project: thread-based event handling
supported by a multithreaded Java microcontroller,” in 25th
EUROMICRO Conference, Milano, vol. 2, pp. 122-128, 1999. doi:
10.1109/EURMIC.1999.794770.

[15] I. Zagan and V. G. Gaitan, “Schedulability Analysis of nMPRA
Processor based on Multithreaded Execution,” in 13rt International
Conference on Development and Application Systems – DAS,
Suceava, Romania, pp. 130-134, May 19–21, 2016.
doi:10.1109/DAAS.2016.7492561

[16] “MIPS® Architecture For Programmers Volume I-A: Introduction to
the MIPS32® Architecture,” Revision 3.02, Mar. 2011, Available:
https://courses.engr.illinois.edu/cs426/Resources/MIPS32INT-AFP-
03.02.pdf. (Accessed: May 2016).

[17] D. A. Patterson and J. L. Hennessy, “Computer Organization and
Design, Revised Fourth Edition: The Hardware-Software Interface,”
Fourth Edition, pp. 330–379, 2011. ISBN: 978-0-12-374750-1

[18] http://opencores.org/project,mips32r1, (Accessed: Sept. 2015).
[19] E. E Moisuc, A. B. Larionescu, and V. G. Gaitan, “Hardware Event

Treating in nMPRA,” in 12rt International Conference on
Development and Application Systems – DAS, Suceava, Romania,
pp. 66-69, 15–17 May, 2014. doi:10.1109/DAAS.2014.6842429

[20] S. Kelinman and J. Eykholt, “Interrupts as threads,” ACM SIGOPS
Operating Syst. Rev., vol. 29, no. 2, pp. 21–26, Apr. 1995.
doi:10.1145/202213.202217

 50

[Downloaded from www.aece.ro on Saturday, October 13, 2018 at 09:07:09 (UTC) by 159.226.100.198. Redistribution subject to AECE license or copyright.]

