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1Abstract—A quantitative and qualitative increase in 

production has been obtained in most fields through the 
development of CPUs and real-time systems based on them. 
Such is the case in the industrial sector where the automation 
process relieved partly or wholly the human activities needed 
in the manufacturing process. This is mainly due to time 
sharing in embedded real-time systems and to pseudo-parallel 
execution of tasks in the implementation of a single central 
processing unit. The present article presents the validation of 
the nHSE (Hardware Scheduler Engine) scheduler 
implemented in hardware by using a FPGA Xilinx Virtex-7, 
Vivado development platform, and the Vivado Simulator. In 
this context, our main contribution relates to a custom 
interrupt management scheduling policy implemented in 
hardware at the nHSE level, in order to provide predictable 
execution for asynchronous interrupts. By reducing the jitter 
when handling with asynchronous interrupts and completely 
eliminating the uncertainties of the scheduling limit for the set 
of tasks, a significant improvement of the overall system's 
predictability has been obtained. 
 

Index Terms—field programmable gate arrays, pipeline 
processing, architecture, scheduling, operating systems. 

I. INTRODUCTION 

One of the fundamental requirements of a real-time 
system (RTS) is the determinism of executing real-time 
critical tasks [1]. In RTSs based on software schedulers, the 
overhead generated by the operating system and the clock 
cycles needed for context switching are only a few 
parameters that can generate an increase of the jitter and the 
missing of deadlines. The hardware implementation of 
schedulers represents a novelty for real-time systems and a 
true challenge in the field [2]. 

In classical systems, the tasks of the application can be 
interrupted at any moment by the drivers dedicated to the 
interrupts. In real time operating systems, this approach can 
generate unpredictable interrupts of critical tasks, causing 
the non-compliance with the execution deadlines [3].  

In real-time operating systems (RTOS), two approaches 
can be outlined for dealing with interrupts generated by 
external devices. The first method consists in associating 
each source of interrupts to an aperiodic or sporadic task. 

This task, scheduled as any other in the system, is 
responsible for dealing with the associated interrupts. This 
way, the time required for treating interrupts is 
automatically included in the scheduling mechanism. As the 
scheduler selects first the critical tasks, there are certain 
situations in which the tasks treating interrupts are not 
executed immediately. The incorrect implementation of this 
method, or an erroneous initialization of task parameters 
required by the scheduling algorithm (priority, deadline, 
type or criticality), can generate data loss in RTOS. 
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A different approach for implementing the treating 
interrupts routine is that of interrupting the current task and 
immediately executing the interrupt service routine (ISR). 
This method minimizes the latency of interrupts; 
nevertheless, the costs involved must be taken into account, 
so that to ensure the feasibility of the task set in the system. 

This paper describes the implementation of Multi Pipeline 
Register Architecture (nMPRA) processor [4-6] using the 
FPGA Virtex-7 circuit, presenting the experimental model of 
the real-time scheduler implemented in hardware that 
implements a custom interrupt management scheduling 
policy specific to RTSs (subject of this article and the 
novelty for the proposed architecture). The project has been 
implemented using the VC707 Evaluation Kit [7] produced 
by Xilinx and Vivado 2015.4 design environment and the 
source code has been written in Verilog HDL. The nMPRA 
project is the result of the following: outstanding 
performance in the case of context switching, architectural 
simplicity, implementing specific deadlines in hardware, 
inter-task synchronization and communication implemented 
in hardware, predictable execution of real time tasks, treating 
external interrupts and time related events with minimum 
jitter and handling general exceptions. 

The novelty of this paper resides in the innovative 
mechanism of handling interrupts integrated in the nHSE 
hardware module. Thus, the interrupts can be programmed 
in the same way as tasks, guaranteeing the feasibility of the 
system even when the interrupts are handled in real time. 
This paper presents an innovative processor implementation 
named nMPRA representing a feasible and realistic 
alternative to the already-existing solutions in the field, 
because it makes the best use of time and minimizes the 
jitter. For this to be obtained, the field-programmable gate 
array (FPGA) devices [8-9] with a high capacity in logic 
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gates, available today at acceptable prices [10-11], represents 
a hardware support for the development of embedded real-
time operating systems [12].  

The present paper is structured as follows: after a brief 
introduction in section I, section II sums up a few useful 
methods for treating interrupts used in classical computing 
systems; section III describes the nMPRA processor and the 
mechanism for treating interrupts implemented in hardware, 
and finally, section IV focuses on the conclusions and future 
research. 

II. INTERRUPTS PROBLEM IN CLASSICAL COMPUTING 

SYSTEMS AND RELATED WORK 

To design the nHSE module and to obtain better 
performances brought by the nMPRA, an analysis of events 
handled through software as well as hardware was necessary 
in the case of treating interrupts in a classical computing 
system. Thus, the nMPRA architecture, together with the 
nHSE scheduler implemented in hardware, remove partially 
or totally the events handled through software in the case of 
treating an interrupt. One of the problems in treating 
interrupts is that the CPU must wait for an indefinite period 
of time so that the I/O module is prepared for the 
transmission and reception of data. During this standby 
period, the CPU must constantly interrogate the status of the 
I/O module; consequently, the performances of the entire 
system decrease [3]. To avoid this, the CPU could issue a 
command for the integrated module and only afterwards 
introduce other tasks in execution. Thus, at the end of each 
instruction cycle, the CPU checks for interrupts. When the 
I/O module is prepared to issue data towards the CPU, it 
will send the CPU an interrupt request; the CPU resumes the 
current task, saves the context of the current program (PC 
and CPU registers) and performs data transfer with the 
peripheral device. At the end of treating the interrupt, the 
CPU restores on a stack the context of the previously saved 
program and resumes its execution. Since interrupts can 
appear unpredictably in the running program, the context 
saving operation must include all information necessary for 
restoring the interrupted program. ISR is not a routine called 
by the running program and moreover, these two program 
sequences can belong to different users. In conclusion, in the 
process of treating interrupts, two main problems can occur: 
the processor identifying the I/O module that generated the 
event and the processing of simultaneous interrupts.  

The occurrence of an interrupt triggers both hardware and 
software events. As it can be seen in Fig. 1, the following 
event sequence will result in case an I/O device initiates a 
data transfer: 

• The I/O device emits an interrupt signal to the CPU; 
• The CPU completes the execution of the current 

instruction, checks for the occurrence of an interrupt, and, if 
necessary, sends a confirmation signal to the device that 
generated the interrupt; 

• The CPU saves on stack the information of the program 
that runs at the moment when the interrupt occurs. This 
information includes the (PSW – Program Status Word) and 
the location of the next instruction to be executed (PC – 
Program Counter). The CPU loads in the PC register the 
address for treating interrupts corresponding to the event 
that triggered it. In the next instruction cycle, the CPU 

continues to extract the instruction addressed by the new 
PC; thus, the program for treating interrupts gains control; 

• After saving the program's current context on the 
system stack, the stack pointer is updated with a new value. 
In order to treat the interrupt, an examination is required, 
regarding either the condition relating to the I/O operation, 
or the event that caused the interrupt. This operation may 
need sending additional commands or confirmation signals 
to the I/O device; 

• Treating the interrupt; 
• After the interrupt has been successfully treated, the 

context restoring begins by copying the register previously 
saved on the stack. Finally, the CPU status contained in the 
PSW register is restored from the stack. At this point, the 
next instruction extracted and decoded belongs to the 
program interrupted by the ISR. 

Figure 1. General scheme of processing an interrupt in a classical 
computing system [3] 
 

The MSparc architecture presented in [13] is a custom 
processor based on block multithreading, designed to 
support architectural requirements for real-time systems. 
The proposed multithreaded processor is based on the 
SPARC standard, adapted to meet the system requirements. 
In order to provide the real time response, guaranteed by a 
minimal jitter, the authors choose to move the Round Robin 
scheduling algorithm from software to hardware. The main 
reason for implementing the MSparc project is to improve 
the reaction time for events with hard real-time constraints, 
preserving the predictable behavior.  

The project Komodo presented by Kreuzinger et al. in 
[14], is a Java-based multithreading microcontroller for 
handling multiple real-time threads. The concept uses 
multiple program counters and instruction windows, stack 
register sets, and a signal unit to manage a set of threads 
triggered by interrupts. In order to provide real-time support 
and schedule multiple threads with different priorities using 
the proposed four-stage pipeline architecture, the picoJava 
instruction set is improved. Because multithreading 
microcontroller supports fast context-switching, if a branch 
or memory access causes pipeline stagnation, the Komodo 
Priority manager can schedule another thread to use the 
unallocated cycles.  

III. PROPOSED INTERRUPT HANDLING SYSTEM 

IMPLEMENTED BY NHSE SCHEDULER AND NMPRA SUPPORT 

The advantage of the interrupts handling system 
implemented by the nMPRA is that it is not necessary to use 
a dedicated controller for task selection and interrupts 
management [12].  
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Figure 2. The sCPU1 and sCPU3 context switching operation; clock_200MHzP, clock_200MHzN - 200MHz differential signal clock; reset_n – reset 
signal; clock - nMPRA clock; IF_PCIn – program counter; ID_Instruction_reg[0:3][31:0] - reg type sCPUi instruction; nHSE_Task_Select[3:0] - sCPUi 
selector; nHSE_EN_sCPUi - nHSE enable signal; ID_Instruction[31:0] - wire type sCPUi instruction 
 

The innovation elements introduced by this paper are the 
special results obtained from the synthesis, implementation 
and testing of the nMPRA processor, by using the FPGA 
Virtex-7 development kit from Xilinx. Vivado simulator and 
ChipScope analyzer were used in order to validate the 
nMPRA architecture, the instructions dedicated to the nHSE 
scheduler and measurement of the jitter when an external 
asynchronous interrupt occurs. The predictable response is 
ensured even when external asynchronous interrupts occur, 
when the CPU load is at the upper limit. The interrupt 
latency and context switching represent characteristics 
typical to the nMPRA processor, these coefficients having 
acceptable values for a deterministic architecture [15]. This 
section describe and validate a custom CPU architecture that 
includes a real-time scheduler implemented in hardware that 
totally or partly eliminates the overhead generated by 
functions specific to classical operating system. All nMPRA 
components are designed for absolute determinism and 
outstanding performances. 

The aim of the tests performed using a competitive 
hardware platform was the practical implementation of the 
following: the nHSE hardware integrated scheduler, the 
module treating asynchronous external interrupts, and the 
System‐on‐Chip project used in testing the CPU. The 
CPU implements the MIPS instruction set [16], adding 
additional instructions for the integrated scheduler nHSE.  

The architecture of the nMPRA processor is based on a 
five stages assembly line, enabling the simultaneous 
execution of up to five instructions on different stages [17]. 
In the best case scenario, when hazard situations do not 
occur on the assembly line, the execution report is one clock 
cycle/instruction. The implementation is based on the 
project described in [18], a 32-bit MIPS processor which 
aims for conformance with the MIPS32 Release 1 ISA. The 
MIPS32 architecture sets a new standard of performance for 
embedded processors on 32-bit. This architecture is the 
foundation of MIPS technologies for the next generation of 
high-performance processors based on this design, and it 
also features compatibility for the MIPS64 architecture. The 
MIPS architecture is extremely stable due to the robust set 
of instructions. The instructions are scalable from 32 bits to 
64 bits, with a wide range of software development tools 

and consistent support from numerous licensed MIPS 
technologies.  

Due to the fact that the new nMPRA architecture relies on 
multiplexing multiplied resources, such as Program Counter, 
Register File and Pipeline Registers, this structure forms a 
typical MIPS architecture which we will call semi CPU 
(sCPU). An i instance of this semiprocessor will be called 
semiprocessor i (sCPUi). The scheduler of the nMPRA 
processor, called nHSE is the central module of this 
architecture [15]. The implemented and validated 
architecture uses a unified space for interrupts and tasks, 
with a custom interrupt management scheduling policy. The 
scheduler also has a timer block for each task which can be 
configured within the boot procedure. Fig. 2 represents the 
context switching operation of sCPU1 and sCPU3, when the 
scheduler performs a preemptive scheduling algorithm 
based on priorities, at a CPU working frequency of 33 MHz. 
Thus, when a context switch occurs concurrently with 
IF_PCIn signals, the content of the 
ID_Instruction_reg[0:0][31:0] pipeline registers can be 
analyzed. If the program jumps at a different address, the 
efficiency of the assembly line decreases; the assembly line 
is thus loaded, starting with the first instruction from the 
new segment of the executed code program. The address of 
the next instruction will be updated, according to the 
selection of the nHSE scheduler, the control unit and the 
hazard detection unit; this instruction is stored in the PC 
register and the current instruction corresponding to the 
selected sCPUi will be extracted from the program memory. 
The reset_n signal and the 200 MHz differential clock signal 
of the Virtex-7 development kit produced by Xilinx can also 
be traced. With this signal and the IP Clocking Wizard 5.2 
(Rev. 1), the 33 MHz clock signal of the nMPRA processor 
is obtained.  

In the simulation presented in Fig. 2, one can see the 
context switching between sCPU1 and sCPU3 at time 
moment T1; this operation was dictated by the 
nHSE_Task_Select [3:0] selector and the nHSE_EN_sCPUi 
activation signal. Thus, under the direct command of the 
nHSE scheduler, the wire ID_Instruction[31:0] signals send 
the active MIPS or nHSE instruction forward in the pipeline. 
Moreover, the process of selecting the instructions stored in 
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the ID_Instruction_reg[1] and ID_Instruction_reg[3] 
pipeline registers as well as the 0x00431023-subu, 
0x00431020-add and 0x48c10000-wait instructions 
(belonging to sCPU1) and 0x00431023-subu and 
0x00431020-add (belonging to sCPU3) can be seen. The 
content of the ID_Instruction_reg[0] and 
ID_Instruction_reg[2] registers remains unaltered, because 
sCPU0 and sCPU2 are not selected for execution. The 
pipeline registers must memorize the data and the control 
signals corresponding to the instruction executed by each 
sCPUi. When resuming the task executed by sCPU3, the 
consistency of the restored data can be checked, following 
that, at time moment T2, the 0x00431020 instruction is 
extracted by IF_PCIn from address 0x000007fc. 

The characteristics of the nHSE are the following: the 
number of designed and scheduled tasks must be within the 
limit of available resources of the FPGA circuit; each task 
has assigned a priority; for a high flexibility of the 
application, each task can have external interrupts attached; 
the task with the higher priority is selected by the scheduler 
and inserted in execution (if it is not blocked or suspended), 
using a unified space for interrupts and tasks; interrupts can 
be assigned to tasks so that tasks inherit both the priority and 
the characteristics; there are separate times for each task 
implemented in hardware and two types of deadlines (the 
first is an alarm and the second is a fault). 

Analyzing the scheme of treating interrupts, we 
encountered the following problem: what happens if all 
interrupts are attached to the same sCPUi and occur 
simultaneously? In designing the nHSE scheduler, the 
following two solutions to this problem were implemented: 
the first one, also the simplest, is the software solution. It is 
a versatile solution and does not require additional hardware 
modules, because the interrupt priorities can be easily 
switched [19]. One disadvantage is the delays introduced by 
the test blocks and routines for treating interrupts in the case 
when more interrupts are attached to the same sCPUi and 
occur simultaneously. Moreover, the delay generated by the 
test blocks depends on the position of the test block 
moment; the second solution involves an additional 
hardware block. This paper presents the experimental results 
obtained from testing this solution. When one or more 
interrupts occur, the block implementing the priority 
encoder will generate an adequate number for the interrupt 
with the highest priority attached to the sCPUi. As can be 
seen in Fig. 3, the displacement of the trap cell is supplied 
by the new hardware block implemented in the nHSE 
scheduler; the control is thus transferred to the interrupt 
handler. For consistency, for each interrupt, the time delay 
of the decision blocks will remain the same. It is a rapid 
solution, but it requires an additional hardware block whose 
complexity is generated by all interrupts from the CPU and 
by the possibility of attaching them to different sCPUi. 

Usually, situations of inverted priorities occur when the 
tasks with higher priority are suspended by interrupts 
assigned to tasks with lower priority. In order to eliminate 
this disadvantage, the nMPRA architecture uses task and 
interrupt unification in the same address space [20]. 

Fig. 4 shows the registers of the nHSE scheduler, with a 
four sCPUi configuration (sCPU0, sCPU1, sCPU2 and 
sCPU3) and four external interrupts ExtIntEv[0:3]; for 

reasons concerning space, only the ExtIntEv[0] interrupt 
attached to sCPU0 has been presented. In the upper part of 
the simulation, three control registers and one global register 
implemented by nHSE can be noticed in hexadecimal and 
binary format; the multiplication by 4 of the control and 
global registers is generated by the 4 sCPUi, as follows: 
 crTRi[0:3][31:0] memorizes the events validated or 

inhibited by the wait nHSE instruction, one bit for each 
of the seven events (from right to left, the events 
generated by the timer, by the watchdog, by deadline 1 
and deadline 2, by interrupts, mutexes and 
synchronizing events, are validated (1) or inhibited (0)). 
Thus, the 0x00000011 code indicates the fact that time 
events and interrupt-generated events are validated for 
each sCPUi; 

 The crEVi[0:3][31:0] registers contain 32 bits for each 
sCPUi, with the role of signaling the occurrence of an 
event validated by the crTRi register; 

 crEPRi[0:3][31:0] represents the registers that provide 
the priorities for events, by allocating 3 bits for each 
event (in Fig. 4, the P0 bits group represents the highest 
priority assigned to interrupts, and the P1 bits group 
represents the priority of the time event);  

 grINT_IDi[0:3][31:0] is the register that selects the task 
ID to which the interrupt has been attached. In the 
present exemplification, it results an interrupt for each 
sCPUi. 

The prioritization scheme implemented in this scheduler 
architecture selects the active event category with the 
highest priority, in order to treat it. The level of priorities for 
each category of events can be changed dynamically, 
depending on the requirements of the mixed-criticality real-
time system. If several events are active in the selected 
category, another selection must be performed in order to 
find the event that will be treated effectively first. In the 
example shown in Fig. 4, the interrupt type event has the 
highest priority with a value of crEPRi[0][14:12]=3’b000.  

Figure 3. The hardware solution for treating interrupts implemented in the 
nHSE scheduler 
 

 48 

[Downloaded from www.aece.ro on Saturday, October 13, 2018 at 09:07:09 (UTC) by 159.226.100.198. Redistribution subject to AECE license or copyright.]



Advances in Electrical and Computer Engineering                                                                      Volume 16, Number 4, 2016 

Figure 4. The response of the nHSE scheduler to treating an asynchronous external interrupt; ExtIntEv[0] - external interrupt signal; select – interrupt cell 
trap activation signal; PC_INTERRUPT_HANDLER – interrupt handler routine pointer associated with ExtIntEv[0] event 
 

At level sCPU0, the time event is also enabled through 
the corresponding bit crTRi[0][0]; nevertheless, because the 
value of the event priority is set at crEPRi[0][2:0]=3’b001, 
the event will be scheduled after the treatment of the 
interrupt (crEPRi[0][14:12]< crEPRi[0][2:0]). Further on in 
this paper, we are describing the waveforms in the case 
when the scheduler responds to the occurrence of an 
asynchronous external interrupt. The setting of the 
ExtIntEv[0] signal generated by Vivado simulator and the 
answer of the scheduler can be observed by activating the 
high priority sCPU0 to which the event is attached. 

The content of the general register 
grInt_IDi[0][31:0]=32’h00000000 indicates the fact that the 
interrupt ExtIntEv[0] is assigned to the sCPUi with 
ID=32’h00000000, corresponding to sCPU0, in the case of 
the static scheduler used for this simulation.  

As it can be observed in Fig. 4, the signal for the 
asynchronous external interrupt ExtIntEv[0] was set at 
moment T1, and the bit crEVi[0][4] is set at moment T2, 
indicating the occurrence of an interrupt. Because sCPU2 is 
in execution, at the next positive edge of the clock signal, 
the context switching between sCPU2 and sCPU0 is 
performed under the command of the 
nHSE_Task_Select[3:0] selector and its nHSE_EN_sCPUi 
activation line. By context switching from moment T3, thus 
checking the performance brought by the hardware 
implementation of the scheduling architecture presented in 
this paper, the reaction of the system will be observed.  

The global prioritization of the event system involves the 
existence in the system of seven types of various criticality 
events, along with the circuit for decoding and selecting the 
event with the highest priority. The crEPRi [0:3][31:0] 
registers provide the priorities of major events and, with the 
help of the demultiplexors activated by signals 
corresponding to the validated event, the priority of the 
event category is assigned, thus generating signals for 

handling the event with the highest priority. Thus, all events, 
single in their category, such as time-related events, have 
associated a trap cell indicating the routine of treating that 
time event. In addition, each interrupt has also attached a 
trap cell, the addresses of handling routines being loaded by 
sCPU0 into the pointer register, at startup, after reset. In 
case one of these events occur, the task associated to it will 
become active, and the IF_PCIn register corresponding to 
sCPU0 is automatically loaded with the content of the 
PC_INTERRUPT_HANDLER=0x00000960 pointer 
register, thus leading to the execution of the routine 
associated with the event. The return address contained in 
the IF_PC_Pre register, prior to loading the address of 
handling the routine of the occurred event, is automatically 
saved in a backup register associated to the sCPUi. If other 
events for sCPUi occur after completing the execution of the 
time event handling routine, the routine address for the 
event with the highest priority from among the remaining 
ones is automatically in IF_PCIn. The IF_PC_Pre register 
proceeds to the address for extracting the following 
instruction, when the select signal is deactivated.  

As we can see in Fig. 4, the contexts switch operation is 
guaranteed in one clock cycle. At a 33MHz frequency, the 
scheduler answer to an asynchronous external event may be 
around 17.95ns (0.6 clock cycle). The internal logic of the 
nHSE block needs at least 15ns to perform task scheduling 
and remapping sequence of the contexts. It can be said that 
the experimental results demonstrate the practical 
implementation of the theoretical aspects, therefore 
obtaining very low times for interrupt handling and context 
switching operations. The ID_Instruction[31:0] pipeline 
signal transmit the active instruction, so that the MIPS 
instructions 0x20010011-addi (R[Rt=1]=R[Rs=0]+ 
SignExtImm(0011)) and 0x00431022-subu belong to 
sCPU2, and 0x20030005-addi and 0x20030003-addi 
correspond to sCPU0. The execution of the program 
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containing these instructions validates the datapath, the 
mechanism for treating interrupts projected in hardware at 
the level of the nMPRA architecture, as well as the 
instructions dedicated the nHSE scheduler. 

The mechanism for the management of interrupts, their 
dynamic attachment to semi-processors, the dynamic nHSE 
scheduler implemented in hardware, and the separate 
prioritization of the events group for each sCPUi are all part 
of the nMPRA architecture, a real and flexible 
implementation for mixed criticality systems. The procedure 
described above is valid for every event in the system, and 
for the events that may be more than one in their category, 
as is the case of external interrupts, the events generated by 
mutexes and those generated by communication events, the 
implementation of an additional hardware block is 
necessary. This is because the implementation of the control 
logic for selecting the event with the highest priority through 
the grINT_IDi, grMutexi and grERFi registers is necessary 
(grMutexi is the register that selects the task ID to which the 
mutex has been attached and grERFi is part of the event 
register file and defines an event).  

The range of applications that can be used by the nMPRA 
processor includes the following: control applications in the 
field of industry, automotive, data communication 
equipments, medical devices, a wide range of other 
embedded safety-critical applications. A detailed 
comparison between the nMPRA architecture and other 
similar projects can be found in [6]. 

IV. CONCLUSION 

The innovation elements introduced by this paper are 
rendered by the practical implementation of a custom 
interrupt management scheduler, based on the nMPRA 
architecture. Tests conducted and presented in section III 
justify the use of CPU in embedded systems, where there is 
a need for a superior computing power in order to run a high 
level application. At the same time, we must ensure very 
low response times, so as to guarantee the real time feature 
in the execution of the tasks, and the calculation of WCET 
coefficients.  

Following the practical results and the implementation of 
a preemptive scheduling algorithm, the nMPRA architecture 
can successfully satisfy the requirements of real-time 
systems. The jitter of the hardware scheduler at a frequency 
of 33MHz is of 17.954ns, and the clock cycle is of 
30.3030ns.  

As future work, we aim to present the way in which the 
scheduler instructions are implemented at the level of co-
processor 2, and the experimental results obtained from 
including in hardware the nHSE dynamic scheduler that 
enables sCPUi priority switch during execution.  
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