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Fractional-order sliding mode control
for a class of uncertain nonlinear
systems based on LQR

Dong Zhang1, Lin Cao2 and Shuo Tang1

Abstract
This article presents a new fractional-order sliding mode control (FOSMC) strategy based on a linear-quadratic regulator
(LQR) for a class of uncertain nonlinear systems. First, input/output feedback linearization is used to linearize the non-
linear system and decouple tracking error dynamics. Second, LQR is designed to ensure that the tracking error dynamics
converges to the equilibrium point as soon as possible. Based on LQR, a novel fractional-order sliding surface is intro-
duced. Subsequently, the FOSMC is designed to reject system uncertainties and reduce the magnitude of control chat-
tering. Then, the global stability of the closed-loop control system is analytically proved using Lyapunov stability theory.
Finally, a typical single-input single-output system and a typical multi-input multi-output system are simulated to illustrate
the effectiveness and advantages of the proposed control strategy. The results of the simulation indicate that the proposed
control strategy exhibits excellent performance and robustness with system uncertainties. Compared to conventional
integer-order sliding mode control, the high-frequency chattering of the control input is drastically depressed.

Keywords
Fractional control, sliding mode control, linear-quadratic regulator, uncertain nonlinear system.

Date received: 5 September 2016; accepted: 3 January 2017

Topic: Special Issue - Intelligent Flight Control for Unmanned Aerial Vehicles
Topic Editor: Mou Chen

Introduction

The origins of fractional calculus can be traced to a note

from Leibuiz to L’Hospital 300 years ago, in which the

meaning of the derivative of order one half is discussed.1

Actually, fractional calculus derives from extending the

derivatives and integrals of integer-order to noninteger

cases. In the past few decades, many scholars have pointed

out that derivatives and integrals of fractional order are

highly suitable for the description of various physical

objects, such as continuum mechanics, porous media, ther-

modynamics, electrodynamics, quantum mechanics,

among others.2 Recently, designing fractional-order con-

trollers has become one of the most exciting topics in con-

trol theory. This idea was first proposed by Oustaloup.3

He introduced a robust fractional-order control scheme

called Common Robust d’Order Non-Entire.4 Podlubny

introduced the most well-known fractional-order proportion-

integral-derivative controller, which is named PIlD�.5,6

Many additional fractional-order controllers have been pro-

posed, including tilt-integral derivative (TID) controllers,7

fractional-order lead–lag compensators,8,9 fractional-order

optimal controllers,10,11 and fractional-order adaptive

controllers.12,13
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Sliding mode control (SMC) is a well-known effective

control technique that is widely applied for both linear and

nonlinear systems.14 This control is also considered as a

feasible control approach for systems with uncertainties.

Generally, any linear sliding surface can guarantee the

asymptotic stability and desired performance of the closed-

loop control systems. However, monotonous switching feed-

back control gain causes the settling time of the closed-loop

control system to increase, meaning that the system state

cannot reach the equilibrium point in a finite time. More-

over, SMC offers high-frequency chattering of control input,

which leads to undesirable loads on control actuators.

In recent years, with the development of fractional con-

trols, many scholars have employed fractional-order SMC

(FOSMC) to overcome these drawbacks. In the study of

Dadras and Momeni15, a novel type of control strategy called

fractional-order terminal SMC (FO-TSMC) was introduced

for a class of uncertain dynamical systems. Based on the

Lyapunov stability theory, a fractional-order switching

manifold was proposed to guarantee the sliding condition.

The results of a simulation indicated that the proposed strat-

egy ensured finite time stability for the closed-loop system.

In the study of Mujumdar et al.,16 an FOSMC scheme was

proposed for control of a single-link flexible manipulator.

The switching surface was constructed based on the frac-

tional derivatives in the differential equation. The proposed

FOSMC not only achieved better performance with small

control chattering, but also was robust in the face of external

load disturbance and parameter variations. In the study of

Tang et al.,17,18 the FOSMC was proposed for antilock brak-

ing systems (ABS) to regulate the slip to a desired value.

These controllers not only deal with the uncertainties in

ABS, but also track the desired slip faster than conventional

integer-order SMC (IOSMC). Additionally, FOSMC has

been employed for speed control of permanent magnet syn-

chronous motors,19,20 for vibration suppression of uncer-

tain structures,21 for control design of uncertain nonlinear

systems,22,23 for control of fractional-order chaotic sys-

tems,24,25 and so on and achieved better control capacities.

To date, most of the research on FOSMC has focused on

the fractional-order switching manifold, these FOSMC

strategies improve the control capacities of conventional

IOSMC by employing fractional-order switching manifold,

but they cannot achieve optimal control performance with-

out additional measures. In this article, an optimal FOSMC

strategy is proposed for a class of uncertain nonlinear

systems. The proposed control strategy is designed based

on linear-quadratic optimal theory. Specially, a novel

fractional-order sliding surface is introduced based on lin-

ear quadratic regulator (LQR). Therefore, the controller

designed in this article is composed of two parts as nominal

item and fractional item. The nominal item makes the sys-

tem achieve convergence as quickly as possible and the

fractional item rejects the system uncertainties to guarantee

the necessary robustness. Finally, the stability of closed-

loop system is proved by using Lyapunov stability theory.

The rest of this article is organized as follows. In sec-

tion 2, some preliminaries and definitions of fractional cal-

culus are introduced. In section 3, the uncertain nonlinear

system and the tracking error dynamics are formulated. In

section 4, the optimal FOSMC scheme based on LQR is

constructed. Two academic examples are simulated in sec-

tion 5. Finally, conclusions are included in section 6.

Basics definitions and preliminaries
of fractional calculus

Definitions of fractional derivatives and integrals

Fractional calculus is a generalization of integration and

differentiation to noninteger-order fundamental operator

aD
g
t , where a and t are the bounds of the operation and

g 2 R is the fractional order.26 The continuous integro-

differential operator is defined as

aD
g
t ¼

dg

dtg
; g > 0;

1; g ¼ 0;Ð t

a
ðdtÞg; g < 0;

8>>><
>>>:

(1)

There are three commonly used definitions for frac-

tional derivatives involving Grünwald–Letnikov (GL),

Riemann–Liouville (RL), and Caputo definitions. The

GL definition is

aD
g
t f ðtÞ ¼ lim

h!0
h�g

X½ðt�aÞ=h�

j¼0

ð�1Þj
g

j

� �
f ðt � jhÞ (2)

where h is the time increment, ½x�means the nearest integer

no more than x, and

g

j

� �
¼ Gðgþ 1Þ

Gðjþ 1ÞGðg� jþ 1Þ (3)

with Gamma function Gð�Þ. The RL definition is

aD
g
t f ðtÞ ¼ 1

Gðn� gÞ
dn

dtn

ðt

a

f ðtÞ
ðt � tÞg�nþ1

dt for n� 1 < g < n

(4)

The Caputo definition is given by

aD
g
t f ðtÞ ¼ 1

Gðn� gÞ

ðt

a

f ðnÞðtÞ
ðt � tÞg�nþ1

dt for n� 1 < g < n

(5)

As mentioned above, under the homogenous initial con-

ditions, the RL and the Caputo derivatives are equivalent.

Approximation of fractional derivative

Recall the approximate GL definition given below, where

the step size of h is assumed to be very small

2 International Journal of Advanced Robotic Systems



aD
g
t f ðtÞ � h�g

X½ðt�aÞ=h�

j¼0

ð�1Þj
g

j

 !
f ðt � jhÞ

¼ h�g
X½ðt�aÞ=h�

j¼0

ωj f ðt � jhÞ ; (6)

where the binomial coefficients can recursively be calcu-

lated with the following formula

ω0 ¼ 1; ωj ¼ 1� gþ 1

j

� �
ωj�1; j ¼ 1; 2; � � � : (7)

This approximation method is very satisfied when

jgj < 127 For the case jgj > 1, it is usual to split fractional

operator like

aD
g
t¼aDn

t ðaDd
t Þ; g ¼ nþ d; n 2 Z; d 2 ½0; 1� (8)

Then, only the term of aDd
t need to be approximated.

Problem statement

Consider an uncertain affine nonlinear system of the form

_x ¼ f ðxÞ þ gðxÞu
y ¼ HðxÞ

�
(9)

where x 2 Rn and u 2 Rm are the state variable and control

input, respectively, and y 2 Rm is the system output.

f ðxÞ ¼ ½ f1ðxÞ � � � fnðxÞ �T and gðxÞ ¼ ½ g1ðxÞ � � � gmðxÞ �
are the smooth uncertain functions including inertial para-

meter uncertainties and external disturbances. HðxÞ ¼
½ h1ðxÞ � � � hmðxÞ �T is the measureable smooth output

function. While the relative degree riði ¼ 1; ::: ;mÞ of the

system with respect to the system outputs is constant and

known. The solutions are understood in the Filippov sense,28

and system trajectories are supposed to be infinitely extend-

ible in time for any bounded Lebesgue-measurable input.

The control task is to track the reference command

yd 2 Rm with tracking error eðxÞ ¼ ½ e1ðxÞ � � � emðxÞ �T ¼
ydðxÞ � yðxÞ converges to e ¼ 0 in finite time. To achieve

this control object, by using the technique of input/output

feedback linearization, system (9) is linearized to be

decoupled tracking error dynamics as follows.

After differentiating ri times of each tracking error

element ei, the tracking error dynamics can be presented as

e½r� ¼

e
ðr1Þ
1

e
ðr2Þ
2

..

.

e
ðrmÞ
m

2
66666664

3
77777775
¼

Lr1

f e1

Lr2

f e2

..

.

Lrm

f em

2
6666664

3
7777775

þ

Lg1
Lr1�1

f0
e1 Lg2

Lr1�1
f e1 � � � Lgm

Lr1�1
f e1

Lg1
Lr2�1

f0
e2 Lg2

Lr2�1
f e2 � � � Lgm

Lr2�1
f e2

� � � � � � � � � � � �

Lg1
Lrm�1

f em Lg2
Lrm�1

f em � � � Lgm
Lrm�1

f em

2
66666664

3
77777775

u

(10)

or

e½r� ¼ F�ðxÞ þ G�ðxÞu (11)

where r ¼ ðr1; r2; ::: ; rmÞ is the vector of relative degree.

Due to existences of the system uncertainty, equation

(11) can be rewritten as the form

e½r� ¼ F�0ðxÞ þ G�0ðxÞuþ dðxÞ (12)

where F�0ðxÞ and G�0ðxÞ are the nominal items derived from

the known parts of f ðxÞ and gðxÞ. While G�0ðxÞ is assumed

to be nonsingular when t > 0. dðxÞ presents the unknown

lumped uncertainty and is assumed to be boundable.29

Furthermore, if
Pm

i¼1 ri ¼ n, the dynamic equations of

the tracking error system are decoupled into canonical

forms as

_& i
1 ¼ & i

2

_& i
2 ¼ & i

3

..

.

_& i
ri
¼ L

ri

f0
ei þ

Xm

j¼1

Lg0j
ðLri�1

f0
eiÞuj þ dðxÞi ¼ vi � diðxÞ

8>>>>>>><
>>>>>>>:

(13)

where & i
ri
¼ e

ðri�1Þ
i ¼ L

ri�1
f0

ei, f0 and g0j are the nominal

portions of f ðxÞ and gðxÞ respectively, vi is the ith element

of v, diðxÞ is the ith element of dðxÞ, and i ¼ 1; 2; :::;m,

j ¼ 1; 2; :::;m.

FOSMC based on LQR

For stabilizing system (13), when there are no uncertain-

ties, LQR is designed to guarantee the finite time conver-

gence of the tracking error dynamics. In classical linear

control theories, LQR is an optimal controller derived from

solving linear-quadratic optimization problems. It has

shown excellent performance in the control synthesis of

linear systems. However, if unmodeled dynamics and sys-

tem uncertainties are taken into account, it will be difficult

to guarantee the control objective with LQR alone. Thus, in

this section, a novel optimal FOSMC strategy is designed

based on LQR to counteract the inertial uncertainties. Com-

pared to conventional IOSMC, the magnitude of control

chattering is drastically depressed.

Therefore, to stabilize system (13) in finite time, the

auxiliary control input vi is composed of two parts

vi ¼ vn þ vs (14)

where the first item vn, named nominal control, is contin-

uous and stabilizes system (13) as soon as possible when

there are no uncertainties. And the second item vs, named

fractional control, is discontinuous and conquers uncer-

tainty to guarantee system robustness and ensures that con-

trol objectives are reached.

Zhang et al. 3



Nominal control based on LQR (vn)

Consider the particular case diðxÞ ¼ 0. Then, there is no

need to compensate the uncertainties, the control law reads

as vi ¼ vn. Therefore, system (13) is rewritten as a linear

form of

_z ¼ A � zþ B � vn (15)

where z ¼ ½ & i
1 � � � & i

ri
�T . A and B are defined by

A ¼

0 1 0 � � � 0

0 0 1 � � � 0

..

. ..
. ..

. . .
. ..

.

0 0 0 � � � 1

0 0 0 � � � 0

2
6666664

3
7777775

ri�ri

; B ¼

0

..

.

0

1

2
66664

3
77775

ri�1

The control objective is to drive the state of system (15)

to z ¼ 0 as soon as possible. This objective can be achieved

through the use of linear optimal control theory. In this

article, we design continuous control input vn by linear-

quadratic optimal control laws. Considering intermediate

objective function

J ¼ 1

2

ð1
0

ðzT Qzþ �v2
nÞdt; ðQ 2 Rri�ri ; � 2 RÞ (16)

the control input vn is derived by minimizing J subjected

to (16)

vn ¼ ���1BT Pz (17)

where P is the positive-definite solution to the Riccati

equation with design parameters Q and a

AT Pþ PA� ��1PBT BPþ Q ¼ 0; ðQ; � > 0Þ (18)

Obviously, it can be easily verified that if diðxÞ 6¼ 0,

system (13) will not converge to the origin in finite time

under the control law (17).

Fractional control (vs)

As mentioned above, finite time convergence cannot be

guaranteed when system uncertainties exist in system

(13). Therefore, fractional control item is employed as one

of the integrated control to achieve robustness. Then, the

closed-loop system can reject system uncertainties, and the

control input is chattering reduced.

Generally, conventional IOSMC employs the sliding sur-

face that is linear, stable differential operator on the tracking

error.29 Thus, the conventional sliding surface gets the form as

sc ¼
d

dt
þ l

� �ri�1

ei (19)

where l defines the bandwidth of the tracking error

dynamics.

Based on the conventional sliding surface sc, we define

a fractional-order sliding surface as the following form

s ¼ d

dt
þ l1

0
@

1
A

ri�1

ei �
d

dt
þ l2

0
@

1
A

ri�2

D�ei þ v aux

_v aux ¼ �vn

8>><
>>:

(20)

Compared to conventional sliding surface sc, a fractional

item d
dt
þ l2

� �ri�2
D�ei and an auxiliary item v aux are adopted.

Then differentiating the fractional-order sliding surface

in (20), we have

_s ¼ e
ðriÞ
i þ

Xri�1

j¼1

bje
ðjÞ
i �

Xri�2

j¼0

cjD
�þjei � vn (21)

Combining (12) with (21), we obtain

_s ¼
Xri�1

j¼1

bje
ðjÞ
i �

Xri�2

j¼0

cjD
�þjei þ vi � diðxÞ � vn

¼
Xri�1

j¼1

bje
ðjÞ
i �

Xri�2

j¼0

cjD
�þjei þ vs � diðxÞ

(22)

where bj ¼
ri � 1

j� 1

� �
ðri�1Þ!lri�j

1

ðri�jÞ!ðj�1Þ! and cj ¼
ri � 2

j� 1

� �
ðri�2Þ!lri�1�j

2

ðri�1�jÞ!ð j�1Þ!.

Let _s ¼ 0, the discontinuous controller is obtained as follows

vs ¼ �
Xr�1

j¼1

bje
ðjÞ
i þ

Xr�2

j¼0

cjD
�þjei � ki sgnðsÞ (23)

where ki is a switching feedback control gain and might be

any positive number. In (23), the first-order SMC item

ki sgnðsÞ (with ki > jdiðxÞj) is considered as the equivalent

control part to reject the system uncertainty. When system

(13) evolves on the sliding mode s ¼ 0, the equivalent

control part can be gotten the form as ki sgnðsÞ ¼ diðxÞ.
And sgnð�Þ is sign function as

sgnðsÞ ¼
�1; s < 0

0; s ¼ 0

1; s > 0

8><
>: (24)

Lyapunov stability analysis

Lyapunov stability analysis is a common approach to deal

with the stability problem of linear/nonlinear systems. Thus,

this part employs Lyapunov stability theory to prove the

finite time convergence of the sliding motion and the global

stability of the closed-loop control system as follows.

Theorem. Considering the tacking error dynamics of system

(13), if it is controlled with the fractional sliding mode control-

ling law described by vi ¼ vn þ vs, where vn and vi are defined

by (17) and (23), respectively, then the tracking error trajectory

will converge to the proposed sliding surface (20) in finite time.

Proof. Choosing the Lyapunov function as

V ¼ jsj (25)

4 International Journal of Advanced Robotic Systems



Differentiating equation (25), we obtain

_V ¼ _s sgnðsÞ ¼ vs þ
Xr�1

j¼1

cje
ð jÞ �

Xr�2

j¼0

djD
�þje

 !
sgnðsÞ

(26)

Substituting (23) into (26), we obtain

_V ¼ �ki½ sgnðsÞ�2 � 0 (27)

Therefore, on the basis of Lyapunov stability theorem,

the state variables of the closed-loop control system will

converge to the equilibrium point.

Before the sliding motion is stable, ½ sgnðsÞ�2 ¼ 1

always holds true. Thus, equation (27) is rewritten as the

following form

_V ¼ djsj
dt
¼ �ki (28)

Then, we obtain

dt ¼ djsj
�ki

(29)

The sliding motion happens within finite time, then we

taking integral of both sides of (29) from 0 to trðtr

0

dt ¼ � 1

ki

ðjsðtrÞj
jsð0Þj

dt (30)

Set sðtrÞ ¼ 0, we obtained that

tr ¼ �
jsj
ki

				
jsðtr Þj

jsð0Þj

¼ jsð0Þj
ki

(31)

Therefore, the tracking error trajectory of system (13)

will converge to the sliding surface s ¼ 0 within the finite

time tr ¼ jsð0Þjki
, and the proof has been completed.

Remark. As mentioned in Utkin,30 non-smooth Lyapunov

functions can be applied to check the finite time conver-

gence of a system. Therefore, choosing the non-smooth Lya-

punov function V ¼ jsj is common in the literatures.17,21,31

Simulation examples

A kinematic model of a car

The control of a kinematic model of a car is illustrated in

this part. It has been chosen to test the performances of

sliding mode algorithms.32–34 The system is described by

_x1

_x2

_x3

_x4

2
666664

3
777775 ¼

w cosðx3Þ
w sinðx3Þ

w tanðx4Þ=L

0

2
666664

3
777775þ

0

0

0

1

2
666664

3
777775u

y ¼ x2

8>>>>>>><
>>>>>>>:

(32)

where ðx1; x2Þ are the Cartesian coordinates of the rear-axle

middle point, x3 is the orientation angle, x4 is the steering

angle, and u is the control variable (Figure 1). w is

the longitudinal velocity (w ¼ 10 m/s), and L is the

length between the two axles (L ¼ 5 m). The velocity is

assumed to be known with dw ¼ 5% of uncertainty

(w ¼ 10� ð1+5%Þ m/s). The control objective is to steer

the car from a given initial position to the reference trajec-

tory y ref ¼ 10 sinð0:05x1Þ þ 5 in finite time. Thus, the

tracking error is expressed as

e ¼ x2 � 10 sinð0:05x1Þ � 5 (33)

The relative degree of system (32) is easy to be calcu-

lated as 3

_e ¼ w

2
cos

x1

20


 �
cosðx3Þ � w sinðx3Þ;

€e ¼ �w2

L
cosðx3Þ tanðx4Þ �

w2

40
sin

 x1

20

�
cos2ðx3Þ

�w2

2L
cos

 x1

20

�
sinðx3Þ tanðx4Þ;

_€e ¼ �u � w
2

L
sec2ðx4Þ

�
cosðx3Þ þ

1

2
cos

 x1

20

�
sinðx3Þ

�

�w3

L2
tan2ðx4Þ

�
1

2
cos

 x1

20

�
cosðx3Þ � sinðx3Þ

�

þ 3w3

40L
sin

 x1

20

�
cosðx3Þ sinðx3Þ tanðx4Þ

� w3

800
cos

 x1

20

�
cos3ðx3Þ

Then, we obtain

_€e ¼ f �ðxÞ þ g�ðxÞ � u ¼ v

where x ¼ ½ x1 x2 x3 x4 �T is the state vector of system (32).

Let z ¼ ½ e _e €e �T . Then, the tracking error dynamics

of system (32) is described as

y

x

L

θ

ϕ

Figure 1. Kinematic car model.
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_z ¼
0 1 0

0 0 1

0 0 0

2
64

3
75zþ

0

0

1

2
64
3
75v

where v ¼ vn þ vs.

First, the continuous control part vn is derived by solving

the Riccati equation (18) for a positive matrix Q and a

positive number b. The solution of this equation, P, is a

symmetric positive definite matrix. Matrix Q and number b

are stated as

Q ¼
5 0 0

0 1 0

0 0 1

2
64

3
75; � ¼ 2

Then, P is calculated as

P ¼
9:1896 7:9448 3:1623

7:9448 11:4396 5:8120

3:1623 5:8120 5:0247

2
64

3
75

Second, the fractional control part vs is obtained by

assigning the fractional-order sliding surface as

s1 ¼ d
dt
þ l1

� �2
e� d

dt
þ l2

� �
D�eþ vaux; _vaux ¼ �vn.

Then, the nonlinear controller proposed in this article

(denoted as FOSMC-LQR) is constructed as

u ¼ 1

g�ðxÞ


� b�1BT Pz� 2l1€e� l2

1 _eþ D�þ2e

þ l2D�þ1e� k1 sgnðs1Þ � f �ðxÞ
�
:

The block diagram of the fractional-order control sys-

tem is shown in Figure 2. For comparison, there are another

three different controllers to be considered: a conventional

IOSMC, a conventional IOSMC based on LQR (denoted as

IOSMC-LQR), and a single FOSMC. These three control-

lers are formulated as following expressions

The IOSMC is

u ¼ 1

g�ðxÞ


� 2l1€e� l2

1 _e� k2 sgnðs2Þ � f �ðxÞ
�

where integer-order sliding surface s2 ¼ d
dt
þ l

� �2
e.

The IOSMC-LQR is

u ¼ 1

g�ðxÞ


� b�1BT Pz� 2l1€e� l2

1 _e� k3 sgnðs2Þ � f �ðxÞ
�

And the single FOSMC is

u ¼ 1

g�ðxÞ


� 2l1€e� l2

1 _eþ D�þ2eþ l2D�þ1e

� k4 sgnðs1Þ � f �ðxÞ
�

In simulations, the design parameters of the three afore-

mentioned controllers are given the values as (l1 ¼ 0:5,

l2 ¼ �0:8, � ¼ 0:2, k1 ¼ 0:8, k2 ¼ 5, k3 ¼ 5, k4 ¼ 5).

Then, the simulation results and their analysis are illu-

strated as follows.

Figure 3 displays a comparison of the system response

between the single LQR and the proposed controller in this

article (FOSMC-LQR). It can be clearly seen that single

LQR results in an unsteady tracking trajectory, and the

tracking error oscillates up and down around e ¼ 0. In

contrast, the system response with FOSMC-LQR presents

a better tracking trajectory, and its tracking error achieves

convergence in finite time.

Figure 4 gives a system response comparison of the

single FOSMC and the FOSMC-LQR. As shown in the

figures, single FOSMC requires larger switching feedback

control gain, k4 ¼ 5 compared to k1 ¼ 0:8, to reject the

system uncertainty. Because of the larger value of

the switching feedback control gain, the control input of

the single FOSMC shows a higher chattering magnitude.

As shown in Figure 4(c) and (d), the system response with

FOSMC-LQR presents faster convergence velocities of the

tracking error and the sliding motion.

The integer-order and fractional-order derivatives of the

tracking error are demonstrated in Figure 5, such as ðe; _e; €eÞ
in Figure 5(a) and ðD0:2e;D1:2e;D2:2eÞ in Figure 5(b).

Compared to conventional IOSMC, FOSMC adopts extra

fractional-order derivatives of the tracking error, as
d
dt
þ l2

� �r�2
D�e in (25). This causes the sliding motion

of FOSMT to converge to s ¼ 0 faster. Figure 6 shows the

v u

2

λ1

d e
dt

Linear-quadratic 

regulator 

v = –b–1BTPz

Fractional-order

SMC

Nonlinear dynamical 

inverse
–1

u = g* (x) v – f* (x)

Nonlinear system

x = F (x) + G(x) u
e

sv

nv

Reference

signal

+
+

λ1

d
dt

+
+

+

+−

−
D

η
e

Figure 2. Block diagram of the fractional-order control system.
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comparison of system response between conventional

IOSMC and FOSMC. As shown in the figures, FOSMC

presents smaller tracking error and faster convergence

velocity in the sliding motion. Therefore, fractional-order

derivatives of the tracking error are necessary for the

improvement of control performance.

Figure 7 shows a system response comparison

between IOSMC-LQR and FOSMC-LQR. As the figures

show, FOSMC-LQR can achieve steady tracking perfor-

mance with small switching feedback control gain

because it adopts extra fractional-order derivatives of

the tracking error. On the other hand, to ensure the

similar control performance, IOSMC-LQR requires a

larger switching feedback control gain, which leads to

a higher magnitude of control chattering and fierce

oscillation of the sliding motion.

Under the conditions of l2 ¼ 0:8 and l2 ¼ �0:8, the

system responses of FOSMC-LQR with different fractional

orders (as � approaches the values of 0.2, 0.5, and 0.8) are

shown in Figures 8 and 9. As shown in the figures, when

l2 ¼ �0:8 and � ¼ 0:2, the FOSMC-LQR presents better

performance in tracking trajectory, faster convergence of

tracking error, and lower amplitude of sliding motion.

However, when l2 ¼ 0:8, the FOSMC-LQR with � ¼ 0:8
presents better control performance than that with � ¼ 0:2.

It can be seen that the fractional order � and the weight l2

of fractional-order derivatives affected the controller capa-

cities synthetically. Therefore, to obtain a desirable control

performance, the tradeoff between � and l2 should be con-

sidered in practical applications.

A dynamic model of a two-link rigid robot manipulator

The physical model of a two-link rigid robot that moves a

horizontal plane is shown in Figure 10. Each joint is

equipped with a motor for providing input torque, an

encoder for measuring joint position, and a tachometer for

measuring joint velocity. The objective of control design

is to make the joint position q1 and q2 follow desired

position histories qd1ðtÞ and qd2ðtÞ, which are specified

by the motion planning system of the robot. Such tracking

control problems arise when a robot hand is required to

move along a specified path, for example, to draw

circles.35,36

By using Lagrangian equations in classical dynamics,

the differential equations of the robot are expressed as

_q1 ¼ ω1; _q2 ¼ ω2;

_ω1

_ω2

" #
¼ M�1

u1

u2

" #
�
�pω2 �pðω1 þ ω2Þ
pω1 0

" #
ω1

ω2

" #( )
:

(34)

where

M ¼
M11 M12

M21 M22

� �
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Figure 3. Comparison of system response between LQR and FOSMC-LQR. LQR: linear-quadratic regulator; FOSMC: fractional-order
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M11 ¼ a1 þ 2a3cosðq2Þ þ 2a4 sinðq2Þ

M22 ¼ a2

M12 ¼ M21 ¼ a2 þ a3 cosðq2Þ þ a4 sinðq2Þ

p ¼ a3 sinðq2Þ � a4 cosðq2Þ

a1 ¼ I1 þ m1l2
c1 þ I2 þ m2l2

c2 þ m2l2
1

a2 ¼ I2 þ m2l2
c2

a3 ¼ m2l1lc2 cosðdeÞ

a4 ¼ m2l1lc2 sinðdeÞ

In real physical systems, the aforementioned constant

parameters are always measured with inertial uncertainties.

In this article, all of the parameter uncertainties are

assumed as an additive variance to the nominal values. The

nominal parameters are defined as28

l0
1 ¼ 1:0; l0

c1 ¼ 0:5; m0
1 ¼ 1:0; I 0

1 ¼ 0:12;

d0
e ¼ 30	; l0

c2 ¼ 0:6; m0
2 ¼ 2:0; I 0

2 ¼ 0:25

And the uncertain parameters are calculated as

l1 ¼ l0
1 þ Dl1; lc1 ¼ l0

c1 þ Dlc1; m1 ¼ m0
1 þ Dlc1; I1 ¼ I 0

1 þ DI1;

de ¼ d0
e þ Dde; lc2 ¼ l0

c2 þ Dlc2; m2 ¼ m0
2 þ Dm2; I2 ¼ I 0

2 þ DI2

(35)

where the additive variances (D) are parameter uncertain-

ties, which are assigned as

Dl1 ¼ 15%l0
1 � sinð2tÞ; Dlc1 ¼ 15%l0

c1 � sinð2tÞ;
Dm1 ¼ 15%m0

1 � cosð2tÞ; DI1 ¼ 15%I 0
1 � sinð3tÞ;

Dde ¼ 15%d0
e � cosð3tÞ; Dlc2 ¼ 15%l0

c2 � sinð2tÞ;
Dm2 ¼ 15%m0

2 � cosð2tÞ; DI2 ¼ 15%I 0
2 � sinð3tÞ

(36)

Let x ¼ ½ q1 q2 ω1 ω2 �T , y ¼ ½ y1 y2 �T ¼ ½ q1 q2 �T ,

u ¼ ½ u1 u2 �T , and

gðxÞ ¼
02�2

M�1

" #
4�2;

f ðxÞ ¼

ω1

ω2

�M�1
�pω2 �pðω1 þ ω2Þ
pω1 0

� �
ω1

ω2

� �
2
66664

3
77775

4�1

then, the robot system given by (34) is simplified as

_x ¼ f ðxÞ þ gðxÞu
y ¼ ½ y1 y2 �T

�
(37)

which is the canonical form given by (9).

The desired trajectories are defined as yd1 ¼ sinðtÞ
and yd2 ¼ sinðtÞ, respectively. Then, the tracking

errors is expressed as the form of e ¼ ½ e1 e2 �T ¼
½ yd1 � y1 yd2 � y2 �T . The relative degree can be easily

calculated as r1 ¼ 2 and r2 ¼ 2

_e1

_e2

� �
¼

_yd1

_yd2

� �
�

ω1

ω2

� �

e½r� ¼
e
ðr1Þ
1

e
ðr2Þ
2

2
4

3
5 ¼ €yd1

€yd2

" #

þM�1
�pω2 �pðω1 þ ω2Þ
pω1 0

" #
ω1

ω2

" #
�M�1

u1

u2

" #

Then, we obtain

e½r� ¼ F�ðxÞ þ G�ðxÞu ¼ vþ dðxÞ (38)

where v ¼ ½ v1 v2 �T are the auxiliary inputs.

Since the relative degree of system (34) meets the con-

dition of r ¼
P2

i¼1 ri ¼ n ¼ 4, then the tacking error

dynamics of (38) can be decoupled into two subsystems

with inertial uncertainties as

_& ¼
0 1

0 0

� �
& þ

0

1

� �
v1 þ

0

1

� �
d1ðxÞ (39)

_t ¼
0 1

0 0

� �
tþ

0

1

� �
v2 þ

0

1

� �
d2ðxÞ (40)

1cl

2cl

1l

2l

1I
1m

2I
2m

ω1,q1,u1

ω 2
,q 2

,u 2

Figure 10. A two-link robot.
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where & ¼ ½ e1 _e1 �T , t ¼ ½ e2 _e2 �T , v1 ¼ vn1 þ vs1, and

v2 ¼ vn2 þ vs2. vniði ¼ 1; 2Þ and vsiði ¼ 1; 2Þ are the con-

tinuous control parts and the discontinuous control parts,

respectively. d1ðxÞ and d2ðxÞ are the system uncertainties.

Then, the auxiliary input v can be designed according to

the control design procedures in section 4.

First, let

Q1 ¼ Q2 ¼ Q ¼
20 0

0 0:1

� �
; �1 ¼ �2 ¼ � ¼ 0:001

the continuous control parts vn1 ¼ ���1
1 BT

1 P1& and

vn2 ¼ ���1
2 BT

2 P2t are derived by solving the Riccati

equation (18). Then, the positive definite matrices P1 and

P2 are calculated as

P1 ¼ P2 ¼ P ¼
2:7671 0:1414

0:1414 0:0196

� �

Second, define the fractional-order sliding surfaces as

si ¼ d
dt
þ li1

� �
ei � li2D�i ei þ v aux; _v aux ¼ �vni; i ¼ 1; 2,

the fractional control parts are obtained as

vsi ¼ �li1 _ei þ li2D�i
þ1ei � ki sgnðsiÞ; i ¼ 1; 2

By substituting v into (39), the nonlinear control law

(FOSMC-LQR) is obtained as

u ¼ ½G�ðxÞ��1½v� F�ðxÞ� ¼ ½G�ðxÞ��1
���1

1 BT
1 P1& � l11 _e1 þ l12D�1

þ1e1 � k1 sgnðs1Þ

���1
2 BT

2 P2t� l21 _e2 þ l22D�2
þ1e2 � k2 sgnðs2Þ

" #
� F�ðxÞ

( )

In simulations, the robot initial condition is

xð0Þ ¼ ½ 1:0 1:0 0 0 �T . The design parameters used

in this simulation are chosen as follows: l11 ¼ 5;
l12 ¼ 1; l21 ¼ 5; l22 ¼ 1; k1 ¼ 1:5; k2 ¼ 1:5; �1 ¼ 0:5;
and �2 ¼ 0:5. Under the same conditions of switching feed-

back control gains k1 and k2, conventional IOSMCs are

also designed for comparison as shown in Figures 11 to 14.

Figures 11 and 12 show a comparison of system

response between the IOSMC and the controller proposed

in this article (FOSMC-LQR) with nominal parameters. It

can be easily seen that the closed-loop system response

with FOSMC-LQR presents faster convergences of posi-

tion tracking and velocity tracking. Because of choosing

the same values of switching feedback control gain, the

control signal presents the similar chattering when the

closed-loop system is stable. However, the sliding motion

of FOSMC-LQR has the faster convergence velocity in

both q1 and q2 position channels.

Figures 13 and 14 show a comparison of system

response between the IOSMC and the FOSMC-LQR with

(a) (b)

(c) (d)

Figure 11. Tracking curves of link 1 with nominal parameters.
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uncertain parameters. And the parameter uncertainties are

described by (36). Due to the existence of parameter uncer-

tainties, the closed-loop system response with IOSMC

becomes more unsteady, which presents unsteady tracking

performance in position and velocity tracking channels.

However, the closed-loop system with FOSMC-LQR

(a) (b)

(c) (d)

Figure 12. Tracking curves of link 2 with nominal parameters.

(a) (b)

(c) (d)

Figure 13. Tracking curves of link 1 with uncertain parameters.
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successfully rejects the time-varying parameter uncertain-

ties and presents excellent tracking robustness.

Conclusion

In this article, a new FOSMC strategy based on LQR

(FOSMC-LQR) for uncertain nonlinear systems has been

proposed. Lyapunov stability theory is used to prove that

the proposed controller results in the finite time conver-

gence of the sliding motion and the global stability of the

closed-loop control system. To demonstrate the effective-

ness and advantages of the proposed controller, two aca-

demic examples, a kinematic model of a car and a dynamic

model of a two-link robot, are simulated. The results of the

simulation demonstrate that the proposed controller

resulted in a faster convergence velocity, better tracking

performance, and excellent system robustness. The pro-

posed controller also performed better than conventional

IOSMC, single LQR, and single FOSMC because it was

designed based on LQR and employed extra fractional-

order derivatives of the tracking error. Moreover, the mag-

nitude of control chattering was reduced drastically.
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