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Abstract: We introduce a general notion of covering property, of which many classical
definitions are particular instances. Notions of closure under various sorts of convergence,
or, more generally, under taking kinds of accumulation points, are shown to be equivalent
to a covering property in the sense considered here (Corollary 3.10). Conversely, every
covering property is equivalent to the existence of appropriate kinds of accumulation points
for arbitrary sequences on some fixed index set (Corollary 3.5). We discuss corresponding
notions related to sequential compactness, and to pseudocompactness, or, more generally,
properties connected with the existence of limit points of sequences of subsets. In spite
of the great generality of our treatment, many results here appear to be new even in very
special cases, such as D-compactness and D-pseudocompactness, for D an ultrafilter, and
weak (quasi) M-(pseudo)-compactness, for M a set of ultrafilters, as well as for [8, a]-
compactness, with 8 and « ordinals.
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