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1Abstract—Performance measurement and evaluation study 

of calculations based on load flow analysis in power 
distribution network is presented. The focus is on the choice of 
load index as it is the basic input for efficient dynamic load 
balancing. The basic description of problem along with the 
proposed architecture is given. Different server resources are 
inspected and analyzed while running calculations, and based 
on this investigation, recommendations regarding the choice of 
load index are made. Short description of used static and 
dynamic load balancing algorithms is given and the proposition 
of load index choice is supported by tests run on large real-
world power distribution network models. 
 

Index Terms—distributed computing, power distribution, 
power system analysis computing, power system management, 
smart grids. 

I. INTRODUCTION 

Power distribution networks are part of the electric 
networks connecting the transmission networks and the end 
consumers, thus, supplying the end users with electricity [1]. 
To deliver electric power more efficiently, reliably and more 
securely, smart grids with modern metering devices and 
communication infrastructure are developed. The real-time 
monitoring of the medium and low voltage distribution 
networks is restricted mostly due to economic and technical 
limitations. Real-time measurements are typically located on 
primary substations at 33/11kV and sparsely on lower 
voltages i.e. on 11kV and on 380V. With the growing 
number of DERs (distributed energy resources) such as 
distributed generators, home batteries and electric vehicles 
with demand response programs the number of 
measurements has proven to be insufficient. Therefore, in 
contrast to state estimation in electric power transmission 
networks where it is usually used to filter out bad 
measurements, in distribution networks state estimation has 
a crucial part, to determine the state of power network from 
a limited number of measurements [2]. To meet the 
demands of the consumers, along with the smart grid 
development, it is necessary to be able to monitor 
distribution networks and perform real-time decisions when 
power outages happen. The number of consumers is usually 
very large, and additionally, power distribution networks are 
built using various equipment, resulting in substantial 
network size, and complexity. These factors and 

requirements have evolved into the development of 
Distribution Management Systems (DMS). As such, one of 
the main expectations of the DMS software is the execution 
of network analysis function, including the fast load flow, 
state estimation, contingency analysis, optimal capacitor 
placement etc. Since electric power distribution companies 
are managing large data models the scalability of the DMS 
software is also an essential factor.  
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grants No. 32018.  

Scalability of a software describes the ability to handle 
increasing or decreasing workload whether by vertical or by 
horizontal scaling. Vertical scalability is achieved by 
improving the computing power with faster processors more 
memory, faster hard disk etc. Horizontal scalability on the 
other hand is accomplished by adding more servers, and it 
has obvious advantages: smaller costs, virtually no 
limitation, easier upgradeability, improved resilience of the 
system etc. In order to utilize horizontal scaling, the 
software must be able to effectively parallelize tasks. This 
can be done on several levels, by distributing tasks to 
separate computers, by distributing tasks on separate CPUs 
within the same computer, or by separating tasks to different 
threads on the same CPU. In related works [3-4] the focus is 
on parallelization of the power analysis algorithm itself. In 
this paper, a different approach is explored: parallelization 
of power analysis related calculations by dividing the 
distribution power network up-front into smaller parts.  

Distribution networks are usually weakly meshed with 
radial topology [1]. This radial topology configuration gives 
the possibility to divide these large distribution network 
models into smaller parts, to so-called roots, and perform 
calculations based on load flow analysis [5] independently 
[6]. Distributed computer networks and distributed systems 
with efficient load balancing are a good choice for the 
previously addressed real-time response problems. Load 
balancing can be described as a method for distributing the 
workload to different computational nodes in effort to 
minimize response time and/or distribute the workload 
evenly between available nodes. The division of the power 
distribution network into independent parts i.e. roots, gives 
the possibility to distribute the roots data and calculations 
related to them to different computational nodes [7]. It is 
shown in [8] that the initial workload can be estimated 
ahead based on the configuration of the network. Different 
equipment types (non-zero-impedance branches, generators, 
consumers etc.) have been considered, and a fairly good 
initial load distribution can be done based on the quantity of 
different types of equipment. 

The aim of this paper is to select good performance 
indices for load balancing distributed systems in order to 
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achieve fast power systems calculations. The focus is on 
selection of proper measure for measuring the workload. 
The selection of the right performance indicators is critical 
for the balancing of the workload and for sustaining system 
stability within DMS with large power distribution network. 
The concepts used for workload balancing on system startup 
and for maintaining it during system uptime as well are 
presented in following sections and supported with 
experimental results in Section IV.  

II. ARCHITECTURE 

A. Functional architecture overview 

The proposed centralized architecture of the system from 
the aspect of functionality and responsibility is illustrated in 
Fig. 1.  

power network model changes, 
calculation requests

System Manager
- processing and forwarding the 
incoming changes and requests

- load balancing of calculation nodes

...

Calculation Node 1
- topology analysis and load flow 

study based calculations
- collecting performance metrics

Calculation Node N

 
Figure 1. Functional system overview 
 

The System Manager is responsible for tasks such as 
receiving, processing and forwarding the incoming changes 
in the power distribution network model, forwarding the on-
demand calculations requests and the load balancing. The 
System Manager is connected via bus to every Calculation 
Node (CN) which are located on individual machines in a 
computer cluster. The CNs are dedicated to running 
topology analysis and calculations which are based on load 
flow analysis on a part of the power distribution network, 
which has been assigned by System Manager to that specific 
CN. 

B. Components overview 

The System Manager includes two components: Model 
Manager and Load Balancer, as illustrated on Fig. 2. At the 
beginning, the initial computational load is distributed by 
assigning different parts of the power distribution network 
to every CN. The initial power network partitioning to the 
so-called roots is done based on the networks configuration 
[6], which gives the starting workload distribution. The 
Model Manager maintains information about which part of 
the power network is assigned to which CN. Calculations 
are performed when change in the network topology 
configuration is detected or when an on-demand calculation 
request is received. The Model Manager forwards the 
incoming changes and requests to correspondent CN. 
Consequently, the CN processes and stores the changes in a 
Network Model, which performs topology analysis in a 
Topology Analyzer (TA) and runs calculations in a Function 
Calculator (FC). The modules on CNs are running on 
different processor cores.  
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Figure 2. Architecture of the system 
 

The Load Balancer is liable for the performance 
monitoring and workload balancing between the CNs. 
During runtime, the Performance Indices Collector 
components collect the selected performance metrics from 
every node. The Load Balancer is then periodically invoked, 
and inspects the state of the system and the need to 
redistribute the workload between CNs based on gathered 
workload information. 

III. LOAD BALANCING 

The essential problem of load balancing and different 
algorithms for achieving it, are well studied and covered in 
literature [9-11]. Tersely, the main objectives of load 
balancing are the minimization of the response time, 
optimization of the systems resource usage and preventing 
the overload of any resource. From the aspect of which 
available information is used for workload distribution and 
whether it is done prior to or during runtime, load balancing 
strategies can be classified in two major categories: static 
and dynamic. As such, static load balancing is based only on 
available knowledge about the system before runtime. 
Adversely, dynamic load balancing implies using 
information about the current state of the system when 
making workload re-distribution decisions. This also entails 
that static load balancing is simpler, easier to implement and 
has coherent execution time, however using dynamic load 
balancing results in a better workload distribution. 
Therefore, the Load Balancer component has two parts, the 
static and dynamic load balancers. 

A. The Static Load Balancer 

Static load balancing is used only at start-up when the 
power distribution network is being divided into roots based 
on normal switch statuses. The root weights are calculated 
based on the networks configuration, and roots are assigned 
to CNs. At this stage, neither communication costs i.e. the 
amount of data exchanged between CNs and the System 
Manager nor the rate of calculation requests are known.  
A1. Optimization problem 

Static load balancing can be viewed as a graph 
partitioning problem [8], but since tie switches connecting 
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different roots are off – the problem is reduced to a well-
known, NP-complete set partitioning problem. Given the 
finite set of numbers A ⊂ ℤ+, partition A to such subsets An 
that the difference between the sum of each subset is 
minimized. Translated to the current problem: given the 
power distribution network divided to roots and with 
computational weight of each root wi, find such sets of roots 
that the sum of the roots weight on each CNs are equal as 
possible. The weight of the entire distribution network can 
be written as a set R = {w1,...,wr}, where r is the number of 
roots. With given number of calculation nodes N, find such 
subsets Rn ⊂ R for n = 1…N, so that difference of the 
subset sum is minimized 

                       (1) 
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under conditions that the subsets are:  
 - mutually exclusive Ri ⋂ Rj = ∅ for i≠j, j,i = 1…N 
 - collectively exhaustive   R1 ⋃ R2 ⋃ … U Rn = R. 

The brute-force search for all possible subsets would have 
exponential runtime, O(2r), so it is only applicable to small 
sets. Since the workload distribution will be later refined 
with dynamic load balancing, finding the optimal solution is 
not crucial at start-up. Few algorithms were considered for 
static load balancing for which short previews are given 
below. 
A2. Algorithms 

The greedy heuristic algorithm (GH) is straightforward. 
Starting with sorted root weights in decreasing order, move 
each root weight to a set with the least sum until no weights 
are left [12]. It requires set sorting, which has O(r log r) 
complexity and root assigning with O(r) complexity. 

The set differencing method [13], also known as 
Karmarkar-Karp heuristics algorithm (KK), as the previous 
algorithm, starts with an ordered set of root weights. For 
every element in the set an N-tuple is created, and the 
corresponding root weight is initially assigned as the first 
element of tuple. At every iteration of the algorithm, the 2N 
largest elements from two N-tuples (a1,…,aN) and (b1,…,bN) 
are combined according to the rule 

 bababaC NNN 1121 ,...,,                       (2) 

The previously combined tuples are removed, and the new 
tuple C is normalized by subtracting the smallest value 
found in it. The tuple is then sorted in descending order, and 
placed back into the sorted set of N-tuples. This is repeated 
until only one tuple is left. Finally, the last tuple represents 
the difference of the resulting subsets sums. To retrieve the 
actual subsets additional accounting is necessary while 
combining the tuples. The KK algorithm runs in O(n log n) 
time. 

The sequential number partitioning (SNP) [14] first runs 
the KK algorithm to retrieve the initial upper and lower 
bounds. The upper bound ub is the best partition i.e. the sum 
of set divided with the number of partitions 
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and the lower bound lb is calculated as 
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where d is the difference between the best N-way partition 

found by KK. 
Next, a binary exclusion-inclusion tree is built with every 
level in the binary tree representing a root weight from the 
set. The leaves correspond to subsets including the root 
weights on left branches and excluding on right. The 
inclusion tree is then searched for subsets which satisfy the 
conditions that the subset sum at the leaf node is less than 
ub, and the subset sum at the leaf node plus the sum of non-
assigned root weights is larger than the lb. For the remaining 
partition, SNP is then called recursively with lb greater or 
equal than previous subset sum. The worst-case complexity 
of tree search is O(2r). 

In future works, next to the presented and implemented 
algorithms, the principles and methodologies presented in 
[15-18] could be considered as well, where alongside nature 
inspired algorithms better solution is obtained using hybrid 
algorithms. 

B. Workload estimation 

Since one of the key issues with good dynamic load 
balancing is recognizing an adequate load index, the choice 
is explained in more detail in the following section. The load 
index should represent the workload on some node. 
Therefore, the following questions arise: how to estimate the 
workload on a CN, which performance indicators should be 
collected and used as load index? With some exceptions 
[19-21], mainly configurations with homogenous nodes are 
analyzed. In [22-23] the authors used various load indices, 
but they all have similar reasoning regarding the selection of 
parameters for load index. The incoming job, or in this case 
the load flow analysis, will demand some resources from the 
CN i.e. I/O queues, CPU and memory consumption, and 
therefore, the CPU queue length, the CPU utilization, the 
normalized response time, etc. will reflect the workload on 
the node. The authors have been using one of the mentioned 
per, or some simple combination of them. It is shown in [24-
25] that the CPU queue gives a good estimate of the 
workload and it can be used as load index. In some 
situations, the CPU queue does not reflect the real workload 
on the CN. For example, if some CN has a large hard disk 
I/O, the read/write operations will be blocked until served, 
and thus the hard disk will be a bottleneck and CPU will be 
idle. Fortunately, this can be measured with disk queue i.e. 
the number of request waiting for the disk. 
B1. Performance metrics 

With the centralized architecture, presented in Section II, 
various system performance metrics were taken into 
consideration: CPU usage and CPU queues, memory loads, 
disk queues and transfer, etc. As the model of the power 
network is held in the CNs memory, there is low or none 
disk I/O, and thus the performance indicators related to the 
hard disk are dismissed at the start. For the same reason, the 
memory consumption is not descriptive enough either, since 
the small fluctuations in memory usage are just the result of 
the process of creating the calculation model for load flow 
analysis itself. The remaining performance indicators, the 
CPU usage and the CPU queue length, have shown as good 
estimate of the workload.  

Since TA and FC are working in tandem, it has been 
observed that frequent calculation requests can result in the 
overload of one of the components (depending on the type 
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of calculation), leaving the other components inactive. In 
these situations, where TA and FC modules are running on 
different processor cores, the total CPU usage will not 
reflect the real workload, since one processor core will be 
idle. To tackle this problem, additional performance 
counters are introduced: the length of the request queues on 
TA and on FC. Thus, the load index of the j-th node i.e. CNj 
can be expressed as some function of the collected 
performance indices.  
Considering the above, from all possible performance 
metrics the following subset is chosen:  

    PM ={C, QT, QF}    (5) 
where C, QT, QF denote total processor time, TA and FC 
request queue lengths, respectively, for the observed CNj.  
B2. Load index 

The load index Lj for CNj will be some function of 
collected values defined by variables from PM 

)(PfLj       (6) 

with P defined as  
 nPPPP 21 



    (7) 

representing the vector of collected performance index 
triplets for n samples i.e. the i-th sample on the observed 
CNj will be  

  (8)  T
FTi QQCP 

A simple linear combination of these variables yields a 
good workload estimate. Let’s define the function f from (6) 
as a mapping of P to the interval [0, 1]  

   1,01,0:  LPf     (9) 

where an unloaded node will have load index 0 and 
overloaded node will have 1. Subsequently, define li as a 
vector of combined performance indices C  QT  QF  
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for each node i = 1…n and with weight factors K defined 
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where rj is the number of roots assigned to CNj, and 
m=|PM|=3.The coefficients KC, KT and KF, are arbitrary 
chosen values allowing to increase or decrease the impact of 
some performance metric variables, with constraint 
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For the value of one for the coefficients KC, KT and KF, 
every performance index will have the same impact on the 
resulting load index. 

CPU usage is a frequently changing variable, and load 
flow analysis also has a short execution time, hence some 
smoothing function is necessary. To flatten these short-term 
peaks exponential smoothing is used over the entire time of 
the observation. The smoothing function is applied as 

                (13) 1
ˆ)1(ˆ
 iii lll 

with smoothing factor α = [0,1] as by definition  
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where Δt is the sampling period of the collected 
performance indices and τ is the time constant i.e. the 
elapsed time of a step response needed to reach 63.2% of its 
original value. For smaller α, the older values will have 

more impact and the function will be “smoother”. The initial 
value in exponential smoothing (13) is set to the first value 
of load index i.e. 

11
ˆ ll  .                                    (15) 

Considering that DMS is a mission-critical application, 
threshold limit of 75% is imposed to CPU usage, and with 
the same reasoning, thresholds for queue lengths are defined 
as the number of roots rj, assigned to CNj. Finally, the load 
index for CNj will have the form (16). 
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The workload state of the whole system can be described 
with a set of load index (16) of every CN. 

L = {L1, L2,…, LN}    (17) 

C. The Dynamic Load Balancer 

The main motivation for dynamic load balancing is the 
improvement of the workload distribution by using 
information about the current state of the system. 

Three main parts of the dynamic load balancing can be 
observed [9]: 

- local workload information of CN 
- information policy 
- transfer policy. 

The information policy describes the procedure of sharing 
the information in the system (between which components 
and in which manner is information broadcasted, how 
frequently, etc.). Since the architecture of the system is 
centralized, all CNs are sending their state to Load Balancer 
at System Manager periodically.  
The transfer policy decides when is it advantageous to 
migrate the task and to which CN it should be transferred.  
The workload information represents the current workload 
state of the CNs.  
C1. Optimization problem 

After an arbitrary period, based on the collected load 
indices, presented in the previous section, if imbalance is 
detected, that is, when the difference between load indices 
defined with (16) is larger than the predefined limit, the 
workload should be redistributed. From CNs with high 
workloads some roots (together with calculations), are 
migrated to other CN with less workload. The aim is to 
minimize the imbalance i.e. to minimize the cost function 
defined with mean squared error 
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where L is the average value of all load indexes 
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Since the size of the model for one root can be significant, 
the migration of the model data can be expensive, i.e. the 
communication costs cannot be neglected and they should 
be considered as well. Therefore, the dynamic load 
balancing should not be triggered below a certain threshold 
value. Like with static load balancing, several algorithms are 
tested. Given the fact that the initial workload distribution is 
already done with static load balancing, it is in interest to 
consider algorithms for dynamic load balancing which start 
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with already distributed workloads, and perform refinement 
in the form of reallocating just some of the roots to other 
nodes, so that the migration cost is minimized. The aim of 
the dynamic load balancing algorithm is the minimization of 
the function  

DFF m          (20) 

where Fm is the total migration cost between CNs, and D is 
defined with (1).  
Under the assumption that the network connection is the 
same between the CNs, the migration cost is reduced to the 
size of the computational model of the migrated roots. 


Ms

im
i

sF         (21) 

where si is the size of the computational model of i-th root, 
and M is the set of all migrated roots. 
In current application, the sizes of the computation models, 
i.e. the migration costs of the smallest roots are up to MB 
while the largest roots can have computational model of few 
hundreds of MB. 
C2. Algorithms  

One of the diffusion based method for graph partitioning 
is the Cut-Paste (CP) [26]. In every iteration, for each 
overloaded CN (donor), a root is chosen and migrated to an 
underloaded CN (receiver) so that the resulting imbalance is 
minimized with least possible migration i.e. the optimization 
function (21) is minimized. 

A very similar technique, the Match-Maker (MM) is 
presented in [27]. The most loaded CN (source) is paired 
with the least loaded CN (destination), the second most 
loaded CN is paired with second least loaded CN and so on. 
Then, roots are selected from sources and migrated to 
destination. The selection is simple: find the largest root in 
source that can be migrated to destination, so that the it will 
not become overloaded. 
In both CP and MM algorithms, the process is repeated until 
there is no more improvement or until the desired value of 
workload balance is reached.  

Another group of algorithms for repartitioning is the so-
called scratch-remap algorithms. While the diffusion based 
algorithms start with already distributed workloads and 
attempt to achieve better balancing between the CNs, the 
scratch-remap algorithms calculate balanced workload 
distributions from scratch, and then try to minimize the 
difference between the existing and the calculated workload 
distributions. One of the scratch-remap algorithms is the 
Locally-Matched Multilevel Scratch-Remap (LMSR) 
presented in [28]. LMSR can be described in three main 
steps: 

1. Determining the new balanced workload distribution - 
the balanced partitioning is obtained using algorithms for 
partitioning from scratch. 

2. Similarity matrix – in this step a similarity matrix is 
constructed. The similarity matrix S is a square matrix of 
size N (where N is the number of CNs). Each cell of that 
matrix represents the measure of similarity between the 
existing imbalanced and the newly calculated balanced load 
distribution from 1st step. As the goal is to minimize the 
migration between nodes while reaching balanced workload 
distribution, the root sizes are of adequate measure, and 
hence the element S(i, j) is the sum of weights of 
overlapping roots that belongs both to CNi in imbalanced 

and to CNj in the newly calculated balanced workload 
distribution. 

3. Mapping - after the similarity matrix is constructed, 
distinct pairs of unbalanced and balanced CNs are chosen in 
effort to minimize the migration cost. From each row and 
column of the matrix S one cell must be chosen so that their 
sum is the maximum possible. This can be reduced to a well 
know assignment problem or finding a maximum weight 
matching in a weighted bipartite graph, which can be solved 
using the Hungarian algorithm in O(n2) running time. 

IV. RESULTS 

To justify the choice of performance metrics and to prove 
the validity of the (17) experimental tests were conducted. 
which included triggering load flow analysis and state 
estimations on real power distribution networks using CNs 
with similar characteristics.  

A. Experimental setup 

The two main components on each node, the TA and FC 
modules, described in section II, were assigned to different 
processor core. The calculations were triggered in different 
time intervals on various roots. The frequency of the 
calculation requests was depending on root size, and the 
performance indicators defined in (5) were collected. The 
CPU and the queue lengths are sampled on every second. 
All tests were performed using a cluster of PCs with similar 
characteristic (Intel i5 processors and 32GB RAM memory). 
The iterative algorithm for load flow analyses is written in 
Intel Fortran programming language, while the topology 
analysis part is written in C++.  
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Figure 3. Normalized CPU usage (a), TA (b) and FC (c) queue lengths and 
load index (d) for overloaded and for moderately loaded CN 
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Two typical example of the collected data is illustrated in 
Fig. 3. where the normalized performance samples of CPU 
and queue lengths for one node are shown. There was no 
emphasis on neither of the performance index and therefore 
the coefficients KC, KT and KF defined with (11) are set to 
the value of one. In this example, the collected normalized 
values C/100, (Fig 3. a), QT/rj (Fig 3. b) and QF/rj (Fig 3. c) 
and the resulting load index (Fig 3. d), which varies between 
0.5-0.75, shows that the CN is mildly loaded (shown as 
moderately loaded CN). With more frequent calculation 
requests, the same variables are presented on the same Fig. 3 
(shown as overloaded CN). It can be concluded, that the TA 
module in this setup is not capable of performing the 
topology analysis at a given rate, thus resulting in pileup of 
requests on the queue QT as shown in Fig. 3. b, while the 
queue length on the FC module (Fig. 3 c) and the CPU is in 
normal range. The resulting load index (16) in this case 
approaches the value of one. 

Different configurations and combinations of above 
described static and dynamic load balancing algorithms 
were tested. The complete tests i.e. static load balancing, 
collecting the performance indices and the dynamic load 
balancing is performed for a period of few weeks. The 
network model is taken from a real power distribution 
networks, both European and North American. Some 
insignificant differences have been observed in load 
balancing due to different network configuration, voltages, 
and since North American distribution networks are mostly 
unbalanced. The more detailed description of the used data 
model can be found in [8].  

The representative example shown in the following 
figures illustrates the obtained results for power distribution 
network consisting from approximatively 400 roots of 
different sizes, which are distributed to five homogenous 
CNs. 
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Figure 4. Normalized CPU (a), TA (b) and FC (c) queue lengths and the 
load index (d) with random assignment of roots and without static and 

dynamic load balancing 
 

As large power distribution network roots have more 

switching devices there is a much higher probability that 
calculations will be requested for these roots due to network 
reconfiguration caused by operating with switching devices. 
This can be concluded from collected statistic values from 
field as well. 

B. Experimental results 

 With random assignment of the roots to the CNs i.e. 
without static and dynamic load balancing the collected data 
are shown in Fig. 4. It can be observed that the workload is 
not evenly distributed between nodes, the CPU usage on 
some nodes is very low. After a while the normalized TA 
queue length on one node starts increasing up to the point 
where the component is not capable of handling any more 
the incoming requests at this rate. Since the frequency rates 
of the calculation requests are not known upfront, they are 
not considered in static load balancing and the initial 
workload distribution is very inaccurate.  
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Figure 5. Comparison of the workload distribution after static load 
balancing: Sequential Number Partitioning (SNP), Karmarkar-Karp (KK) 

and Greedy Heuristic (GH) 
 

The comparison of initial imbalance on CNs after 
partitioning with SNP, KK and GH is shown in Fig. 5. Both 
SNP and KK found nearly perfect distribution while the GH 
resulted in somewhat larger workload imbalance. 
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Figure 6. Results of dynamic load balancing with LMSR 
 

In Fig. 6 the moment of dynamic balancing is captured. 
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After a while the load index (defined with (16)) has taken 
the value of one. Since it is not desired to perform load 
balancing immediately (the imbalance can be just a result of 
some short-term anomaly e.g. power outage), some delay 
has been added. At time t, after the load index was high for 
given time (60 minutes in this setup), the dynamic 
repartitioning is triggered.  

The weights of roots are recalculated using previous 
weights and the rate of requests. With the newly obtained 
weights, repartitioning is performed and some roots, 
determined by the dynamic load balancing strategy, are 
migrated. On the example shown on Fig. 6, LMSR algorithm 
is used for dynamic load balancing. After migration, the 
workload on the previously overloaded CN dropped and the 
performance measurements are showing that the workloads 
are fairly distributed to all CNs. Along with the 
improvement of the load index (Fig. 6 d), the CPU 
utilization and the request queue lengths are uniformly 
distributed (Fig. 6 a-c).  

The LMSR algorithm, as expected, has resulted in a better 
workload redistribution which is illustrated in Fig. 7 a, 
however the data migration is very large comparing to MM 
and CP. In the current setup, the size of the computational 
model for one root is ranging from few MB up to few 
hundreds of MB and therefore the migration cost cannot be 
neglected. When the best possible workload distribution is 
not mandatory, i.e. some small arbitrary imbalance is 
allowed, the CP and the MM algorithms can be easily 
modified to stop when the desired value of workload 
imbalance is reached. 

Because of the nature of diffusion algorithms (CP and 
MM) the iterative improvement process can be easily 
stopped which is not the case with remapping from the 
scratch (LMSR). This has resulted in very small increase of 
the overall workload imbalance (Fig. 7 b), and almost 
unnoticeable change in the load index, but the reduction of 
data migration is significant. 
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Figure 7. Workloads on the calculation nodes after dynamic load balancing 
(a) and after dynamic load balancing with allowed imbalance (b) 

 

In Table I, along with the cost function (18), the size of 

the migrated data is shown when the best workload 
balancing is obtained and when this requirement is relaxed 
i.e. small imbalance is allowed in CP and in MM. Results 
show that the migration cost can be significantly reduced 
with CP or MM algorithm when the best workload balance 
is not mandatory. Based on the obtained result it can be 
concluded that by using the mentioned algorithms for static 
and dynamic load balancing the workload balance can be 
improved. The best workload balance is achieved with 
LMSR algorithm, which is advantageous in cases when all 
CNs have high workload. In those scenarios, even small 
imbalance can lead to overload of one of the CNs which will 
lead to instable system. On the other hand, the CP algorithm 
has shown to be better solution compared to the MM   
algorithm both in terms of workload balancing, and 
migration cost. Comparing to the LMSR algorithm the CP 
algorithm performed with somewhat worse workload 
balancing but gave a much smaller migration costs. 

 
TABLE I. COST FUNCTION AND MIGRATION COST 

 Before LMSR CP MM 
 Best solution that can be found 
J 0.585 0.003 0.015 0.068 

Data migration [MB] - 8671 1694 2093 
 With small imbalance allowed 
J 0.585 0.003 0.02 0.083 

Data migration [MB] - 8671 1493 2052 

V. CONCLUSION  

This paper proposes the selection of the load index and 
comparing static and dynamic load balancing strategies for 
distributing calculations to calculation nodes are presented. 
The solution is applied to power system analysis 
calculations where methodology and arguments behind the 
selection of performance indices are given. Based on 
performance measurements and on the characteristics of 
load flow analysis on weakly meshed power distribution 
networks the choice of load index is elaborated along with 
short overview of different load balancing strategies is 
given. The conjecture given in section III is proven with test 
results. All static load balancing methods gave reasonably 
good results with GH performing slightly worse than KK 
and SNP. From dynamic load balancing strategies 
considered in this work LMSR gave the best workload 
balancing, however when small imbalance can be tolerated 
CP outperformed LMSR and MM in terms of speed of 
execution and size of migrated data. 
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