
Advances in Electrical and Computer Engineering Volume 17, Number 4, 2017

Load Balancing of Large Distribution Network
Model Calculations

Lajos MARTINOVIC1,2, Darko CAPKO1, Aleksandar ERDELJAN1
1Faculty of Technical Sciences, University of Novi Sad, 21000, Serbia

2Schneider Electric DMS NS, 21000, Serbia
dcapko@uns.ac.rs

1Abstract—Performance measurement and evaluation study

of calculations based on load flow analysis in power
distribution network is presented. The focus is on the choice of
load index as it is the basic input for efficient dynamic load
balancing. The basic description of problem along with the
proposed architecture is given. Different server resources are
inspected and analyzed while running calculations, and based
on this investigation, recommendations regarding the choice of
load index are made. Short description of used static and
dynamic load balancing algorithms is given and the proposition
of load index choice is supported by tests run on large real-
world power distribution network models.

Index Terms—distributed computing, power distribution,
power system analysis computing, power system management,
smart grids.

I. INTRODUCTION

Power distribution networks are part of the electric
networks connecting the transmission networks and the end
consumers, thus, supplying the end users with electricity [1].
To deliver electric power more efficiently, reliably and more
securely, smart grids with modern metering devices and
communication infrastructure are developed. The real-time
monitoring of the medium and low voltage distribution
networks is restricted mostly due to economic and technical
limitations. Real-time measurements are typically located on
primary substations at 33/11kV and sparsely on lower
voltages i.e. on 11kV and on 380V. With the growing
number of DERs (distributed energy resources) such as
distributed generators, home batteries and electric vehicles
with demand response programs the number of
measurements has proven to be insufficient. Therefore, in
contrast to state estimation in electric power transmission
networks where it is usually used to filter out bad
measurements, in distribution networks state estimation has
a crucial part, to determine the state of power network from
a limited number of measurements [2]. To meet the
demands of the consumers, along with the smart grid
development, it is necessary to be able to monitor
distribution networks and perform real-time decisions when
power outages happen. The number of consumers is usually
very large, and additionally, power distribution networks are
built using various equipment, resulting in substantial
network size, and complexity. These factors and

requirements have evolved into the development of
Distribution Management Systems (DMS). As such, one of
the main expectations of the DMS software is the execution
of network analysis function, including the fast load flow,
state estimation, contingency analysis, optimal capacitor
placement etc. Since electric power distribution companies
are managing large data models the scalability of the DMS
software is also an essential factor.

1This work was supported in part by Schneider Electric DMS NS, by

providing real world distribution network model data for testing and
validating the results. This work has been partly supported by the Serbian
Ministry of Education, Science and Technological Development, through
grants No. 32018.

Scalability of a software describes the ability to handle
increasing or decreasing workload whether by vertical or by
horizontal scaling. Vertical scalability is achieved by
improving the computing power with faster processors more
memory, faster hard disk etc. Horizontal scalability on the
other hand is accomplished by adding more servers, and it
has obvious advantages: smaller costs, virtually no
limitation, easier upgradeability, improved resilience of the
system etc. In order to utilize horizontal scaling, the
software must be able to effectively parallelize tasks. This
can be done on several levels, by distributing tasks to
separate computers, by distributing tasks on separate CPUs
within the same computer, or by separating tasks to different
threads on the same CPU. In related works [3-4] the focus is
on parallelization of the power analysis algorithm itself. In
this paper, a different approach is explored: parallelization
of power analysis related calculations by dividing the
distribution power network up-front into smaller parts.

Distribution networks are usually weakly meshed with
radial topology [1]. This radial topology configuration gives
the possibility to divide these large distribution network
models into smaller parts, to so-called roots, and perform
calculations based on load flow analysis [5] independently
[6]. Distributed computer networks and distributed systems
with efficient load balancing are a good choice for the
previously addressed real-time response problems. Load
balancing can be described as a method for distributing the
workload to different computational nodes in effort to
minimize response time and/or distribute the workload
evenly between available nodes. The division of the power
distribution network into independent parts i.e. roots, gives
the possibility to distribute the roots data and calculations
related to them to different computational nodes [7]. It is
shown in [8] that the initial workload can be estimated
ahead based on the configuration of the network. Different
equipment types (non-zero-impedance branches, generators,
consumers etc.) have been considered, and a fairly good
initial load distribution can be done based on the quantity of
different types of equipment.

The aim of this paper is to select good performance
indices for load balancing distributed systems in order to

 11
1582-7445 © 2017 AECE

Digital Object Identifier 10.4316/AECE.2017.04002

[Downloaded from www.aece.ro on Saturday, October 13, 2018 at 09:23:56 (UTC) by 159.226.100.198. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 17, Number 4, 2017

achieve fast power systems calculations. The focus is on
selection of proper measure for measuring the workload.
The selection of the right performance indicators is critical
for the balancing of the workload and for sustaining system
stability within DMS with large power distribution network.
The concepts used for workload balancing on system startup
and for maintaining it during system uptime as well are
presented in following sections and supported with
experimental results in Section IV.

II. ARCHITECTURE

A. Functional architecture overview

The proposed centralized architecture of the system from
the aspect of functionality and responsibility is illustrated in
Fig. 1.

power network model changes,
calculation requests

System Manager
- processing and forwarding the
incoming changes and requests

- load balancing of calculation nodes

...

Calculation Node 1
- topology analysis and load flow

study based calculations
- collecting performance metrics

Calculation Node N

Figure 1. Functional system overview

The System Manager is responsible for tasks such as
receiving, processing and forwarding the incoming changes
in the power distribution network model, forwarding the on-
demand calculations requests and the load balancing. The
System Manager is connected via bus to every Calculation
Node (CN) which are located on individual machines in a
computer cluster. The CNs are dedicated to running
topology analysis and calculations which are based on load
flow analysis on a part of the power distribution network,
which has been assigned by System Manager to that specific
CN.

B. Components overview

The System Manager includes two components: Model
Manager and Load Balancer, as illustrated on Fig. 2. At the
beginning, the initial computational load is distributed by
assigning different parts of the power distribution network
to every CN. The initial power network partitioning to the
so-called roots is done based on the networks configuration
[6], which gives the starting workload distribution. The
Model Manager maintains information about which part of
the power network is assigned to which CN. Calculations
are performed when change in the network topology
configuration is detected or when an on-demand calculation
request is received. The Model Manager forwards the
incoming changes and requests to correspondent CN.
Consequently, the CN processes and stores the changes in a
Network Model, which performs topology analysis in a
Topology Analyzer (TA) and runs calculations in a Function
Calculator (FC). The modules on CNs are running on
different processor cores.

System
Manager

CN1 CNN

Performance
Indices Collector

Topology
Analyzer

Performance
Indices Collector

Network
Model

CPUs

Network
Model

CPUs

Function
Calculator

Topology
AnalyzerFunction

Calculator

Figure 2. Architecture of the system

The Load Balancer is liable for the performance
monitoring and workload balancing between the CNs.
During runtime, the Performance Indices Collector
components collect the selected performance metrics from
every node. The Load Balancer is then periodically invoked,
and inspects the state of the system and the need to
redistribute the workload between CNs based on gathered
workload information.

III. LOAD BALANCING

The essential problem of load balancing and different
algorithms for achieving it, are well studied and covered in
literature [9-11]. Tersely, the main objectives of load
balancing are the minimization of the response time,
optimization of the systems resource usage and preventing
the overload of any resource. From the aspect of which
available information is used for workload distribution and
whether it is done prior to or during runtime, load balancing
strategies can be classified in two major categories: static
and dynamic. As such, static load balancing is based only on
available knowledge about the system before runtime.
Adversely, dynamic load balancing implies using
information about the current state of the system when
making workload re-distribution decisions. This also entails
that static load balancing is simpler, easier to implement and
has coherent execution time, however using dynamic load
balancing results in a better workload distribution.
Therefore, the Load Balancer component has two parts, the
static and dynamic load balancers.

A. The Static Load Balancer

Static load balancing is used only at start-up when the
power distribution network is being divided into roots based
on normal switch statuses. The root weights are calculated
based on the networks configuration, and roots are assigned
to CNs. At this stage, neither communication costs i.e. the
amount of data exchanged between CNs and the System
Manager nor the rate of calculation requests are known.
A1. Optimization problem

Static load balancing can be viewed as a graph
partitioning problem [8], but since tie switches connecting

 12

[Downloaded from www.aece.ro on Saturday, October 13, 2018 at 09:23:56 (UTC) by 159.226.100.198. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 17, Number 4, 2017

different roots are off – the problem is reduced to a well-
known, NP-complete set partitioning problem. Given the
finite set of numbers A ⊂ ℤ+, partition A to such subsets An
that the difference between the sum of each subset is
minimized. Translated to the current problem: given the
power distribution network divided to roots and with
computational weight of each root wi, find such sets of roots
that the sum of the roots weight on each CNs are equal as
possible. The weight of the entire distribution network can
be written as a set R = {w1,...,wr}, where r is the number of
roots. With given number of calculation nodes N, find such
subsets Rn ⊂ R for n = 1…N, so that difference of the
subset sum is minimized

 (1)



















 nini Rw
i

Rw
i wwD minmax

under conditions that the subsets are:
 - mutually exclusive Ri ⋂ Rj = ∅ for i≠j, j,i = 1…N
 - collectively exhaustive R1 ⋃ R2 ⋃ … U Rn = R.

The brute-force search for all possible subsets would have
exponential runtime, O(2r), so it is only applicable to small
sets. Since the workload distribution will be later refined
with dynamic load balancing, finding the optimal solution is
not crucial at start-up. Few algorithms were considered for
static load balancing for which short previews are given
below.
A2. Algorithms

The greedy heuristic algorithm (GH) is straightforward.
Starting with sorted root weights in decreasing order, move
each root weight to a set with the least sum until no weights
are left [12]. It requires set sorting, which has O(r log r)
complexity and root assigning with O(r) complexity.

The set differencing method [13], also known as
Karmarkar-Karp heuristics algorithm (KK), as the previous
algorithm, starts with an ordered set of root weights. For
every element in the set an N-tuple is created, and the
corresponding root weight is initially assigned as the first
element of tuple. At every iteration of the algorithm, the 2N
largest elements from two N-tuples (a1,…,aN) and (b1,…,bN)
are combined according to the rule

 bababaC NNN 1121 ,...,,    (2)

The previously combined tuples are removed, and the new
tuple C is normalized by subtracting the smallest value
found in it. The tuple is then sorted in descending order, and
placed back into the sorted set of N-tuples. This is repeated
until only one tuple is left. Finally, the last tuple represents
the difference of the resulting subsets sums. To retrieve the
actual subsets additional accounting is necessary while
combining the tuples. The KK algorithm runs in O(n log n)
time.

The sequential number partitioning (SNP) [14] first runs
the KK algorithm to retrieve the initial upper and lower
bounds. The upper bound ub is the best partition i.e. the sum
of set divided with the number of partitions

∑
1

1

r

i
ib w

N
u


 (3)

and the lower bound lb is calculated as

   





 


∑ 1

1

1

r

i
ib dNw

N
l (4)

where d is the difference between the best N-way partition

found by KK.
Next, a binary exclusion-inclusion tree is built with every
level in the binary tree representing a root weight from the
set. The leaves correspond to subsets including the root
weights on left branches and excluding on right. The
inclusion tree is then searched for subsets which satisfy the
conditions that the subset sum at the leaf node is less than
ub, and the subset sum at the leaf node plus the sum of non-
assigned root weights is larger than the lb. For the remaining
partition, SNP is then called recursively with lb greater or
equal than previous subset sum. The worst-case complexity
of tree search is O(2r).

In future works, next to the presented and implemented
algorithms, the principles and methodologies presented in
[15-18] could be considered as well, where alongside nature
inspired algorithms better solution is obtained using hybrid
algorithms.

B. Workload estimation

Since one of the key issues with good dynamic load
balancing is recognizing an adequate load index, the choice
is explained in more detail in the following section. The load
index should represent the workload on some node.
Therefore, the following questions arise: how to estimate the
workload on a CN, which performance indicators should be
collected and used as load index? With some exceptions
[19-21], mainly configurations with homogenous nodes are
analyzed. In [22-23] the authors used various load indices,
but they all have similar reasoning regarding the selection of
parameters for load index. The incoming job, or in this case
the load flow analysis, will demand some resources from the
CN i.e. I/O queues, CPU and memory consumption, and
therefore, the CPU queue length, the CPU utilization, the
normalized response time, etc. will reflect the workload on
the node. The authors have been using one of the mentioned
per, or some simple combination of them. It is shown in [24-
25] that the CPU queue gives a good estimate of the
workload and it can be used as load index. In some
situations, the CPU queue does not reflect the real workload
on the CN. For example, if some CN has a large hard disk
I/O, the read/write operations will be blocked until served,
and thus the hard disk will be a bottleneck and CPU will be
idle. Fortunately, this can be measured with disk queue i.e.
the number of request waiting for the disk.
B1. Performance metrics

With the centralized architecture, presented in Section II,
various system performance metrics were taken into
consideration: CPU usage and CPU queues, memory loads,
disk queues and transfer, etc. As the model of the power
network is held in the CNs memory, there is low or none
disk I/O, and thus the performance indicators related to the
hard disk are dismissed at the start. For the same reason, the
memory consumption is not descriptive enough either, since
the small fluctuations in memory usage are just the result of
the process of creating the calculation model for load flow
analysis itself. The remaining performance indicators, the
CPU usage and the CPU queue length, have shown as good
estimate of the workload.

Since TA and FC are working in tandem, it has been
observed that frequent calculation requests can result in the
overload of one of the components (depending on the type

 13

[Downloaded from www.aece.ro on Saturday, October 13, 2018 at 09:23:56 (UTC) by 159.226.100.198. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 17, Number 4, 2017

of calculation), leaving the other components inactive. In
these situations, where TA and FC modules are running on
different processor cores, the total CPU usage will not
reflect the real workload, since one processor core will be
idle. To tackle this problem, additional performance
counters are introduced: the length of the request queues on
TA and on FC. Thus, the load index of the j-th node i.e. CNj
can be expressed as some function of the collected
performance indices.
Considering the above, from all possible performance
metrics the following subset is chosen:

 PM ={C, QT, QF} (5)
where C, QT, QF denote total processor time, TA and FC
request queue lengths, respectively, for the observed CNj.
B2. Load index

The load index Lj for CNj will be some function of
collected values defined by variables from PM

)(PfLj  (6)

with P defined as
 nPPPP 21 



 (7)

representing the vector of collected performance index
triplets for n samples i.e. the i-th sample on the observed
CNj will be

 (8)  T
FTi QQCP 

A simple linear combination of these variables yields a
good workload estimate. Let’s define the function f from (6)
as a mapping of P to the interval [0, 1]

   1,01,0:  LPf  (9)

where an unloaded node will have load index 0 and
overloaded node will have 1. Subsequently, define li as a
vector of combined performance indices C QT QF

ii PKl  (10)

for each node i = 1…n and with weight factors K defined

 













j

F

j

TC

r

K

r

KK

m
KKKK

100

1
321 (11)

where rj is the number of roots assigned to CNj, and
m=|PM|=3.The coefficients KC, KT and KF, are arbitrary
chosen values allowing to increase or decrease the impact of
some performance metric variables, with constraint

 . (12) 1
1




m

k
kK

For the value of one for the coefficients KC, KT and KF,
every performance index will have the same impact on the
resulting load index.

CPU usage is a frequently changing variable, and load
flow analysis also has a short execution time, hence some
smoothing function is necessary. To flatten these short-term
peaks exponential smoothing is used over the entire time of
the observation. The smoothing function is applied as

 (13) 1
ˆ)1(ˆ
 iii lll 

with smoothing factor α = [0,1] as by definition

 
t

e


1 (14)
where Δt is the sampling period of the collected
performance indices and τ is the time constant i.e. the
elapsed time of a step response needed to reach 63.2% of its
original value. For smaller α, the older values will have

more impact and the function will be “smoother”. The initial
value in exponential smoothing (13) is set to the first value
of load index i.e.

11
ˆ ll  . (15)

Considering that DMS is a mission-critical application,
threshold limit of 75% is imposed to CPU usage, and with
the same reasoning, thresholds for queue lengths are defined
as the number of roots rj, assigned to CNj. Finally, the load
index for CNj will have the form (16).





 

otherwise1

)()()75(forˆ
)()()(jnFjnTni

j
rQrQCl

L (16)

The workload state of the whole system can be described
with a set of load index (16) of every CN.

L = {L1, L2,…, LN} (17)

C. The Dynamic Load Balancer

The main motivation for dynamic load balancing is the
improvement of the workload distribution by using
information about the current state of the system.

Three main parts of the dynamic load balancing can be
observed [9]:

- local workload information of CN
- information policy
- transfer policy.

The information policy describes the procedure of sharing
the information in the system (between which components
and in which manner is information broadcasted, how
frequently, etc.). Since the architecture of the system is
centralized, all CNs are sending their state to Load Balancer
at System Manager periodically.
The transfer policy decides when is it advantageous to
migrate the task and to which CN it should be transferred.
The workload information represents the current workload
state of the CNs.
C1. Optimization problem

After an arbitrary period, based on the collected load
indices, presented in the previous section, if imbalance is
detected, that is, when the difference between load indices
defined with (16) is larger than the predefined limit, the
workload should be redistributed. From CNs with high
workloads some roots (together with calculations), are
migrated to other CN with less workload. The aim is to
minimize the imbalance i.e. to minimize the cost function
defined with mean squared error


2

1
min




N

j
j LLJ  (18)

where L is the average value of all load indexes





N

j
jL

N
L

1

1
 (19)

Since the size of the model for one root can be significant,
the migration of the model data can be expensive, i.e. the
communication costs cannot be neglected and they should
be considered as well. Therefore, the dynamic load
balancing should not be triggered below a certain threshold
value. Like with static load balancing, several algorithms are
tested. Given the fact that the initial workload distribution is
already done with static load balancing, it is in interest to
consider algorithms for dynamic load balancing which start

 14

[Downloaded from www.aece.ro on Saturday, October 13, 2018 at 09:23:56 (UTC) by 159.226.100.198. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 17, Number 4, 2017

with already distributed workloads, and perform refinement
in the form of reallocating just some of the roots to other
nodes, so that the migration cost is minimized. The aim of
the dynamic load balancing algorithm is the minimization of
the function

DFF m  (20)

where Fm is the total migration cost between CNs, and D is
defined with (1).
Under the assumption that the network connection is the
same between the CNs, the migration cost is reduced to the
size of the computational model of the migrated roots.


Ms

im
i

sF (21)

where si is the size of the computational model of i-th root,
and M is the set of all migrated roots.
In current application, the sizes of the computation models,
i.e. the migration costs of the smallest roots are up to MB
while the largest roots can have computational model of few
hundreds of MB.
C2. Algorithms

One of the diffusion based method for graph partitioning
is the Cut-Paste (CP) [26]. In every iteration, for each
overloaded CN (donor), a root is chosen and migrated to an
underloaded CN (receiver) so that the resulting imbalance is
minimized with least possible migration i.e. the optimization
function (21) is minimized.

A very similar technique, the Match-Maker (MM) is
presented in [27]. The most loaded CN (source) is paired
with the least loaded CN (destination), the second most
loaded CN is paired with second least loaded CN and so on.
Then, roots are selected from sources and migrated to
destination. The selection is simple: find the largest root in
source that can be migrated to destination, so that the it will
not become overloaded.
In both CP and MM algorithms, the process is repeated until
there is no more improvement or until the desired value of
workload balance is reached.

Another group of algorithms for repartitioning is the so-
called scratch-remap algorithms. While the diffusion based
algorithms start with already distributed workloads and
attempt to achieve better balancing between the CNs, the
scratch-remap algorithms calculate balanced workload
distributions from scratch, and then try to minimize the
difference between the existing and the calculated workload
distributions. One of the scratch-remap algorithms is the
Locally-Matched Multilevel Scratch-Remap (LMSR)
presented in [28]. LMSR can be described in three main
steps:

1. Determining the new balanced workload distribution -
the balanced partitioning is obtained using algorithms for
partitioning from scratch.

2. Similarity matrix – in this step a similarity matrix is
constructed. The similarity matrix S is a square matrix of
size N (where N is the number of CNs). Each cell of that
matrix represents the measure of similarity between the
existing imbalanced and the newly calculated balanced load
distribution from 1st step. As the goal is to minimize the
migration between nodes while reaching balanced workload
distribution, the root sizes are of adequate measure, and
hence the element S(i, j) is the sum of weights of
overlapping roots that belongs both to CNi in imbalanced

and to CNj in the newly calculated balanced workload
distribution.

3. Mapping - after the similarity matrix is constructed,
distinct pairs of unbalanced and balanced CNs are chosen in
effort to minimize the migration cost. From each row and
column of the matrix S one cell must be chosen so that their
sum is the maximum possible. This can be reduced to a well
know assignment problem or finding a maximum weight
matching in a weighted bipartite graph, which can be solved
using the Hungarian algorithm in O(n2) running time.

IV. RESULTS

To justify the choice of performance metrics and to prove
the validity of the (17) experimental tests were conducted.
which included triggering load flow analysis and state
estimations on real power distribution networks using CNs
with similar characteristics.

A. Experimental setup

The two main components on each node, the TA and FC
modules, described in section II, were assigned to different
processor core. The calculations were triggered in different
time intervals on various roots. The frequency of the
calculation requests was depending on root size, and the
performance indicators defined in (5) were collected. The
CPU and the queue lengths are sampled on every second.
All tests were performed using a cluster of PCs with similar
characteristic (Intel i5 processors and 32GB RAM memory).
The iterative algorithm for load flow analyses is written in
Intel Fortran programming language, while the topology
analysis part is written in C++.

0 100 200
0

0.5

1

1.5

C
PU

 ti
m

e

0 100 200
0

2

4

6

N
or

m
al

iz
ed

qu
eu

e
le

ng
th

0 100 200
0

0.2

0.4

N
or

m
al

iz
ed

qu
eu

e
le

ng
th

0 100 200
0

0.5

1

time [minutes]

L
oa

d
in

de
x

moderately loaded CN
overloaded CN

time [minutes]

time [minutes]

time [minutes]

(b)

(a)

(c)

(d)

Figure 3. Normalized CPU usage (a), TA (b) and FC (c) queue lengths and
load index (d) for overloaded and for moderately loaded CN

 15

[Downloaded from www.aece.ro on Saturday, October 13, 2018 at 09:23:56 (UTC) by 159.226.100.198. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 17, Number 4, 2017

Two typical example of the collected data is illustrated in
Fig. 3. where the normalized performance samples of CPU
and queue lengths for one node are shown. There was no
emphasis on neither of the performance index and therefore
the coefficients KC, KT and KF defined with (11) are set to
the value of one. In this example, the collected normalized
values C/100, (Fig 3. a), QT/rj (Fig 3. b) and QF/rj (Fig 3. c)
and the resulting load index (Fig 3. d), which varies between
0.5-0.75, shows that the CN is mildly loaded (shown as
moderately loaded CN). With more frequent calculation
requests, the same variables are presented on the same Fig. 3
(shown as overloaded CN). It can be concluded, that the TA
module in this setup is not capable of performing the
topology analysis at a given rate, thus resulting in pileup of
requests on the queue QT as shown in Fig. 3. b, while the
queue length on the FC module (Fig. 3 c) and the CPU is in
normal range. The resulting load index (16) in this case
approaches the value of one.

Different configurations and combinations of above
described static and dynamic load balancing algorithms
were tested. The complete tests i.e. static load balancing,
collecting the performance indices and the dynamic load
balancing is performed for a period of few weeks. The
network model is taken from a real power distribution
networks, both European and North American. Some
insignificant differences have been observed in load
balancing due to different network configuration, voltages,
and since North American distribution networks are mostly
unbalanced. The more detailed description of the used data
model can be found in [8].

The representative example shown in the following
figures illustrates the obtained results for power distribution
network consisting from approximatively 400 roots of
different sizes, which are distributed to five homogenous
CNs.

0 100 200
0

0.5

1

C
PU

 u
sa

ge

(a)

0 100 200
0

0.5

1

N
or

m
al

iz
ed

qu
eu

e
le

ng
th

(b)

0 100 200
0

0.5

1

N
or

m
al

iz
ed

qu
eu

e
le

ng
th

(c)

0 100 200
0

0.5

1

time [minutes]

L
oa

d
in

de
x

time [minutes]

time [minutes]

time [minutes]

(d)

Figure 4. Normalized CPU (a), TA (b) and FC (c) queue lengths and the
load index (d) with random assignment of roots and without static and

dynamic load balancing

As large power distribution network roots have more

switching devices there is a much higher probability that
calculations will be requested for these roots due to network
reconfiguration caused by operating with switching devices.
This can be concluded from collected statistic values from
field as well.

B. Experimental results

 With random assignment of the roots to the CNs i.e.
without static and dynamic load balancing the collected data
are shown in Fig. 4. It can be observed that the workload is
not evenly distributed between nodes, the CPU usage on
some nodes is very low. After a while the normalized TA
queue length on one node starts increasing up to the point
where the component is not capable of handling any more
the incoming requests at this rate. Since the frequency rates
of the calculation requests are not known upfront, they are
not considered in static load balancing and the initial
workload distribution is very inaccurate.

1 2 3
1

1.5

2

2.5
x 10

4

GHSNP KK

Figure 5. Comparison of the workload distribution after static load
balancing: Sequential Number Partitioning (SNP), Karmarkar-Karp (KK)

and Greedy Heuristic (GH)

The comparison of initial imbalance on CNs after
partitioning with SNP, KK and GH is shown in Fig. 5. Both
SNP and KK found nearly perfect distribution while the GH
resulted in somewhat larger workload imbalance.

0 100 200
0

0.5

1

(a)

C
PU

 u
sa

ge

0 100 200
0

0.5

1

(b)

N
or

m
al

iz
ed

qu
eu

e
le

ng
th

0 100 200
0

0.5

1

(c)

N
or

m
al

iz
ed

qu
eu

e
le

ng
th

0 100 200
0

0.5

1

time [minutes]

L
oa

d
in

de
x

time [minutes]

time [minutes]

t
(d)

time [minutes]

Figure 6. Results of dynamic load balancing with LMSR

In Fig. 6 the moment of dynamic balancing is captured.

 16

[Downloaded from www.aece.ro on Saturday, October 13, 2018 at 09:23:56 (UTC) by 159.226.100.198. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 17, Number 4, 2017

After a while the load index (defined with (16)) has taken
the value of one. Since it is not desired to perform load
balancing immediately (the imbalance can be just a result of
some short-term anomaly e.g. power outage), some delay
has been added. At time t, after the load index was high for
given time (60 minutes in this setup), the dynamic
repartitioning is triggered.

The weights of roots are recalculated using previous
weights and the rate of requests. With the newly obtained
weights, repartitioning is performed and some roots,
determined by the dynamic load balancing strategy, are
migrated. On the example shown on Fig. 6, LMSR algorithm
is used for dynamic load balancing. After migration, the
workload on the previously overloaded CN dropped and the
performance measurements are showing that the workloads
are fairly distributed to all CNs. Along with the
improvement of the load index (Fig. 6 d), the CPU
utilization and the request queue lengths are uniformly
distributed (Fig. 6 a-c).

The LMSR algorithm, as expected, has resulted in a better
workload redistribution which is illustrated in Fig. 7 a,
however the data migration is very large comparing to MM
and CP. In the current setup, the size of the computational
model for one root is ranging from few MB up to few
hundreds of MB and therefore the migration cost cannot be
neglected. When the best possible workload distribution is
not mandatory, i.e. some small arbitrary imbalance is
allowed, the CP and the MM algorithms can be easily
modified to stop when the desired value of workload
imbalance is reached.

Because of the nature of diffusion algorithms (CP and
MM) the iterative improvement process can be easily
stopped which is not the case with remapping from the
scratch (LMSR). This has resulted in very small increase of
the overall workload imbalance (Fig. 7 b), and almost
unnoticeable change in the load index, but the reduction of
data migration is significant.

LMSR CP MM
3.94

3.945

3.95

3.955
x 10

4

LMSR CP MM
3.94

3.945

3.95

3.955
x 10

4

(b)

(a)

Average

Average

Figure 7. Workloads on the calculation nodes after dynamic load balancing
(a) and after dynamic load balancing with allowed imbalance (b)

In Table I, along with the cost function (18), the size of

the migrated data is shown when the best workload
balancing is obtained and when this requirement is relaxed
i.e. small imbalance is allowed in CP and in MM. Results
show that the migration cost can be significantly reduced
with CP or MM algorithm when the best workload balance
is not mandatory. Based on the obtained result it can be
concluded that by using the mentioned algorithms for static
and dynamic load balancing the workload balance can be
improved. The best workload balance is achieved with
LMSR algorithm, which is advantageous in cases when all
CNs have high workload. In those scenarios, even small
imbalance can lead to overload of one of the CNs which will
lead to instable system. On the other hand, the CP algorithm
has shown to be better solution compared to the MM
algorithm both in terms of workload balancing, and
migration cost. Comparing to the LMSR algorithm the CP
algorithm performed with somewhat worse workload
balancing but gave a much smaller migration costs.

TABLE I. COST FUNCTION AND MIGRATION COST

 Before LMSR CP MM
 Best solution that can be found
J 0.585 0.003 0.015 0.068

Data migration [MB] - 8671 1694 2093
 With small imbalance allowed
J 0.585 0.003 0.02 0.083

Data migration [MB] - 8671 1493 2052

V. CONCLUSION

This paper proposes the selection of the load index and
comparing static and dynamic load balancing strategies for
distributing calculations to calculation nodes are presented.
The solution is applied to power system analysis
calculations where methodology and arguments behind the
selection of performance indices are given. Based on
performance measurements and on the characteristics of
load flow analysis on weakly meshed power distribution
networks the choice of load index is elaborated along with
short overview of different load balancing strategies is
given. The conjecture given in section III is proven with test
results. All static load balancing methods gave reasonably
good results with GH performing slightly worse than KK
and SNP. From dynamic load balancing strategies
considered in this work LMSR gave the best workload
balancing, however when small imbalance can be tolerated
CP outperformed LMSR and MM in terms of speed of
execution and size of migrated data.

ACKNOWLEDGMENT

We would like to thank our associates at Schneider
Electric DMS NS, Novi Sad, Serbia for their help during our
work on this research. They were the sole source of all real-
life electric power system data.

REFERENCES
[1] Lakervi and Holmes, Electricity Distribution Network Design.

Institution of Engineering and Technology, pp 1-26, pp. 192-208
2003. doi:10.1049/PBPO021E

[2] R. Singh, B. C. Pal, and R. B. Vinter, “Measurement Placement in
Distribution System State Estimation,” IEEE Transactions on Power

 17

[Downloaded from www.aece.ro on Saturday, October 13, 2018 at 09:23:56 (UTC) by 159.226.100.198. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 17, Number 4, 2017

 18

Systems, vol. 24, no. 2, pp. 668–675, May 2009.
doi:10.1109/TPWRS.2009.2016457

[3] J.S. Chai, and Anjan Bose. "Bottlenecks in parallel algorithms for
power system stability analysis," IEEE Transactions on Power
Systems vol. 8 no. 1, pp. 9-15., 1993. doi: 10.1109/59.221242

[4] G. Gurrala, A. Dimitrovski, P. Sreekanth, S. Simunovic, M. Starke,
and K. Sun, “Application of adomian decomposition for multi-
machine power system simulation,” In Power & Energy Society
General Meeting, 2015 IEEE, pp. 1-5, 2015., doi:
10.1109/PESGM.2015.7286538

[5] D. Shirmohammadi, H. W. Hong, A. Semlyen, and G. X. Luo, “A
compensation-based power flow method for weakly meshed
distribution and transmission networks,” IEEE Transactions on Power
Systems, vol. 3, no. 2, pp. 753–762, May 1988.
doi:10.1109/59.192932

[6] D. Capko, A. Erdeljan, M. Popovic, and G. Svenda, “An Optimal
Initial Partitioning of Large Data Model in Utility Management
Systems,” Advances in Electrical and Computer Engineering, vol. 11,
no. 4, pp. 41–46, 2011. doi:10.4316/AECE.2011.04007

[7] D. Capko, A. Erdeljan, S. Vukmirovic, and I. Lendak, “A Hybrid
Genetic Algorithm for Partitioning of Data Model in Distribution
Management Systems,” Information Technology And Control, vol.
40, no. 4, Dec. 2011. doi:10.5755/j01.itc.40.4.981

[8] L. Martinovic, D. Capko, and A. Erdeljan, “Estimation methods of
calculations complexity in distribution management systems,” 2014,
pp. 325–328. doi:10.1109/CINTI.2014.7028697

[9] K. Benmohammed-Mahieddine, “An Evaluation of Load Balancing
Algorithms for Distributed Systems,” PhD thesis, University of
Leeds, Oct. 1991.

[10] S. Sharma, S. Singh, M. Sharma, "Performance analysis of load
balancing algorithms," In: 38th World Academy of Science,
Engineering and Technology, 2008.

[11] S. Zhou, D. Ferrari, “A measurement study of load balancing
performance,” Proc. 7th Int. Conf. Dist. Computing Syst., pp 490–
497, 1987.

[12] R. L. Graham, “Bounds on Multiprocessing Timing Anomalies,”
SIAM Journal on Applied Mathematics, vol. 17, no. 2, pp. 416–429,
Mar. 1969. doi:10.1137/0117039

[13] N. Karmarkar, R. M. Karp, “The differencing method of set
partitioning,” Technical Report UCB/CSD 82/113, Computer Science
Division, University of California, Berkeley, vol. 82, no. 113, pp.181-
203, 1982.

[14] R. E. Korf, “Multi-way number partitioning,” in Proceedings of the
20nd International Joint Conference on Artificial Intelligence
(IJCAI-09), pp. 538–543, 2009.

[15] J. Vaščák, “Adaptation of fuzzy cognitive maps by migration
algorithms,” Kybernetes, vol. 41, no. 3/4, pp. 429–443, Apr. 2012.
doi:10.1108/03684921211229505

[16] R.-E. Precup, M.-C. Sabau, and E. M. Petriu, “Nature-inspired
optimal tuning of input membership functions of Takagi-Sugeno-
Kang fuzzy models for Anti-lock Braking Systems,” Applied Soft
Computing, vol. 27, pp. 575–589, Feb. 2015.
doi:10.1016/j.asoc.2014.07.004

[17] S. Vrkalovic, T.-A. Teban, and L.-D. Borlea, “Stable Takagi-Sugeno
fuzzy control designed by optimization,” International Journal of
Artificial Intelligence, vol. 15, no. 2, pp. 17–29, 2017.

[18] Z. Chen, S. Zhou, and J. Luo, “A robust ant colony optimization for
continuous functions,” Expert Systems with Applications, vol. 81, pp.
309–320, Sep. 2017., doi: 10.1016/j.eswa.2017.03.036

[19] J. L. Bosque, P. Toharia, O. D. Robles, and L. Pastor, “A load index
and load balancing algorithm for heterogeneous clusters,” The Journal
of Supercomputing, vol. 65, no. 3, pp. 1104–1113, Sep. 2013.
doi:10.1007/s11227-013-0881-3

[20] A. Karimi, F. Zarafshan, A. Jantan, A. R. Ramli, M. Saripan, “A New
Fuzzy Approach for Dynamic Load Balancing Algorithm,”
International Journal of Computer Science and Information Security,
IJCSIS, Vol. 6, No. 1, pp. 1-5, Oct. 2009.

[21] P. Kanungo, “Measuring performance of dynamic load balancing
algorithms in distributed computing applications,” International
Journal of Advanced Research in Computer and Communication
Engineering, Vol. 2, No. 10, Oct. 2013.

[22] R. Luling, B. Monien, and F. Ramme, “Load balancing in large
networks: a comparative study,” 1991, pp. 686–689.
doi:10.1109/SPDP.1991.218196

[23] E. Laskowski, M. Tudruj, R. Olejnik, and D. Kopanski, “Dynamic
Load Balancing Based on Applications Global States Monitoring,”
2013, pp. 11–18. doi:10.1109/ISPDC.2013.11

[24] D. Ferrari, S. Zhou, “A load index for dynamic load balancing,” in
Proceedings of 1986 ACM Fall joint computer conference. IEEE
Computer Society Press, pp. 684-690, 1986.

[25] D. Ferrari, S. Zhou, “An empirical investigation of load indices for
load balancing applications Proc. Performance,” `87, 12th IFIP
WG7.3 Int. Symp. on Computer Performance, Brussels, 1987

[26] K. Schloegel, G. Karypis, and V. Kumar, “Multilevel Diffusion
Schemes for Repartitioning of Adaptive Meshes,” Journal of Parallel
and Distributed Computing, vol. 47, no. 2, pp. 109–124, Dec. 1997.
doi:10.1006/jpdc.1997.1410

[27] N. Widell, “Migration algorithms for automated load balancing,” in
Proceedings of 16th International Conf. on Parallel and Distributed
Computing and Systems: MIT Cambridge USA, Nov. 2004.

[28] K. Schloegel, G. Karypis, and V. Kumar, “Wavefront diffusion and
LMSR: algorithms for dynamic repartitioning of adaptive meshes,”
IEEE Transactions on Parallel and Distributed Systems, vol. 12, no. 5,
pp. 451–466, May 2001. doi:10.1109/71.926167

[Downloaded from www.aece.ro on Saturday, October 13, 2018 at 09:23:56 (UTC) by 159.226.100.198. Redistribution subject to AECE license or copyright.]

